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Theorem: 
Trace and output are
“from-scratch”-

consistent

Equivalently: 
Change propagation is

History 
independent

Input Trace Output

Propagation respects program semantics:



Existing Limitations
(self-adjusting computation)

‣Change propagation is eager

Not driven by output observations

‣Trace representation                         
= Total ordering

Limits reuse, excluding certain patterns

Interactive settings suffer in particular

?



Adapton: Composable, 
Demand-Driven IC

•Key concepts: 
Lazy thunks: programming interface

Demanded Computation Graph 
(DCG): represents execution trace

•Formal semantics, proven sound
•Implemented in OCaml (and Python)
•Speedups for all patterns (unlike SAC)
•Freely available at http://ter.ps/adapton

http://ter.ps/adapton
http://ter.ps/adapton
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Adapton’s Approach

• When we mutate an input, we mark 
dependent computations as dirty

• When we demand a thunk:

• Memo-match equivalent thunks

• Change-propagation repairs 
inconsistencies, on demand
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Spread Sheet Evaluator

eval : cell → (int thunk)

eval c =  thunk ((
    case (get c) of
      | Leaf n  ⇒  n 

      | Plus(c1, c2) ⇒
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and formula = 
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Lazy Structures
Laziness generalizes beyond scalars

Recursive structures: lists, trees and graphs

type 'a lzlist =
  | Nil 
  | Cons of 'a *  ('a lzlist) thunk

Recursive 
lazy structure



 let rec merge l1 l2 = function
  | l1, Nil ⇒ l1

  | Nil, l2 ⇒ l2

  | Cons(h1,t1), Cons(h2,t2) ⇒ 

     if h1 <= h2 then 
     Cons(h1, thunk(merge (force t1) l2)

     else
     Cons(h2, thunk(merge l1 (force t2))

Merging Lazy Lists
As in conventional lazy programming



Mergesort DCG Viz.

Graphics by Piotr Mardziel



Micro Benchmarks

List and tree applications:

filter, map

fold{min,sum}

quicksort, mergesort

expression tree evaluation



Batch Baseline
time (s)

Adapton
speedup

SAC
speedup

filter 0.6 2.0 4.11

map 1.2 2.2 3.32

fold min 1.4 4350 3090

fold sum 1.5 1640 4220

exptree 0.3 497 1490

Mutate
random
input Demand

full output

Batch Pattern: Experimental procedure:



Swap Baseline
time (s)

Adapton
speedup

SAC
speedup

filter 0.5 2.0 0.14

map 0.9 2.4 0.25

fold min 1.0 472 0.12

fold sum 1.1 501 0.13

exptree 0.3 667 10

Swap
input
halves Demand

full output

Swap Pattern: Experimental procedure:



Lazy Baseline
time (s)

Adapton
speedup

SAC
speedup

filter 1.16E-05 12.8 2.2

map 6.86E-06 7.8 1.5

quicksort 7.41E-02 2020 22.9

mergesort 3.46E-01 336 0.148

Demand
first output

Mutate
random
input

Lazy Pattern: Experimental procedure:



Demand
first output

Switch Pattern: Experimental procedure:

1. Remove
2. Insert

Switch Baseline
time (s)

Adapton
speedup

SAC
speedup

updown1 3.28E-02 22.4 2.47E-03

updown2 3.26E-02 24.7 4.28

3. Toggle order
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Figure 9: ADAPTON Spreadsheet (AS2) performance tests.

simulates a user loading dense spreadsheet (with s sheets, ten rows
and ten columns) and making a sequence of c random cell changes
while observing the (entire) final sheet s:

scramble-all; goto s!a1; print; repeat c{scramble-one; print}

The scramble-all command initializes the formulae of each sheet
such that sheet 1 holds random constants (uniformly in [0, 10k]),
and for i > 1, sheet i consists of binary operations (drawn uni-
formly among {+,−,÷,×}) over two random coordinates in sheet
i − 1. scramble-one changes a randomly chosen cell to a random
constant.

Figure 9 shows the performance of this test script. In the left
plot, the number of sheets varies, and the number of changes is
fixed at ten; in the right plot, the number of sheets is fixed at
fifteen, and the number of changes varies. In both plots, we show
the relative speedup/slowdown of ADAPTON and EagerTotalOrder

to that of naive, stateless evaluation. The left plot shows that as the
number of sheets grows, the benefit of ADAPTON increases. In fact,
our measurements show that with only four sheets, the performance
of the naive approach is overtaken by ADAPTON; the gap widens
exponentially for more sheets. By contrast, EagerTotalOrder offers
no incremental benefit, and the performance is always worse than
the naive implementation, resulting in slowdowns that worsen as
input sizes grow. We note that the speedups vary, depending on
random choices made by both scramble-one and scramble-all.2
The right plot shows that even for a fixed-sized spreadsheet, as
the number of changes grows, the benefit of ADAPTON increases
exponentially. As with the left plot, EagerTotalOrder again offers
no incremental benefit, and always incurs a slowdown (e.g., at the
right edges of each plot, we consistently measure slowdowns of
100x or more).

In both cases (more sheets and more changes), ADAPTON offers
significant speedups over the naive stateless evaluator. These per-
formance results makes sense: efficient AS2 evaluation relies criti-
cally on the ability to reuse results multiple times within a compu-
tation (the sharing pattern). While ADAPTON supports this incre-
mental pattern with ease, EagerTotalOrder fundamentally lacks the
ability to do so, and instead only incurs a large performance penalty
for its dependence-tracking overhead.

7. Related Work
Incremental computation. The idea of memoization—improving
efficiency by caching and reusing the results of pure computations—
dates back to at least the late 1950’s [8, 33, 35]. Incremental compu-
tation (IC), which has also been studied for decades [1, 22, 32, 36,
37], uses memoization to avoid unnecessary recomputation when
input changes. Early IC approaches were promising, but many are
limited to caching final results.

2 We plot an average of eight randomized runs for each coordinate.

Some prior IC work is motivated (at least in part) by being cog-
nizant of demand. By contrast, in most prior IC techniques dis-
cussed below, change propagation processes input changes eagerly.
Briefly, ADAPTON’s notion of “demand” is different from most
prior work in that it is dynamically determined by an outer-layer
computation, rather than pre-determined by the prior (inner) com-
putation. Hoover and Teitelbaum optimize change propagation for
attribute grammars based on keys “demanded” from an aggregate
datastructure during a particular computation, but it is always the
same (entire) computation that is (more efficiently) updated when
the data structure is changed [24]. Field and Teitelbaum employ a
lazy language to avoid some recomputation on update, as do we, but
have no explicit notion of outer-layer demand [16]. Moreover, the
sequence of changes to this original expression must be known a
priori, unlike in ADAPTON. Hoover proposes a programming sys-
tem (ALPHONSE), which includes demand-driven functions that,
during change propagation, are only re-evaluated when called [23].
However, the mechanism is potentially inefficient: demand-driven
functions are sometimes unnecessarily re-evaluated, e.g., even if
their inputs are unchanged. Hudson describes a lazy change propa-
gation strategy similar to ours, and treats “demand” as coming from
an external source as well [25], but applied to attribute grammars
rather than general-purpose computation. His strategy also does not
incorporate memoization, limiting reuse of prior computation.

Self-adjusting computation is a recent approach to IC that uses a
special form of memoization that caches and reuses portions of dy-
namic dependency graphs (DDGs) of a computation. These DDGs
are generated from conventional-looking programs with general re-
cursion and fine-grained data dependencies [4, 10]. As a result, self-
adjusting computation tolerates store-based differences between
the pending computation being matched and its potential matches
in the memo table; change-propagation repairs any inconsisten-
cies in the matched graph. Researchers later combined these dy-
namic graphs with a special form of memoization, making the ap-
proach even more efficient and broadly applicable [2]. More re-
cently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [11, 12, 30] and better per-
forming [19, 20].

ADAPTON is similar to self-adjusting computation in that it
applies to a conventional-looking language and tracks dynamic
dependencies. However, as discussed in Sections 1 and 2, we
make several advances over prior work in the setting of interac-
tive, demand-driven computations. First, we formally characterize
the semantics of the inner and outer layers working in concert,
whereas all prior work simply ignored the outer layer (which is
problematic for modeling interactivity). Second, we offer a com-
positional model that supports several key incremental patterns—
sharing, switching, and swapping. All prior work on self-adjusting
computation, which is based on maintaining a single totally ordered
view of past computation, simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”), giving a formal semantics and pre-
liminary algorithmic designs [29, 31]. However, these semantics
still assume a totally ordered, monolithic trace representation and
hence are still of limited use for interactive settings, as discussed in
Section 1. For instance, their techniques explicitly assume the ab-
sence of sharing (they assume all function invocations have unique
arguments), and they do not support laziness, which they leave for
future work. Additionally, to our knowledge, their techniques have
no corresponding implementations.

Functional reactive programming (FRP). The chief aim of FRP
is to provide a declarative means of specifying interactive and/or
time-varying behavior [13, 14, 26]. FRP-based proposals share
some commonalities with incremental computation; e.g., when an
input signal is updated (due to an event like a key press, or simply
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Figure 9: ADAPTON Spreadsheet (AS2) performance tests.

simulates a user loading dense spreadsheet (with s sheets, ten rows
and ten columns) and making a sequence of c random cell changes
while observing the (entire) final sheet s:

scramble-all; goto s!a1; print; repeat c{scramble-one; print}

The scramble-all command initializes the formulae of each sheet
such that sheet 1 holds random constants (uniformly in [0, 10k]),
and for i > 1, sheet i consists of binary operations (drawn uni-
formly among {+,−,÷,×}) over two random coordinates in sheet
i − 1. scramble-one changes a randomly chosen cell to a random
constant.

Figure 9 shows the performance of this test script. In the left
plot, the number of sheets varies, and the number of changes is
fixed at ten; in the right plot, the number of sheets is fixed at
fifteen, and the number of changes varies. In both plots, we show
the relative speedup/slowdown of ADAPTON and EagerTotalOrder

to that of naive, stateless evaluation. The left plot shows that as the
number of sheets grows, the benefit of ADAPTON increases. In fact,
our measurements show that with only four sheets, the performance
of the naive approach is overtaken by ADAPTON; the gap widens
exponentially for more sheets. By contrast, EagerTotalOrder offers
no incremental benefit, and the performance is always worse than
the naive implementation, resulting in slowdowns that worsen as
input sizes grow. We note that the speedups vary, depending on
random choices made by both scramble-one and scramble-all.2
The right plot shows that even for a fixed-sized spreadsheet, as
the number of changes grows, the benefit of ADAPTON increases
exponentially. As with the left plot, EagerTotalOrder again offers
no incremental benefit, and always incurs a slowdown (e.g., at the
right edges of each plot, we consistently measure slowdowns of
100x or more).

In both cases (more sheets and more changes), ADAPTON offers
significant speedups over the naive stateless evaluator. These per-
formance results makes sense: efficient AS2 evaluation relies criti-
cally on the ability to reuse results multiple times within a compu-
tation (the sharing pattern). While ADAPTON supports this incre-
mental pattern with ease, EagerTotalOrder fundamentally lacks the
ability to do so, and instead only incurs a large performance penalty
for its dependence-tracking overhead.

7. Related Work
Incremental computation. The idea of memoization—improving
efficiency by caching and reusing the results of pure computations—
dates back to at least the late 1950’s [8, 33, 35]. Incremental compu-
tation (IC), which has also been studied for decades [1, 22, 32, 36,
37], uses memoization to avoid unnecessary recomputation when
input changes. Early IC approaches were promising, but many are
limited to caching final results.

2 We plot an average of eight randomized runs for each coordinate.

Some prior IC work is motivated (at least in part) by being cog-
nizant of demand. By contrast, in most prior IC techniques dis-
cussed below, change propagation processes input changes eagerly.
Briefly, ADAPTON’s notion of “demand” is different from most
prior work in that it is dynamically determined by an outer-layer
computation, rather than pre-determined by the prior (inner) com-
putation. Hoover and Teitelbaum optimize change propagation for
attribute grammars based on keys “demanded” from an aggregate
datastructure during a particular computation, but it is always the
same (entire) computation that is (more efficiently) updated when
the data structure is changed [24]. Field and Teitelbaum employ a
lazy language to avoid some recomputation on update, as do we, but
have no explicit notion of outer-layer demand [16]. Moreover, the
sequence of changes to this original expression must be known a
priori, unlike in ADAPTON. Hoover proposes a programming sys-
tem (ALPHONSE), which includes demand-driven functions that,
during change propagation, are only re-evaluated when called [23].
However, the mechanism is potentially inefficient: demand-driven
functions are sometimes unnecessarily re-evaluated, e.g., even if
their inputs are unchanged. Hudson describes a lazy change propa-
gation strategy similar to ours, and treats “demand” as coming from
an external source as well [25], but applied to attribute grammars
rather than general-purpose computation. His strategy also does not
incorporate memoization, limiting reuse of prior computation.

Self-adjusting computation is a recent approach to IC that uses a
special form of memoization that caches and reuses portions of dy-
namic dependency graphs (DDGs) of a computation. These DDGs
are generated from conventional-looking programs with general re-
cursion and fine-grained data dependencies [4, 10]. As a result, self-
adjusting computation tolerates store-based differences between
the pending computation being matched and its potential matches
in the memo table; change-propagation repairs any inconsisten-
cies in the matched graph. Researchers later combined these dy-
namic graphs with a special form of memoization, making the ap-
proach even more efficient and broadly applicable [2]. More re-
cently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [11, 12, 30] and better per-
forming [19, 20].

ADAPTON is similar to self-adjusting computation in that it
applies to a conventional-looking language and tracks dynamic
dependencies. However, as discussed in Sections 1 and 2, we
make several advances over prior work in the setting of interac-
tive, demand-driven computations. First, we formally characterize
the semantics of the inner and outer layers working in concert,
whereas all prior work simply ignored the outer layer (which is
problematic for modeling interactivity). Second, we offer a com-
positional model that supports several key incremental patterns—
sharing, switching, and swapping. All prior work on self-adjusting
computation, which is based on maintaining a single totally ordered
view of past computation, simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”), giving a formal semantics and pre-
liminary algorithmic designs [29, 31]. However, these semantics
still assume a totally ordered, monolithic trace representation and
hence are still of limited use for interactive settings, as discussed in
Section 1. For instance, their techniques explicitly assume the ab-
sence of sharing (they assume all function invocations have unique
arguments), and they do not support laziness, which they leave for
future work. Additionally, to our knowledge, their techniques have
no corresponding implementations.

Functional reactive programming (FRP). The chief aim of FRP
is to provide a declarative means of specifying interactive and/or
time-varying behavior [13, 14, 26]. FRP-based proposals share
some commonalities with incremental computation; e.g., when an
input signal is updated (due to an event like a key press, or simply
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Figure 9: ADAPTON Spreadsheet (AS2) performance tests.

simulates a user loading dense spreadsheet (with s sheets, ten rows
and ten columns) and making a sequence of c random cell changes
while observing the (entire) final sheet s:

scramble-all; goto s!a1; print; repeat c{scramble-one; print}

The scramble-all command initializes the formulae of each sheet
such that sheet 1 holds random constants (uniformly in [0, 10k]),
and for i > 1, sheet i consists of binary operations (drawn uni-
formly among {+,−,÷,×}) over two random coordinates in sheet
i − 1. scramble-one changes a randomly chosen cell to a random
constant.

Figure 9 shows the performance of this test script. In the left
plot, the number of sheets varies, and the number of changes is
fixed at ten; in the right plot, the number of sheets is fixed at
fifteen, and the number of changes varies. In both plots, we show
the relative speedup/slowdown of ADAPTON and EagerTotalOrder

to that of naive, stateless evaluation. The left plot shows that as the
number of sheets grows, the benefit of ADAPTON increases. In fact,
our measurements show that with only four sheets, the performance
of the naive approach is overtaken by ADAPTON; the gap widens
exponentially for more sheets. By contrast, EagerTotalOrder offers
no incremental benefit, and the performance is always worse than
the naive implementation, resulting in slowdowns that worsen as
input sizes grow. We note that the speedups vary, depending on
random choices made by both scramble-one and scramble-all.2
The right plot shows that even for a fixed-sized spreadsheet, as
the number of changes grows, the benefit of ADAPTON increases
exponentially. As with the left plot, EagerTotalOrder again offers
no incremental benefit, and always incurs a slowdown (e.g., at the
right edges of each plot, we consistently measure slowdowns of
100x or more).

In both cases (more sheets and more changes), ADAPTON offers
significant speedups over the naive stateless evaluator. These per-
formance results makes sense: efficient AS2 evaluation relies criti-
cally on the ability to reuse results multiple times within a compu-
tation (the sharing pattern). While ADAPTON supports this incre-
mental pattern with ease, EagerTotalOrder fundamentally lacks the
ability to do so, and instead only incurs a large performance penalty
for its dependence-tracking overhead.

7. Related Work
Incremental computation. The idea of memoization—improving
efficiency by caching and reusing the results of pure computations—
dates back to at least the late 1950’s [8, 33, 35]. Incremental compu-
tation (IC), which has also been studied for decades [1, 22, 32, 36,
37], uses memoization to avoid unnecessary recomputation when
input changes. Early IC approaches were promising, but many are
limited to caching final results.

2 We plot an average of eight randomized runs for each coordinate.

Some prior IC work is motivated (at least in part) by being cog-
nizant of demand. By contrast, in most prior IC techniques dis-
cussed below, change propagation processes input changes eagerly.
Briefly, ADAPTON’s notion of “demand” is different from most
prior work in that it is dynamically determined by an outer-layer
computation, rather than pre-determined by the prior (inner) com-
putation. Hoover and Teitelbaum optimize change propagation for
attribute grammars based on keys “demanded” from an aggregate
datastructure during a particular computation, but it is always the
same (entire) computation that is (more efficiently) updated when
the data structure is changed [24]. Field and Teitelbaum employ a
lazy language to avoid some recomputation on update, as do we, but
have no explicit notion of outer-layer demand [16]. Moreover, the
sequence of changes to this original expression must be known a
priori, unlike in ADAPTON. Hoover proposes a programming sys-
tem (ALPHONSE), which includes demand-driven functions that,
during change propagation, are only re-evaluated when called [23].
However, the mechanism is potentially inefficient: demand-driven
functions are sometimes unnecessarily re-evaluated, e.g., even if
their inputs are unchanged. Hudson describes a lazy change propa-
gation strategy similar to ours, and treats “demand” as coming from
an external source as well [25], but applied to attribute grammars
rather than general-purpose computation. His strategy also does not
incorporate memoization, limiting reuse of prior computation.

Self-adjusting computation is a recent approach to IC that uses a
special form of memoization that caches and reuses portions of dy-
namic dependency graphs (DDGs) of a computation. These DDGs
are generated from conventional-looking programs with general re-
cursion and fine-grained data dependencies [4, 10]. As a result, self-
adjusting computation tolerates store-based differences between
the pending computation being matched and its potential matches
in the memo table; change-propagation repairs any inconsisten-
cies in the matched graph. Researchers later combined these dy-
namic graphs with a special form of memoization, making the ap-
proach even more efficient and broadly applicable [2]. More re-
cently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [11, 12, 30] and better per-
forming [19, 20].

ADAPTON is similar to self-adjusting computation in that it
applies to a conventional-looking language and tracks dynamic
dependencies. However, as discussed in Sections 1 and 2, we
make several advances over prior work in the setting of interac-
tive, demand-driven computations. First, we formally characterize
the semantics of the inner and outer layers working in concert,
whereas all prior work simply ignored the outer layer (which is
problematic for modeling interactivity). Second, we offer a com-
positional model that supports several key incremental patterns—
sharing, switching, and swapping. All prior work on self-adjusting
computation, which is based on maintaining a single totally ordered
view of past computation, simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”), giving a formal semantics and pre-
liminary algorithmic designs [29, 31]. However, these semantics
still assume a totally ordered, monolithic trace representation and
hence are still of limited use for interactive settings, as discussed in
Section 1. For instance, their techniques explicitly assume the ab-
sence of sharing (they assume all function invocations have unique
arguments), and they do not support laziness, which they leave for
future work. Additionally, to our knowledge, their techniques have
no corresponding implementations.

Functional reactive programming (FRP). The chief aim of FRP
is to provide a declarative means of specifying interactive and/or
time-varying behavior [13, 14, 26]. FRP-based proposals share
some commonalities with incremental computation; e.g., when an
input signal is updated (due to an event like a key press, or simply
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Figure 9: ADAPTON Spreadsheet (AS2) performance tests.

simulates a user loading dense spreadsheet (with s sheets, ten rows
and ten columns) and making a sequence of c random cell changes
while observing the (entire) final sheet s:

scramble-all; goto s!a1; print; repeat c{scramble-one; print}

The scramble-all command initializes the formulae of each sheet
such that sheet 1 holds random constants (uniformly in [0, 10k]),
and for i > 1, sheet i consists of binary operations (drawn uni-
formly among {+,−,÷,×}) over two random coordinates in sheet
i − 1. scramble-one changes a randomly chosen cell to a random
constant.

Figure 9 shows the performance of this test script. In the left
plot, the number of sheets varies, and the number of changes is
fixed at ten; in the right plot, the number of sheets is fixed at
fifteen, and the number of changes varies. In both plots, we show
the relative speedup/slowdown of ADAPTON and EagerTotalOrder

to that of naive, stateless evaluation. The left plot shows that as the
number of sheets grows, the benefit of ADAPTON increases. In fact,
our measurements show that with only four sheets, the performance
of the naive approach is overtaken by ADAPTON; the gap widens
exponentially for more sheets. By contrast, EagerTotalOrder offers
no incremental benefit, and the performance is always worse than
the naive implementation, resulting in slowdowns that worsen as
input sizes grow. We note that the speedups vary, depending on
random choices made by both scramble-one and scramble-all.2
The right plot shows that even for a fixed-sized spreadsheet, as
the number of changes grows, the benefit of ADAPTON increases
exponentially. As with the left plot, EagerTotalOrder again offers
no incremental benefit, and always incurs a slowdown (e.g., at the
right edges of each plot, we consistently measure slowdowns of
100x or more).

In both cases (more sheets and more changes), ADAPTON offers
significant speedups over the naive stateless evaluator. These per-
formance results makes sense: efficient AS2 evaluation relies criti-
cally on the ability to reuse results multiple times within a compu-
tation (the sharing pattern). While ADAPTON supports this incre-
mental pattern with ease, EagerTotalOrder fundamentally lacks the
ability to do so, and instead only incurs a large performance penalty
for its dependence-tracking overhead.

7. Related Work
Incremental computation. The idea of memoization—improving
efficiency by caching and reusing the results of pure computations—
dates back to at least the late 1950’s [8, 33, 35]. Incremental compu-
tation (IC), which has also been studied for decades [1, 22, 32, 36,
37], uses memoization to avoid unnecessary recomputation when
input changes. Early IC approaches were promising, but many are
limited to caching final results.

2 We plot an average of eight randomized runs for each coordinate.

Some prior IC work is motivated (at least in part) by being cog-
nizant of demand. By contrast, in most prior IC techniques dis-
cussed below, change propagation processes input changes eagerly.
Briefly, ADAPTON’s notion of “demand” is different from most
prior work in that it is dynamically determined by an outer-layer
computation, rather than pre-determined by the prior (inner) com-
putation. Hoover and Teitelbaum optimize change propagation for
attribute grammars based on keys “demanded” from an aggregate
datastructure during a particular computation, but it is always the
same (entire) computation that is (more efficiently) updated when
the data structure is changed [24]. Field and Teitelbaum employ a
lazy language to avoid some recomputation on update, as do we, but
have no explicit notion of outer-layer demand [16]. Moreover, the
sequence of changes to this original expression must be known a
priori, unlike in ADAPTON. Hoover proposes a programming sys-
tem (ALPHONSE), which includes demand-driven functions that,
during change propagation, are only re-evaluated when called [23].
However, the mechanism is potentially inefficient: demand-driven
functions are sometimes unnecessarily re-evaluated, e.g., even if
their inputs are unchanged. Hudson describes a lazy change propa-
gation strategy similar to ours, and treats “demand” as coming from
an external source as well [25], but applied to attribute grammars
rather than general-purpose computation. His strategy also does not
incorporate memoization, limiting reuse of prior computation.

Self-adjusting computation is a recent approach to IC that uses a
special form of memoization that caches and reuses portions of dy-
namic dependency graphs (DDGs) of a computation. These DDGs
are generated from conventional-looking programs with general re-
cursion and fine-grained data dependencies [4, 10]. As a result, self-
adjusting computation tolerates store-based differences between
the pending computation being matched and its potential matches
in the memo table; change-propagation repairs any inconsisten-
cies in the matched graph. Researchers later combined these dy-
namic graphs with a special form of memoization, making the ap-
proach even more efficient and broadly applicable [2]. More re-
cently, researchers have studied ways to make self-adjusting pro-
grams easier to write and reason about [11, 12, 30] and better per-
forming [19, 20].

ADAPTON is similar to self-adjusting computation in that it
applies to a conventional-looking language and tracks dynamic
dependencies. However, as discussed in Sections 1 and 2, we
make several advances over prior work in the setting of interac-
tive, demand-driven computations. First, we formally characterize
the semantics of the inner and outer layers working in concert,
whereas all prior work simply ignored the outer layer (which is
problematic for modeling interactivity). Second, we offer a com-
positional model that supports several key incremental patterns—
sharing, switching, and swapping. All prior work on self-adjusting
computation, which is based on maintaining a single totally ordered
view of past computation, simply cannot handle these patterns.

Ley-Wild et al. have recently studied non-monotonic changes
(viz., what we call “swapping”), giving a formal semantics and pre-
liminary algorithmic designs [29, 31]. However, these semantics
still assume a totally ordered, monolithic trace representation and
hence are still of limited use for interactive settings, as discussed in
Section 1. For instance, their techniques explicitly assume the ab-
sence of sharing (they assume all function invocations have unique
arguments), and they do not support laziness, which they leave for
future work. Additionally, to our knowledge, their techniques have
no corresponding implementations.

Functional reactive programming (FRP). The chief aim of FRP
is to provide a declarative means of specifying interactive and/or
time-varying behavior [13, 14, 26]. FRP-based proposals share
some commonalities with incremental computation; e.g., when an
input signal is updated (due to an event like a key press, or simply
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Paper and
Technical Report

• Formal semantics of Adapton

• Algorithms to implement Adapton

• More empirical data and analysis



Aside: Formal Semantics
‣ CBPV + Refs + Layers (outer versus inner)

‣ Syntax for traces and knowledge                  
formally represents DCG structure

‣ Formal specification of change propagation

‣Theorems: 

• Type soundness

• Incremental soundness                    
(“ from-scratch consistency ”)



Summary
‣ Adapton: Composable, Demand-Driven IC

• Demand-driven change propagation

• Reuse patterns:                                  
Sharing, swapping and switching

‣ Formal specification (see paper)

‣ Implemented in OCaml (and Python)

‣ Empirical evaluation shows speedups

http://ter.ps/adapton

http://ter.ps/adapton
http://ter.ps/adapton




p
a
tt

e
rn

in
p
u

t
#

LazyNonInc ADAPTON EagerTotalOrder

baseline vs. LazyNonInc vs. LazyNonInc

time mem time mem time mem

(s) (MB) spdup ovrhd spdup ovrhd

filter

la
z
y

1e6 1.16e-5 96.7 12.8 2.7 2.24 8.0

map 1e6 6.85e-6 96.7 7.80 2.7 1.53 8.0

quicksort 1e5 0.0741 18.6 2020 8.7 22.9 144.1

mergesort 1e5 0.346 50.8 336 7.8 0.148 96.5

filter

s
w

a
p

1e6 0.502 157 1.99 10.1 0.143 17.3

map 1e6 0.894 232 2.36 6.9 0.248 12.5

fold(min) 1e6 1.04 179 472 9.1 0.123 33.9

fold(sum) 1e6 1.11 180 501 9.1 0.128 33.8

exptree 1e6 0.307 152 667 11.7 10.1 11.9

updown1

s
w

it
c
h 4e4 0.0328 8.63 22.4 14.0 0.00247 429.9

updown2 4e4 0.0326 8.63 24.7 13.8 4.28 245.7

filter

b
a
tc

h

1e6 0.629 157 2.04 10.1 4.11 9.0

map 1e6 1.20 232 2.21 6.9 3.32 6.6

fold(min) 1e6 1.43 179 4350 9.0 3090 8.0

fold(sum) 1e6 1.48 180 1640 9.1 4220 8.0

exptree 1e6 0.308 152 497 11.7 1490 9.7

Legend time spdup: LazyNonInc time / X time

mem ovrhd: X mem / LazyNonInc mem (OCaml GC max-heap)

Table 1: ADAPTON micro-benchmark results.

changes that do not affect the input size. For changes that do affect

the input size, we run 250 pairs of incremental computations, e.g.,

alternating between removing and inserting a list item, to ensure

consistent input size.

In our initial evaluation, we observed that EagerTotalOrder

spends a significant portion of time in the garbage collector (some-

times more than 50%), which has also been observed in prior

work [3]. To mitigate this issue, we tweak OCaml’s garbage col-

lector under EagerTotalOrder, increasing the minor heap size from

2MB to 16MB and major heap increment from 1MB to 32MB.

Results. Table 1 summarizes the speed-up of ADAPTON and Ea-

gerTotalOrder when performing each incremental computation over

LazyNonInc (which, for ADAPTON, include both dirtying and prop-

agation time), as well as the memory overhead over LazyNonInc

(based on the maximum heap size reported by OCaml’s garbage

collector). We also highlight table cells in gray to indicate whether

ADAPTON or EagerTotalOrder has a higher speed-up or lower

memory overhead.

We can see that ADAPTON provides a speed-up to all patterns

and programs. Also, ADAPTON is faster than EagerTotalOrder for

the lazy, swapping, and switching patterns, while using 3–98% the

memory. These results validate the benefits of our approach.

For the batch pattern, ADAPTON gets only about half the speed-

up of EagerTotalOrder, while using 103–120% the memory. This

is expected, since EagerTotalOrder is optimized for the batch pat-

tern by propagating changes to outputs unconditionally (since all

outputs are demanded), whereas ADAPTON’s conditional change

propagation adds extra overhead. Interestingly, ADAPTON is faster

for fold(min), since single changes are not as likely to affect the re-

sult of the min operation as compared to other operations such as

sum, and thus fewer thunks need to be updated.

Conversely, EagerTotalOrder actually incurs a slowdown over

LazyNonInc in many other cases. For lazy mergesort, EagerTo-

talOrder performs badly due to limited memoization between each

internal recursion in mergesort. ADAPTON also suffers from this

issue, though it is mitigated by laziness to a certain extent, i.e.,

ADAPTON will eventually suffer a slowdown as more elements are

demanded from the output of mergesort. Prior work solved this

problem by asking programmers to manually modify mergesort

using techniques such as adaptive memoization [3] or keyed allo-
cation [17]; we are currently investigating alternative approaches.

EagerTotalOrder also incurs slowdowns for swapping and switch-
ing, except for exptree and updown2. Unlike ADAPTON, EagerTo-

talOrder can only memo-match about half the input on average for

changes considered by swapping due to its underlying total order-

ing assumption, and has to recompute the rest.

For updown1 in particular, the structure of the computation trace

is such that EagerTotalOrder cannot memo-match any prior compu-

tation at all, and has to re-sort the input list every time the flag input

is toggled. updown2 works around this limitation by uncondition-

ally sorting the input list in both directions before returning the

appropriate one, but this effectively wastes half the computation. In

contrast, ADAPTON is equally effective for updown1 and updown2:

It is able to memo-match the computation in updown1 regardless of

the flag input, and, due to laziness, incurs no cost to unconditionally

sort the input list twice in updown2.

Other experiments. Our supplemental technical report contains

a more in-depth table that also compares ADAPTON to an eager,

non-incremental baseline. Additionally, we also measured ADAP-

TON’s overhead during the initial computation (prior to the first

incremental computation), as well as performance over varying de-

mand sizes. We briefly summarize these additional experiments.

By its nature, IC trades a slower initial computation for faster

subsequent computations. To characterize this tradeoff, we mea-

sured the overhead of the initial computation. The overhead varies

depending on the micro-benchmark: We found that ADAPTON has

less overhead than EagerTotalOrder for the lazy and switching pat-

terns, but more overhead for for the swapping and batch patterns.

We also measured the performance of ADAPTON on quicksort

while varying the demand size (recall that in Table 1, one element

is demanded for the lazy benchmarks). As expected, the speed-

up decreases as demand size increases, but ADAPTON still outper-

forms EagerTotalOrder when demanding up to 1.8% of the output

for quicksort. We also observed that the dirtying cost increases with

demand size. This is due to the interplay between dirtying and prop-

agation phases: As more output is demanded, more edges will be

cleaned by the propagation phase, and will have to be dirtied by the

dirtying phase.

6.2 AS2: An experiment in stateless spreadsheet design
As a more realistic case study of ADAPTON, we developed the

ADAPTON SpreadSheet (AS2
), which implements basic spread-

sheet functionality and uses ADAPTON to handle all change prop-

agation as cells are updated. This is in contrast to conventional

spreadsheet implementations, which have custom caching and de-

pendence tracking logic.

In AS2
, spreadsheets are organized into a standard three-

dimensional coordinate system of sheets, rows and columns, and

each spreadsheet cell contains a formula. The language of formu-

lae extends that of Section 2 with support for cell coordinates,

arbitrary-precision rational numbers and binary operations over

them, and aggregate functions such as max, min and sum. It also

adds a command language for navigation (among sheets, rows and

columns), cell mutation and display. For instance, the following

script simulates the interaction from Section 2:

goto A1; =1; goto A2; =2; goto A3; =3;

goto B1; =(A1 + A2); goto B2; =(A1 + A3);

display B1; display B2; goto A1; =5; display B1;

goto B2; =(A3 + B1); display B2;

The explicit state of AS2
consists simply of a mutable mapping

of three-dimensional coordinates to cell formulae. We empirically

study different implementations of AS2
using a test script that


