
Assignment #3:

Meta Theory and Implementation:

Language ETSP, extended with generic lists L

Fundamentals of Programming Languages

Out: Thursday, Oct 13th, 2016
Due: Thursday, Oct 27th, 2016 11:59pm EST

The tasks in this homework ask you to define, prove properties about, and implement the
language ETSPL.

We define ETSPL as the combination of language E, language T, plus the addition of finite
data types, via with sums (S) and products (P). In homework #2, we considered a large subset of
this language, everything except language E and the final ingredient: generic lists (L), which we
partially define below. Producing the full definition of the language fragment for L is part of your
task in this homework.

Generic lists are somewhat like the natural numbers of T, which consist of a recursive structure.
Unlike natural numbers, these generic list structures carry data of an arbitrary (generic) element
type. Similar to natural numbers, we can define operations over them via recursion over their
structure (structural recursion).

This homework also asks you program an implementation of language ETSPL in OCaml. We
did this together in class for fragments of this language, but not all features. Also, we did not
complete the implementation in OCaml for any one feature; use this code and these videos as a
rough guide.

Grading criteria for proofs: To receive full credit for any proof below, you must at least do
the following:

• At the beginning of your proof, specify over what structure or derivation you are performing
induction (i.e., which structure’s inductive principle are you using?)

• In the inductive cases of the proof, specify how you are applying the inductive hypothesis,
and what result it gives you.

If you omit these steps and/or do not make them explicit, you will receive zero credit
for your proof. If you attempt to do these steps, but you make a mistake, you may still receive
some partial credit, depending on your proof.

Hint: If you are unsure about how to structure these proofs to receive full credit, please refer
to the HW #1 and #2 Solutions on Moodle as a reference and guide.

1



Note on omitting redundant proof cases: In the proofs below, some cases are very similar to
other cases, e.g., the cases for plus and times in the proofs below are likely to be analogous, in that
(nearly) the same proof steps are used in each. When this happens, you can omit the redundant
cases as follows: If you do one case, say for plus, you may (optionally) write in the other case for
times that it is “analogous to the case above, for plus”. You must make this omission explicit,
to show that you have thought about it. Further, this shortcut is only applicable when the cases
really are analogous, and (nearly) the same steps apply in the proof. When in doubt, do not
omit the proof case.

Tasks

Syntax. The syntax of generic lists consists of several additional forms:

Types τ ::= · · ·
| List(τ)

Expressions e ::= · · ·
| Nil
| Cons(e1, e2)
| match(el, en, x.y.ec)
| fold(el, en, x.y.ec)
| map(el, x.eh)

Statics There is a new typing rule for each new syntactic form:

nil

Γ ` Nil : List(τ)

cons
Γ ` e1 : τ

Γ ` e2 : List(τ)

Γ ` Cons(e1, e2) : List(τ)

match
Γ ` el : List(τ1)

Γ ` en : τ
Γ, x : τ1, y : List(τ1) ` ec : τ

Γ ` match(el, en, x.y.ec) : τ

fold
Γ ` el : List(τ1)

Γ ` en : τ
Γ, x : τ1, y : τ ` ec : τ

Γ ` fold(el, en, x.y.ec) : τ

map
Γ ` el : List(τ1)

Γ, x : τ1 ` eh : τ2

Γ ` map(el, x.eh) : List(τ2)

Task 1 (20 pts). Dynamics for Language ETSPL.

1. Add rules for the e val judgement.

2. Add dynamics rules for stepping these forms.

Task 2 (20 pts). Meta theory for Language ETSPL.

1. State the substitution lemma for Language ETSPL.

2



2. State the canonical forms lemma for Language ETSPL.

3. State and prove progress for Language ETSPL.

4. State and prove preservation for Language ETSPL.

You only need to do the new cases of the proofs, for generic lists.

Hint (repeated again, for emphasis): If you are unsure about how to structure these proofs
to receive full credit, please refer to the HW #1 and #2 Solutions on Moodle as a reference
and guide.

Task 3 (20 pts). Implement the theory of Language ETSPL in OCaml.

Task 4 (20 pts). Implement tests for each construct in the language (at least one test per construct;
some tests can test multiple constructs). In particular, implement a function test pap that tests
progress and preservation. Given an expression, this function computes a type for the expression,
then steps that expression until it is a value. After each step, it computes a new type for the
expression and asserts that the new and old type are equal. The function returns the final expression
(a value) when it terminates. For each of your tests, use test pap to test that progress and
preservation indeed hold on your initial expression, in addition to testing that the final value
matches the one that you expect.

How to implement a Language Theory: When we say “implement Language X in OCaml”,
we mean precisely the following. For a concrete example, see our implementation of Language E
as a guide, where we did this together in class. (There is a lecture video and OCaml code from
September 29 available online).

1. Define syntax forms as OCaml datatypes

(a) Define variables var as OCaml strings (type string)

(b) Define the syntax of expressions as a new OCaml datatype named exp

(c) Define the syntax of types as a new OCaml datatype named typ

(d) Define type contexts gamma as OCaml lists of variable-type pairs.

(e) Implement pretty-printing functions for expressions, types and contexts:
exp string : exp -> string

typ string : typ -> string

gam string : gamma -> string

2. Implement a function is val : exp -> bool that implements a check for the e val judgment

3. Implement a substitution function subst : exp -> var -> exp -> exp. Make sure that
you implement shadowing correctly, and you do not allow variable capture. See our imple-
mention of the Let case in language E as a reference; notice how we compare the Let-bound
variable against the one being substituted, and do not substitute further if they are the same.

4. Implement a type-checking function exp typ : gamma -> exp -> typ option.

3



Hint: Note that the Nil form has a similar problem to lambda and some other forms in
the prior homework: The list type is not clear from the term Nil, and thus could be anything.
To give programs enough information to type them, add a type annotation to the Nil form,
and other forms, but only if they require it.

5. Implement a steps-to function step : exp -> exp. It should take exactly one small step,
or raise an exception if the expression is a value.

6. Implement a multiple-steps function test pap : exp -> exp. It should take as many steps
as possible, and it should test progress and preservation as it steps. This is precisely what
you proved in your meta theory proofs about well-typed programs in the language.

Use the pretty-printing functions above to print the type, and to print the expression as it
steps. In OCaml, the function print string is a simple way to print strings.

Task 5 (10 pts).

Continue reading the papers that you chose in Homework #2. For each of the five papers,
and for each question below, write two concise sentences:

1. Why did you select this paper?

2. What is the “main idea” of the paper?

3. How well is this main idea communicated to you when you read the first two sections and
conclusion of paper, and skimmed the rest? In particular, explain what aspects seem impor-
tant, are which are clear versus unclear. You may want to read deeper into the details of the
paper body if these beginning and ending sections do not make the main ideas clear; make a
note if this is required.

Task 6 (10 pts).

Continue thinking about your class project. Write an updated 250 word explanation of
your plan, and what you hope to accomplish with your project by the end of the semester.

That is, on what artifact do you want to be graded? Recall that you may choose to write a
survey paper or implement something, but even implementation projects require a short report.
By writing your plan now, you are also generating a draft of part of this report.

Here are the same suggestions as on the prior homework:

• Functional implementation: Consider an algorithm or system that seems interesting to
you. Can you write this algorithm in a purely-functional style in OCaml?

• Functional reactive implementation: Learn a functional reactive programming language
like Elm. (See http://elm-lang.org/). Write a game, simulation or productivity application
in this new language.

• Survey project: Choose a theme and six to eight papers from POPL, PLDI, ICFP and
OOPSLA (or other ACM SIGPLAN Conferences in PL). Write a survey paper about these
papers, trying to tell a cohesive story about how they relate.

4

http://elm-lang.org/

