
Assignment #2:

Meta Theory and Implementation:

Language T, with Finite Data Types

Fundamentals of Programming Languages

Out: Thursday, Sept 30th, 2016
Due: Thursday, Oct 13th, 2016 11:59pm EST

The tasks in this homework ask you to prove (“meta theoretical”) properties about the lan-
guage T and about finite data types, defined in Ch. 8–10 of PFPL. These properties are “meta
theoretical” in that they give a theory about the theory of the language, and are true about all
well-typed programs, not specific, individual programs. This homework also asks you to program
an implementation of these languages in OCaml. We did this together in class for the simpler
Language E; use this code and the video as a guide.

Grading criteria: To receive full credit for any proof below, you must at least do the following:

• At the beginning of your proof, specify over what structure or derivation you are performing
induction (i.e., which structure’s inductive principle are you using?)

• In the inductive cases of the proof, specify how you are applying the inductive hypothesis,
and what result it gives you.

If you omit these steps and/or do not make them explicit, you will receive zero credit
for your proof. If you attempt to do these steps, but you make a mistake, you may still receive
some partial credit, depending on your proof.

Hint: If you are unsure about how to structure these proofs to receive full credit, please refer
to the HW #1 Solution on Moodle as a reference and guide.

Note on omitting redundant proof cases: In the proofs below, some cases are very similar to
other cases, e.g., the cases for plus and times in the proofs below are likely to be analogous, in that
(nearly) the same proof steps are used in each. When this happens, you can omit the redundant
cases as follows: If you do one case, say for plus, you may (optionally) write in the other case for
times that it is “analogous to the case above, for plus”. You must make this omission explicit,
to show that you have thought about it. Further, this shortcut is only applicable when the cases
really are analogous, and (nearly) the same steps apply in the proof. When in doubt, do not
omit the proof case.

1



Tasks

Task 1 (20 pts). Meta theory for Language T (See PFPL Chapter 9).

1. State the substitution lemma for Language T.

2. State the canonical forms lemma for Language T.

3. State and prove progress for Language T.

4. State and prove preservation for Language T.

Task 2 (20 pts). Meta theory for finite data types (See PFPL Chapters 10 and 11).

1. State the substitution lemma for Language T extended with sum and product types.

2. State the canonical forms lemma for Language T extended with sum and product types.

3. State and prove progress for Language T extended with sum and product types.

4. State and prove preservation for Language T extended with sum and product types.

Hint (repeated again, for emphasis): If you are unsure about how to structure these proofs
to receive full credit, please refer to the HW #1 Solution on Moodle as a reference and guide.

Task 3 (25 pts). Implement the theory of Language T in OCaml, along with tests.

Task 4 (25 pts). Extend the theory of Language T with Pairs and Sums. Include additional tests.

How to implement a Language Theory: When we say “implement Language X in OCaml”,
we mean precisely the following. For a concrete example, see our implementation of Language E
as a guide, where we did this together in class. (There is a lecture video and OCaml code from
September 29 available online).

1. Define syntax forms as OCaml datatypes

(a) Define the syntax of expressions as a new OCaml datatype named exp

(b) Define the syntax of types as a new OCaml datatype named typ

(c) Define variables var as OCaml strings (type string)

(d) Define type contexts gamma as OCaml lists of variable-type pairs.

2. Implement a function is val : exp -> bool that implements a check for the e val judgment

3. Implement a substitution function subst : exp -> var -> exp -> exp. Make sure that
you implement shadowing correctly, and you do not allow variable capture. See our imple-
mention of the Let case in language E as a reference; notice how we compare the Let-bound
variable against the one being substituted, and do not substitute further if they are the same.

4. Implement a type-checking function exp typ : gamma -> exp -> typ option.

2



Hint: Notice that to type-check lambda expressions without type annotations, an imple-
mentation of type-checking must “guess” a type for the bound variable. After all, this variable
stands in for a parameter that we may not have locally; how would we know its type?

This situation is different from the Let form in language E, where we have the sub-expression
to which the variable is bound, and hence, we can get the type for the bound variable by
processing this sub-expression.

To avoid this guessing problem, define your syntax for lambda expressions to include a type
for the argument variable.

5. Implement a suite of five interesting tests of type-checking. (“Interesting” means that you
attempt to cover different execution paths of your implementation with each test).

6. Implement a steps-to function step : exp -> exp. It should take exactly one small step,
or raise an exception if the expression is a value.

7. Implement a multiple-steps function steps : exp -> exp. It should take as many steps as
possible. For programs that type-check, it should produce a value of the same type. This is
precisely what you proved in your meta theory proofs about the language.

8. Implement a suite of five interesting tests of stepping once and multiple times. (Do your
expressions always have the same type as they step?) (“Interesting” means that you attempt
to cover different execution paths of your implementation with each test).

Task 5 (10 pts). Start thinking about a class project. Choose a partner, or email the
instructor if you would like to be (randomly assigned) with others that want a random partner.
You may also work alone, if you wish; people working in pairs must do more work than an
individual working alone. Review the syllabus for detailed information about the class project.

Recall, there are many possible class project options; here are a few ideas:

• Functional implementation: Consider an algorithm or system that seems interesting
to you. Can you write this algorithm in a purely-functional style in OCaml?

• Functional reactive implementation: Learn a functional reactive programming lan-
guage like Elm. (See http://elm-lang.org/). Write a game, simulation or productivity
application in this new language.

• Survey project: Choose a theme and six to eight papers from POPL, PLDI, ICFP and
OOPSLA (or other ACM SIGPLAN Conferences in PL). Write a survey paper about
these papers, trying to tell a cohesive story about how they relate.

To receive full points on this homework, you must do both of the following:

• Find a partner and discuss what project ideas seem most interesting to you both. If you
already have a research project, consider how to incorporate it! Write about your idea in
250 words. Be clear about your interests, and what background reading you have done
thus far.

3

http://elm-lang.org/


• Scan the titles of papers at (at least) five top PL conferences. Name these conferences
(including years), and include the conference URL with this information. For each
conference, name the paper title and abstract that seems most interesting to you from
that conference’s proceedings that year. Include a URL for the author’s draft of each
paper, if any is available.

4


