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1 Introduction 
IncrementaZ computafim is the technique of efficiently 
updating the result of a computation when the input is 
changed. This idea is used in doing semantic checking in 
programming environments, document formatting in 
WYSIWYG editors and many other applications. From a 
different perspective, incremental computation concerns the 
efficient on-line computation of flx&j&), . . . wheref is some 
program and xo, xl, . . . is a sequence of input values, each 
differing from its predecessor only slightly. 

It is possible to achieve incremental computation by 
writing an explicitly incremental algorithm - an algorithm 
that not only specifies how to compute the output from the 
input, but also specifies how to update the output when the 
input changes. This can be difficult and error-prone, so 
when possible we would prefer to use an incremental 
evaluator - an evaluator that uses just a description of how 
to compute the output from the input and is responsible for 
determining how to update the output correctly and 
efficiently when the input changes. 

Incremental attribute grammar evaluation and 
incremental dependency graph evaluation have proven to 
be useful and efficient paradigms for producing incremental 
evaluators (DRT811 [Rep821 IRep841 [Ho0861 IHT861 
[ACR+871 [Hoo871 fYS881. Unfortunately, they are only 
suitable for certain kinds of problems. For example, while it 
it possible to use such techniques for incremental proof 
verification [RA841, it seems impossible to use these 
techniques for incremental theorem proving. We present a 
new paradigm for incremental evaluation based on function 
caching that works well in some situations for which 
incremental attribute grammar evaluation and incremental 
dependency graph evaluation techniques are unusable. Our 
paradigm also works reasonably well in many of those 
situations best suited for incremental attribute grammar 
evaluation and incremental dependency graph evaluation. 
We give a comparison of our techniques and Reps’s optimal 
incremental attribute grammar algorithm in Section 7. 

+ Supported by an AT&T Sell Labs Scholarship. Current address: 

“Pt 
t. of Comp. sd., Univ. of Maryland, College Park, Md, 20742 

Supported by NSF and ONR grant 0X85-14862. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

0 1989 ACM 0-89791-294-2/89/0001/0315 $1.50 

2 An Incremental Evaluator for 
Functional languages 

In its most elementary form, incremental computation is the 
technique of saving time by reusing or updating the results 
of previous computations. Function caching, or memoising 
[Mic68], is the technique of remembering the results of pre+ 
vious function calls and saving time by avoiding their 
recomputation (when the result of a function call is 
computed, the call and the result are stored in a function 
cache; a later function call need not be performed if the 
result is already stored in the cache). Considering the 
similarity of our goal with the technique of function caching, 
it seems promising to examine the usefulness of function 
caching for incremental evaluation. 

Function caching has typically been advocated for uses 
other than incremental evaluation. Many recursive functions 
have a pattern of repetitively requesting the value of certain 
function calls. The classical example of a function whose 
evaluation can be improved by function caching is the 
recursive definition of the Fibonacci function, given below. 
Function caching reduces the time requirements for this 
function from exponential to linear. 

fib(n) E if n < 2 then 1 elsej%n-1) +Jib(n-2) fi 

2.1 Using Function Caching to Obtain 
Incremental Evaluation 

The best way to get a quick understanding of situations in 
which function caching gives us incremental computation is 
to look at some examples. The function SZ (for square-Z%) in 
Figure 2.1 yields a list of the squares of a list of numbers. 
Figure 2.2 shows the results of a sample use of this program 
with function caching. The center column shows the 
function calls produced by an initial request for the value of 
sZ[l,2,3,4,5,6, 7,81. After the computation is complete, the 
left column shows the results of making a request for the 
value of ~210, 2, 3, ..,, 81 - reflecting a change in the first 
element. The request for sZ[O, 2,3, . . . . 81 invokes a request for 
the value of sZ12, . . . . 81, which is in the cache. Here, function 
caching provides incremental performance. The right 
column shows what would happen if, instead, the last 
element of the list were changed to 9, and a request for the 
value of sZ[l, . . . . 6, 7, 91 were made. No significant results 
from the computation of sZ[l, 2,3,4,5,6,7,81 could be used. 
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sl(L) = ( square list ) 
if null(L) then L 

else cons(head(L) * head(L). sl(tail(L))) 

FIGURE 2.1 - AZgorithm to prod’uce tk squares of fk numba 
a list 

afttr changing 
ffic last dancnt 

r~~~~~ 2.2 - Computation resultingfrom tk use of tk algorithm 
in Figure 2.1 

Assume that we represent sequences in a way that allows 
us to efficiently divide them into two nearly equal 
subsequences and that we rewrite the algorithm in a divide 
and conquer style, as in the function ss (for square-sequence) 
shown in Figure 2.3. This produces the results shown in 
Figure 2.4 and Figure 2.5. If function caching imposes only a 
constant factor overhead and first-half, second-half, and 
append are constant-time functions, only Oflog n) time will 
be required to compute the new answer. Note that this 
example is intended only as an illustrative example; it is 
simple enough that we would probably use an explicitly 
incremental algorithm. 

What happens if an element is inserted into or deleted 
from the sequence? Assume the decomposition operators 
first-half and second-hatf split the sequence exactly in half if 
the sequence has an even number of elements and if the 
sequence has an odd number of elements, the extra element 
goes into the second half. When an element is inserted at the 
front of the sequence, this produces the results shown in 
Figure 2.6; almost the entire computation needs to be 
redone. 

I I 

else append(ss(first-half(S)). ss(seamd-half(S))) 

FIGURE 2.3 - Divide ami conquer mien of Figure 2.1. 

FIGLIRE 2.4 - Calls arisingfrom a call on ssU, 2,3,4,5,6,7,81. 

FIGURE 25 - calls arisingfrom a cdl on ss[l, 2,3,4,5,6,7,91.- 
Entries found in tk cache are shown in grey. 

FIGURE 2.6 - Calls arisingfrom a call on ss[O, 1,2,3,4,5,6,7, 
81. Entries found in tk cache are shown in gry. 

We might represent a sequence as a balanced binary tree 
and use the obvious decomposition rule that splits the 
sequence represented by a tree T into the sequences 
represented by the left and right subtrees of T. If T 
represents the sequence [l, 2, . . . . 81, and 7” is the tree 
returned by a function that inserted an 0 at the front of the 
sequence represented by T, then computations involving T 
and T’ would share common subproblems. However, if T 
represented the sequence [l, 2, . . . . 81, and 7” represented the 
sequence [0, 1,2, . . . . 81, but T’ were not derived from T, the 
decompositions of T and T’ might not be similar, and 
computations involving T and T’ might not share any 
common subproblems. 

To exploit function caching, two similar problems must be 
broken down into sub-problems such that they share many 
common sub-problems. This explains much of the behavior 
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Definition 3.3 (Opb). Let X(,,) be a random variable with a 
probability distribution that is dependent on n (e.g., X(,) 
=prob N&n, p)). We define X(n) to be Opr&n)) iff 

V E s.t. E > Cl, 3 M, no s.t. V n s.f. n t no, 
Prob(Xf,)<Mfln)lss.O 

We introduce Theorem 3.1 to allow us to show probabilistic 
order bounds on algorithms. 

Theorem 3.1. Let X(,) be a random variable with a 
probability distribution that is dependent on n. 

Xf,) is O,,,.&avg(X(,,$ + stndrd-dev(X(,))). 

Proof. By Chebyshev’s inequality, 

Prob( X(,) L avg(X(,)) + M stndrd-dev(Xf(,)) ) < l/M*. 

Givens,s>O,letM=l/fi.O 

Theorem 3.2. If X(,) and Ytn) are random variables with 
probability distributions that are dependent on n, 

Xtn) lprob Y(,) and Y(,) is +d#lnN 
=+ X(,) is +.&f(n)). 

Proof. Follows directly from definition of partial ordering on 
random variables and the definition of Opmb. Q 

4 Data Structures and Algorithms 
for Cncremental Computation 

Functional programming languages (and function caching 
implementations) typically support only simple types such 
as S-expressions or tagged-tuplesl as values. Many 
algorithms are designed to work with more complicated 
types such as sets or sequences. Rather than extend the 
interpreter and the function caching system to handle other 
data types, values in other type systems are represented 
using S-expressions or tagged-tuples. This sections 
describes, in general, how problems and values can be 
represented in a way such that function caching provides 
efficient incremental evaluation. Sections 5 and 6 present 
specific solutions for sequences and sets motivated by the 
discussion in this section. 

* In sections 5 and 6, we describe data structures using 
tagged tuples: the value Id( x0, xl, . . . . xk-1) is the tuple 
tagged with the token Id and containing the values x0, xl, . . . . 
Xk-1. Each tag is associated with a fixed arity. 

Tagged tuples are used for clarity of expression. The 
tagged tuple Id{ xa ~1, . . . . xk-1) can be thought of syntactic 
sugar for the Expression ( Id, ( x& ( xl, . . . ( xk-I, NIL ) . . . ))). 
Tagged tuples can be combined with a type system to 
produce typed-tuples; typed-tuples are supported by many 
functional languages (e.g., ML). 

4.1 Representation schemes 
A representation scheme is used to represent values of an 
abstract type 7 as values of a concrete type o. Typically, the 
abstract type ‘E is a type that we would like to use in an 
algorithm but is not a base type of the system in use. For 
example, if lists are supported by the underlying system but 
sets are not, we can use a representation scheme in which a 
set is represented by a list of the elements of the set. In this 
representation, the concrete list values 16, 3, ‘x’l and I’x’, 
6,31 would both represent the abstract set value (3,6, ‘~‘1. 

Definition 4.1 (representation function). We can formalize a 
representation scheme by specifying a representation 
function that, when applied to a concrete value, returns the 
abstract value represented by that concrete value. Cl 
Exumple: If R is a representation function that maps lists to 
sets, R( [6,3, ‘~‘1) = R( [3, ‘x’, 61) = (3,6, ‘x’). 

Note that a representation function is not implemented, 
but is simply used for arguing about the correctness of al- 
gorithms designed to work with that representation. If RI : p 
+ o and R2 : o + T are representation functions, R2 o RI is a 
representation function giving the value in r represented by 
a value in p. 

Typically, the representation we choose for an abstract 
type depends on the operations we need to perform and the 
efficiency with which those operations can be supported by 
the representation. For incremental computation, we also 
have to take into consideration the fact that we intend to use 
function caching and that we wish to obtain efficient 
incremental evaluation. The effects of these considerations 
are discussed in Sections 4.2 and 4.3. 

4.2 Data structures and algorithms for 
function caching 

Data structures that we plan to use with function caching 
must be updatable applicatively and should provide unique 
representations. 

Applicative updates. The use of function caching precludes 
the destructive updating of data structures. Updates must 
produce new data structures representing the desired values 
instead of overwriting existing data structures. 

Unique representations. In order to make function caching 
happen at the abstract level, we must use representations 
schemes with unique representations. A representation 
function R provides unique representations iff R is a 
one-to-one function. Note that if R is a one-to-one function, 
R-l is well-defined. The following example explains our 
motivation. Let f be a function on sets that is designed to use 
a representation scheme in which sets are represented as 
lists and let R be the representation function that maps lists 
to sets. If x and y are concrete values representing the same 
set (i.e., R(x) = R(y)), we want to be able to reuse a 
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seen above; divide and conquer algorithms should be used, 
because they solve a problem by breaking it down into sub- 
problems, allowing for the possibility of sharing the results 
to common sub-problems. The scheme shown in Figures 
2.3-2.6 failed to work when elements were inserted or 
deleted from the sequence because the decomposition 
scheme did not break the problems into common sub- 
problems. A decomposition scheme that decomposes two 
similar problems in a way such that they share common 
sub-problems is called a stnble decomposition. Whether a 
decomposition scheme is stable depends on what we 
consider similar problems; our definition of similar problems 
should operate at the abstract level and not depend on how 
the problems are represented. Creating data structures and 
algorithms with a stable decomposition is an interesting 
problem that is examined in detail and more formally in 
Section 4. 

2.2 The Implementation of Function 
Cat hing 

If we hope to use function caching to provide incremental 
computation, we must have an efficient impIementation of 
function caching. Some previous implementations of 
function caching impose large overheads that make function 
caching only appropriate for combinatorial functions like 
the Fibonacci function. We report elsewhere solutions to a 
number of problems related to the efficient implementation 
of function caching [Pug88a] [Pug&Jb]. In our 
implementation, we found that function caching imposed 
about a 50% overhead on the speed of execution in 
situations where no hits were obtained. In empirical tests of 
applications such as incremental theorem proving, function 
caching provide overall real-time speed-ups of 4 to 6. An 
efficient function caching system must provide a method for 
calculating a hash keys for values and efficient, constant- 
time equality tests; we assume these are available in the rest 
of this paper. Fast equality tests can be provided by hashed 
consing [A11781 or lazy structure sharing [Pug88bl. 

3 Randomized Data Structures 
and Probabilistic Time Bounds 

The data structures we present in the Sections 5 and 6 are 
randomized (i.e., organized probabilistically). Algorithms 
that work with randomized data structures have good 
expected-time bounds and poor worst-case time bounds, In 
this section, we briefly present a unified method for 
analyzing both the expected performance a.nd the 
probability distribution of the running times of algorithms. 

A random nuri&t has a fixed but unpredictable value and 
a predictable probability distribution and average. If X is a 
random variable, PROB( X = x ) denotes the probability that 
X equals x and Prob{ XI x I denotes the probability that X is 
at most x. For example, if X is defined as the number 
obtained by throwing a perfect die, Prob( X I 3 ) = l/2. For 

conciseness, we sometimes refer to a property of the prob- 
ability distribution of a random variable as a property of the 
random variable itself. 

It is often preferable to find simple upper bounds on 
values wh,ose exact value is difficult to calculate. In order to 
discuss upper bounds on random variables, we need to 
define a partial ordering on the probability distributions of 
random variables: 

Definition 3.1 (=prob and Ipro& Let X and Y be random 
variables. We define equality and a partial ordering on the 
probability distribution of random variables as follows: 

The algorithms we analyze in this paper have running 
times that are bounded by a negative binomial distribution. 

Definition 3.2 (negatiw binomial distributions - NBfs, ~1). Let 
s be a non-negative integer and p be a probability. The term 
NB(s, p> denotes a random variable with the negative 
binomial distribution equal to the distribution of the number 
of failures seen before the s* success in a series of random 
independent trials where the probability of a success in a 
trial is p. We define NB(0, pl I 0 and NBfsl E NB(s, 051. Cl 

Several well-known properties of the negative binomial 
distribution are [TK841: 

avgfNB(s, p>> = sCp)/p, 
variance(NB0, pN= s&p)/?, and 

Prob( NB(s, p) = k ) = 

If X and Y are two independent random variables, each 
bounded by a negative binomial distribution, we can calcu- 
late a probabilistic upper bound on X + Y: 

X l@ cl + NB(q, p> A Y +,I, q + NWq, p) 
A X is independent of Y 

a X + Y +,& cl + c2 + NBCq + s2, ph 

If X and Y are not independent, we can still calculate an 
upper bound on the average of X + Y: 

X w cl + NB(sl, p> A Y +& ~2 + NB(s2, p> 
3 avg(X 4 Yl s avgfcl + c2 + NB(sl + ~2, p)>. 

The probobilktic big-oh 
Big-Oh notation is usually defined by saying that 

fin) is O&(n)) iff 3 M, ng s.t.V n s.t. n 2 ng j(n) I M&t). 

This is adequate for analyzing algorithms that do not 
involve randomness; we introduce a new notation 
appropriate for analyzing algorithms involving 
randomness: 
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previously computed result fix) when computing f(y). This 
will happen iff x = y. If R is a one-to-one function, this will 
be true whenever R(x) = R(y). In this example, we could use 
a representation scheme in which a set is represented by a 
sorted list of the elements of the set. 

It would be possible to side-step the requirement of unique 
representation by expecting our function caching 
implementation to match only arguments represented the 
same way. This would decrease the effectiveness of the 
cache, although in some circumstances the decrease might 
be small. If it were very difficult to provide data structures 
that had unique representations, we might wish to take this 
route. However, sections 5 and 6 provide data structures for 
sequences and sets that have the desired features. 

4.3 Data structures and algorithms for 
incremental evaluation 

In order to use function caching to solve quickly a new 
problem that is similar to a previous problem, the new 
problem must be broken down into sub-problems in a way 
such that solving the new problem involves solving 
sub-problems that were solved for the previous problem. 
Decomposing problems into sub-problems usually involves 
decomposing large data structures into smaller ones. We 
therefore wish to design data structures such that two 
similar values have similnr decompositions. 

Our definition of similar values depends on the type of 
similarities in which we are interested. 

Definition 4.2 (transfirmution). A transformation on type ‘5 is 
a function that maps a value of type r (and possibly 
additional arguments) to a value of type ‘t. Transformations 
are not implemented; they are used only for discussing the 
similarity of abstract values. Cl 
Example: One of the transformations on sequences we will 
be using in later examples is changefirst. If changeFirst 
transforms Y into x’, then x and x’ differ in only their first 
element. The meanings of other transformations we use is 
largely self-evident from their names. The insert, delete and 
change transformations on sequences reflect a change at any 
location. The &Element and remuueEZ.em& transformations 
on sets reflect a difference of a single element. 

Definition 4.3 (distance betzueen abstract vahes - 
tDistanceT(x, x’)). Let T be a set of transformations. We 
define tDistance+, x’) = k iff k is the smallest integer such 
that there is a sequence of k transformations chosen from T 
that transforms x into x’. If no sequence of transformations 
from T transforms x into x’, tDistanq(x, x’) is undefined. 
Depending on If, this distance measurement may or may not 
be symmetric. Cl 
E-we: tDistUW(&gcFint. insnjBeforcF~@, 11, IS, 3,11)= 
2 and tDistanq,hngeFirst, ins,gt~~wFi7st)([5,3,11, [5,11) is 
undefined. For sets A and A’, tDiStance(,ddElement, 
mMac~e@, A’) = 1 (A’ - A) u (A - A’) I. 

Definitions 4.4,4.5 and 4.6 formalize the idea of similar 
decompositions. 
Definition 4.4 (decomposition scheme). A decomposition scheme 
on type r is a 3-tuple of functions (atomic, split, bound ) that 
have the types and properties shown below. 

ntomic : 7 + Bool, 
bound : r + Nat, 
split : r 3 ( T, ‘L ), 
spZit is a one-to-one function, 
-, atomic(x) =+ bound(x) > 0 A split(x) is defined, 
( y, 2 ) = split(x) = 

bound(y) < bound(x) A bound(z) < bound(x). 0 

Informally, atomic(x) is true if it is impossible to further 
decompose x, split(x) is the pair of values into which x is 
decomposed and bound(x) is an upper bound on the number 
of times x can be decomposed. 

To implement a decomposition scheme D on abstract 
values, we use a representation scheme R and 
decomposition scheme D’ = ( atomic’, spZit’, bound’ ) such 
that D’ is an efficient implementation of D for R (e.g., split’ 
and atomic’ are constant-time functions and split’(x) = ( y, z ) 
iff spZit(R(x)) = ( R(y), R(z) )). 
Example: We can define a decomposition scheme linkedLists 
on sequences as 

atomic(S) = 1 S 1 5 1, 
bound(S) E 1 S I, and 
spZit([xa xl, . . . . xn-11) = ( [x01, [ x1, . . . . +-II). 

Definition 4.5 (decomposition - dD(x)). The decomposition of 
a value with respect to a decomposition scheme D = ( afomic, 
split, bound ) is the set defined (recursively) by 

do(x) = if atomic(x) then (x) 
elsfz (xx) u dD(y) u d&z) 

where ( y, z ) = spZit(x) fi. Cl 

Example: Using the decomposition scheme given in the 
example for Definition 4.4, dZinkd&Zs( [l, 2,31 ) = { (1, z31, 
r 1 I, R 31, El, [31 I. 

Definition 4.6 (distance between decompositions - 
dZJistanceD(x, x’)). Let x and x’ be values of type ‘t and D be a 
decomposition scheme on type r. 

dDistunceg(x, x’) denotes the distance from the decom- 
position of x to the decomposition of x’ with respect to D: 
dDisfanceD(x, x’) = 1 dD(x’) - dg(x) 1 . This distance 
measurement is not symmetric. • i 
Example: dDistanceZinkedLZsts( [1,4,31, [I, 2,31 1 = I I&2,31, 
I2,3l,Plll =3. 

Now that we have defined measurements that 
formalize the ideas of similar abstract values and of similar 
decompositions, we are ready to talk about stabZe 
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decompositions and the relevance of stable decompositions to 
incremental evaluation. 

Definition 4.7 (stable decompositions). Let D be a 
decomposition scheme for values of type z, T be a set of 
transformations on type 7, and 1 x 1 be a measurement of the 
size of x. 

The decomposition scheme D is said to be 
Ocf< 1 x’ 1)) stable for T transformations if, for all x and x in T 
such that fDistance~(x, x’) is defined, dDisfunceg(x, x’) is 
O(f Distunce~x, 29 p I i 1 I>. 

If dDisfanceg(x, x’) is Opro~(t~sfanceT(x, x’) fl 1 x’ I)), D is 
said to be OPbcfc 1 x’ I )) stable for T transformations. Cl 

Example: The linkedLists decomposition scheme for 
sequences (defined in the example for Definition 4.4) is O(1) 
stable for (deleteFirst, changeFirst, insertBeforeFirst) 
transformationsl, O(O) stable for (deleteFirst) transforma- 
tions2 and 0 (n) stable For (changeLast, deletelast) 
transformations3 (i.e., totally unstable). 

Theorem 4.1. Let R : cr + % be a representation function and 
T be a set of transformations on c Let D = ( atomic, split, 
bound ) be a decomposition scheme for r and D’ = ( atomic’, 
split’, bound’) be a decomposition scheme on o that is an 
implementation of D for R (e.g., split’(x) = ( y, z ) iff 
spZit(R(x)) = ( R(y), R(z) )) such that atomic and split’ are 
constant-time functions. Let 8 be a function on 0 defined as 

gtx) = if atomic’(x) then kl(x) else kz(g(y), g<z>) 
where ( y, z ) = split’(x) fi. 

If 
. D is O( fl I x I ) ) stable for T transformations, 
l hl and k2 can be computed in constant time, 
l the results of all the recursive invocations of g involved 

in computing 8(x) are stored in the function cache, and 
l function caching imposes only a constant-factor 

overhead, 
then the time required to compute 8(x’) is 

Of fDisfuncefiR(x), R(x’H Jlj x I> 1. 

If D is Opr&@ I x I)) stable, the time required to compute 
gfx’) is Ow( tDistanc&R(x), R(x’)) fc I x 1) 1. 

Proof. Computing g(x’) without function caching requires 
computing g(y) for each y in du(x’). Excluding the cost of 

’ The sequence of transformations that produces the 
largest difference between the decompositions of x and x’ is 
a series of insertions. If x’ is the result of inserting k new 
elements at the front of x, then f%fU~(&&f&i&, &ngefirsf, 
insertBefo&j~t](X, i) = k ad dDkfan~li~dLi&, x’) := 2k. 

* If f~Sfun@(d&&int)( r, x’r) is defined, Y is a suffix of x 
and dDktU?ICqi&dL&X, X’) = 0. 

3 If x’ is identical to x except for the last element, 
tDistmqchngelast, rieletelo&, x9= 1 and 
dDiSta?&Z~i~dLists(X, f) = I1( 1 +l. 

performing recursive calls to g, each of these calls requires 
constant time (e.g., the total time to compute g(Y) without 
function caching is o( I dp(x’) I). The only calls tog that will 
not be found in the function cache are the calls with 
arguments from d&x’) - du(x). Because D’ is defined as an 
implementation of D, I dD*(x’) - dDW I = I dD(R(x’)) - 
dg(R(x)) 1. Since D is Ocfc 1 x 1)) stable for T transformations, 
1 dg(R(x’)) - dD(R(x)) I is O(f DistunceT(R(x), R(x’N jX I x I 1). 

The argument follows similarly for the 0~ case. 0 

Of course, the idea of stable decompositions might be 
somewhat pointless if data structures fulfilling these criteria 
did not exist. We have developed efficient representations 
for sequences and sets that allow efficient applicative 
updates and have unique representations and stable 
decompositions. In Section 5, we present a representation 
for sequences that provides unique representations and is 
OMfIog n) stable for (insert, change, &Z.&l transformations. 
In Section 6, we present a representation for sets that 
provides unique representations and is Opro~(log n) stable 
for (addElement, removeElement) transformations. 

4.4 Hash keys 
The data structures we describe in Sections 5 and 6 are 
organized on the basis of the hash keys of the values stored 
in the data structures. The hash keys we need are the kind 
usable for extendible hashing [Meh&ll (i.e., let hash(r) be a 
hash function mapping LI to 0..2k-l; if for all j such that 1 s j 
I k, hash(x) mod u’ is a “good” hash function, then hash(x) is 
acceptable for our purposes). The function caching 
implementation also requires hash keys, so these hash keys 
are already available. 

5 A Decomposition and 
Representation Scheme for 
Sequences 

This section describes a stable decomposition scheme for 
sequences (i.e., lists) and a scheme for representing 
sequences using tagged-tuples or S-expressions. We also 
describe algorithms that work with this representation: the 
function that splits a sequence requires constant-time; 
functions that access, change, delete and insert an element in 
a sequence of length n requires Oprobflog n) time; and the 
function that appends a sequence of length n to a sequence 
of length m requires Oeflog n + log ml time. 

5.1 The chunky decomposition scheme 
The chunky decomposition scheme is OI,,,#og n) stable for 
(insert, delete, change) transformations and is based on the 
ZeueZs of elements of sequences, which are in turn based on 
the hash keys of elements. 
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Definition 5.1 (Ze&(X)). The level of an element X, ZeueZ(x), is 
the largest integer i such that hash(X) is a multiple of 2! 0 

The properties of hash functions stated in Section 4.4 
guarantee that the levels of elements have the same 
probability distribution as NBC0 (e.g., on average, half of the 
elements of a sequence are level 0, one quarter are level 1, 
and so on). We assume that no duplicate elements exist; the 
problems caused by duplicate elements are discussed in 
Section 5.2, Occurrences of only a relatively small number of 
duplicate elements has no significant effect. 

Definition 5.2 (chunky decomposition scheme). The chunky 
decomposition scheme on sequences is defined as: 

atomic(S) E 1 S 1 I 1, 
bound(S) = 1 S I, and 
split([ x0, . . . . X,-l I) = ( [ x0, . . . . xi-1 1, [ ql . ..I X,-l I), 

where i uniquely satisfies 
O<i<n 
A (V j S.t. 0 < j < i, Zf%?Z(Xi) Z h?Z(Xj) ) 
A (V j S.t. i < i < n, ff?WZCXi) 7 ckWf(XjJ I.0 

Informally, the chunky decomposition scheme divides a 
sequence S = [ x01 . . . . xn-l I at the most preferable break in S. A 
break is a position between two elements in a sequence. The 
break immediately before element Xi is preferable to the break 
immediately before element Xj iff ZeoeZ(Xi) 7 ZeveZ(xj) or 
(ZezteZ(XiI = ZeveZ(Xj) and i > j>. The most preferable break 
therefore is immediately to the left of the rightmost element 
of S with maximal level (ignoring the first element of S). 
Figures 5.1 and 5.2 show the decompositions of two similar 
sequences according to this decomposition scheme. 

Theorem 5.1 characterizes the subsequences that appear 
in the chunky decomposition of a sequence. 

Theorem 5.1. Let S = [ x0, xl, . . . . x,-l I. For all i, j such that 0 
5 i 5 j < ?l, [ Xi, . . . . Xj 1 appears in the decomposition of S iff i 
= j or ZCUeZ(Xi) > max( ZCZV?Z(Xi+l), Ze%?Z(XZ+2), . . . . ZeoeZ(xj) ) I 
ZeveZ(Xj+l) (to handle boundary conditions, assume that 
Z~Z(xo) = 00, and an element x,, exists and &1(x,,) = -1. 
Proof. The sequence [ xi . . . . Xj 1 appears in the decomposition 
of S iff the breaks immediately before Xi and before Xi+1 are 
preferable to the breaks before Xi+l, . . . . Xj. The break 
immediately before Xi is preferable to the breaks before Xi+], 
. . . . Xj iff ZeVc?Z(Xi) 7 max( ZCOd(Xi+~), ZeVeZ(Xi+2), . . . . ZUIeZ(Xj) 1. 
The break immediately before Xj+l is preferable to the 
breaks before Xi+l, . . . . Xj iff max( ZezleZ(Xi+l), ZfDeZ(Xi+2), . . . . 
ZeTh?Z(XjJ ) I ZeDeZ(Xj+l). q 

Theorem 5.1 nicely describes why this decomposition 
scheme is stable: whether or not 1 xi, . . . . Xj I appears in the 
decomposition of S depends solely on the levels of the 
elements Xi, . . . . xj and Xj+l . 

FIGURE 5.1 - Decomposition of u sequence according to the chunky 
decomposition scheme. Tk level of each element is indicated by 

tk kight of the bm above that eZement. 

FIGURE 5.2 - Chunky decomposition of a sequence thuf is simiZar 
to tk sequence in Figure 5.1. Subse9uences that also appeu~ in 

Figure 5.1 are shown in grey here and their decomposition is not 
shown further. 
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We now analyze the stability of this decomposition 
scheme with respect to (insert, delete, change) 
transformations. 

Theorem 5.2. Let S = [ x0, . . . . Xi-l, Xf+l, . . . . x,-l I and S’ = 
1 x0, -*-, x,-l ] (i.e., S’ is the same as S except that a new 
element Xi has been inserted). The only sequences that 
appear in the decomposition of S’ but not in the 
decomposition of S are those that include either Xi-1 or Xi. 
Pmof. Let [ xj# . . . . xk ] be a sequence not including xc.1 or Xi 
that appears in the decomposition of S’ (i.e., k c i-l or i c 1). 
The presence of this sequence in the decomposition. of S’ 
does not depend on the level of xi and therefore it must also 
appear in the decomposition of S. 

Theorem 5.3. Let S = [ ~0, ‘.., ~~-1 1 and S’ = ] ~0, . . . . Xi-l, 
xi+l, . . . . x,-l ] (i.e., S’ is the same as S except that xi has been 
deleted). The only sequences that appear in the 
decomposition of S’ but not in the decomposition of S are 
those that include xi-l. 
Proof. Let [ xj$ . . . . xk ] be a sequence not including xi-1 that 
appears in the decomposition of S’ (i.e., k c i-l or i < j). The 
presence of this sequence in the decomposition of S’ does 
not depend on the absence of xl and therefore it must also 
appear in the decomposition of S. 

Theorem 5.4. Let S = I xgl .,., x,,-1 1 and S’ = [ xg, . . . . xi-l, xl, 
Xi+l, . . . . x,-l ] (i.e., S’ is the same as S except that xi has been 
replaced by xi). The only sequences that appear in the 
decomposition of S’ but not in the decomposition of S are 
those that include either Xi-1 or xi. 
Proof. Let [ xj# . . . . %k ] be a sequence not including Xi-,1 or Xi’ 

that appears in the decomposition of S’ (i.e., k c i-l or i c Z). 
The presence of this sequence in the decomposition of S’ 
does not depend on the level of xi, and therefore it must 
also appear in the decomposition of S. 

Theorems 5.5 and 5.6 show that the chunky decomposition 
scheme is o@,(lOg n) stable for {insert, delete, ckange) 
transformations. 

Theorem 5.5. Let xd be a designated element in a sequence S 
= ] XI), . . . . x,-l 1. The number of sequences containing Xd that 
appear in the deoomposition of S is OZ,,&log n). 
Proof Let so, Sl, . . . . Sk-1 be the sequences that appear in the 
decomposition of S that inchide x& where So= ] xd 1, Sk-1 = S 
and for all i, 0 I i c k-l, Si is a either a proper prefix or a 
proper Suffix Of Si+l . 

Let Lefti and Righti be defined such that Si = 1 XL+~, 

*LEftiS . . . . XRighZi-1 1. For all i, 0 I i < k-l, either L&+1 < 
Lefti and Right i = Righfi+l, or Lefti+ = Lefti and Rig&f < 
Righfi+l. 

If Lefff+l < L+f, then ZeneZ(xLefZi+l) > ZeoeZ(xL,f$. The 
number of distinct values in [Leffo, L+$fl, . . . . Lc,f?k] I 1 + max( 
ZeoeNxo), level(q), . . . . zevel(Xd) ). From Theorem A-2, we 
derive the result that maxC ZewZ(xo), ZcneZ(xl), . . . . ZeneZ(xd) ) 
S@ lg d + NB(1 Il. 

The number of distinct values in [Righto, Rig&, . . . . Righfk] 
is the number of non-decreasing elements in [ ZeaeZ(xd), 
h&Td+]), . ..I Ze&(x,+l) I. From Theorem A.3, we derive the 
result that this value is !+,b 1 + NB(1 + lg (?I-&) + NB(1, 
l/3). 

Therefore, k :I: (the number of of distinct values in [Lefty, 
L&;.., Le+ll ) + (the number of distinct vaIues in [Rig&o, 

, . . . . Rig&l] ) - 1. Combining our results, we get 

k S@ I + lg d + NB(2 + lg (n-d)) + NB(l,1/3). 0 

Theorem 5.6. The chunky decomposition scheme is 
OZ,,&og n) stable for (insert, delete, change) transformations. 
Proof. Let S and S’ be sequences such that fDisfance(i,,,f, 
&Zck, chnrre](S, S’) = k. By Theorems 5.2,5.3 and 5.4, there is 
a set D of no more than 2k elements from S’ such that a 
sequence appears in the decomposition of S’ but not of S 
only if it contains an element from D. Based on Theorem 5.5, 
the number of sequences appearing in the decomposition of 
S’ that contain an element from D is O@C I D I log I S’ I ). Cl 

5.2 Duplicate elements 
The reason we have assumed that sequences do not contain 
any duplicate elements is that we can then treat the levels of 
elements as independent random variables. For example, if 
a sequence simply contained n instances of an element x, all 
the elements would have the same level, and the 
decomposition rule would simply remove the rightmost 
element of a sequence. If no more than a small proportion of 
the elements in a sequence are duplicates, it should have no 
significant impact. We are pursuing research on a 
representation for sequences with many duplicate elements, 
but it is currently an open problem. 

5.3 The chunky list representation 
scheme 

In this section, we describe a representation scheme for 
sequences that provides unique representations and allows 
a sequence to be split according to the chunky 
decomposition rule in constant time. We also describe 
algorithms for appending the representation of two 
sequences and accessing, deleting, changing or inserting 
elements in the representation of a sequence; these 
algorithms all require OZ,&log n) time. 

We define the chunky representation scheme by defining 
a inverse representation function R-l that maps a sequence 
S to the S-expression that represents S. These S-expressions 
are presented as tagged tuples, as described in Section 4. 
Any Expression in the range of R-l is termed a chunky list. 
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Definition 5.3 (chunky lists). The inverse representation 
function I@ that maps sequences to chunky lists is 

k?‘(S) = 
ifS=[lthenEmpty() 
else if S = [ x I then Element( c) 

where c uniquely represents x 
else cList( R%?, R-IW) ) 

where ( S’, S” ) = split(S). 

The chunky list already reflects the chunky 
decomposition scheme, so no work is needed to decompose 
the representation of a sequence; the split function on 
chunky lists is constant-time. The implementation of append 
described in Figure 5.3 requires O,c,Z,(log rt + Zag ml time to 
append the representations of two sequences of length n 
and m. The presentation of this algorithm uses the 
pattern-matching case statement that is typical of functional 
programming languages: free variables of a successively 
matched pattern are bound to the appropriate components 
of the value on which the case statement is discriminating. 
Asterisks (*) represent wild-cards. 

We extend level so that, when applied to a chunky list 
representing a sequence S, it is the level of the first element 
of S. By caching the level of the first element in a sequence S 
with the data structure representing S, the level function 
remains a constant-time function (i.e., we change the chunky 
list representation scheme so that R-l([ x0, xl, . . . . x,-l I) = 
cList( R-16’), R1(S”), ZerxZ(xg) ) where ( S’, S” ) = spZit([ x0, 
xl, ..,, xs-1 I)). This change decreases the clarity of the 
algorithms slightly and is a fairly easy, mechanical change, 
so it has been omitted from the descriptions given below. 

The algorithm is based on the idea of maintaining the 
invariants required by Definition 5.3. If S and T are both 
sequences of more than one element, the most preferable 
break in uppend(S,7’l is either: 

l the most preferable break in S, 
l the break between S and T, or 
l the most preferable break in 7’. 
By using the rules given for the chunky decomposition 

rule, we can decide which of these breaks is most preferable. 

Theorem 5.6. The time required by the algorithm of Figure 
5.3 to append the representations of two sequences S and T 
isOPb(log ISI +log ITI). 
Proof. L.et S = 1 xo, x1, ..,, x,-l 1 and T = I yo, ~1, . . . . ym-l 1. 
Each recursive step in append involves stepping down a 
right branch of the data structure representing S or stepping 
down a left branch on the data structure representing T. The 
number of right steps in the data structure representing S is 
the number of sequences containing x,-l that appear in the 
decomposition of S, which is OZ,,& log 1 S I). The number 
of left steps in the data structure representing T is the 
number of sequences containing yo that appear in the 
decomposition of T, which is O@( log I T I). Cl 

appsnd(S, T) = 
ceee(S,T)of 

(Empty(),*)=+T 
( *, EmpM) ) * S 
( Element( * ), Element{ * ) ) * cList( S. T ) 

( Element( * ), cList( TO. T1 ) ) 3 
if level(T0) 5 level(Tj) 

( then break before T1 most prefernble 1 
then cList( append(S, To), T,) 
(else brtnk before T mod preferable I 
else cList( S, T ) 

( cList( So, S1 ), Element( * ) ) =P 
if level(S1) 5 level(T) 

{ then break before T most preferable ) 
then cLi.st( S, T ) 
( else break before S1 most preferable ) 
else cList( SO, append(St , T) ) 

( cList( SO, S1 ), cList( TO, T1) ) * 
if level(S1) 5 level(T1) and level(To) I level(T,) 

( then break before T1 most preferab& I 
then cList( append(S, TO), T1) 

else if level(S,) I heI and beI < level(T0) 
{ then break before T most preferable ) 
then cList( S, T ) 

I else break &fore Sl most preferable ) 
else cList( SO, append(&) T) ) 

FIGURE 53 - Description 4 algorithm to append two sequences 
represented as chunky lists. 

We define functions length, first and last such that 
length(S) is the number of elements in the sequence 
represented by S,firsf(S, Q is the chunky list representing the 
first i elements in the sequence represented by S, and la&S, 
il is the chunky list representing the last i elements in the 
sequence represented by S. The function length is cached 
with the data structures, as described for the level function, 
so that it is a constant-time function. We can implement fbst 
and Zust as shown in Figure 5.4. Also described in Figure 5.4 
are functions to access, change, insert, or delete elements. 
Each of these operations requires OPb(log ?I) time. 
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FIGURE 5.4 - Lkscription of algorithms to extract the first and las 
i elements of a sequence and to access, change, delete and insert 

bgfore elentertt i of a sequence. 

first(S, i) = 
if i = 0 then Empty{ ) 
l lee lf i = length(S) then S 
l lee caee s of 

cList( So, St ) * 
If i I length(So) then first&, i) 
else 8cList( So, first(S1. i - length(So) ) 

last(S, i) z 
if i = 0 then Eimpty( ) 
else lf i = length(S) then S 
else case S of 

cList( So, S1 ) =$ 
If i 5 length(S1) then last(S1, i) 
else cList( last(So, i - length(Sl)), S1 ) 

access(S, i) = 
case last(first(S, i+l), 1) of 

Element{ x ) =+ x 

change@ x, i) II 
append(first(S, i), 

append(Element( x ), last(S, length(S) - i - 1))) 

delete@, i) = append(first(S, i), 
last(S. length(S) - i - 1)) 

insert@, x. i) I 
append(first(!j, i), 

append(lElement( x ), last(S, length(S) - i))) 

t 

6 A Decomposition and 
Representation Scheme for 
Sets 

This section describes a stable decomposition scheme for 
sets and a scheme for representing sets using tagged-tuples 
or S-expressions,. We also describe algorithms that work 
with this representation and give time bounds for these 
algorithms. 

The algorithms and representations we describe use 
annotated sets: a set annotated with a string of binary digits 
(possibly null). For example, ( S, L ) is the set S annotated 
with the string L. If ( S, L ) is an annotated-set value, then for 
all elements x in S, L is a suffix of the hash(x). This label 
encodes an invariant that is maintained by our set 
algorithms; making it explicit simplifies our exposition. A 
set S is represented by the annotated set value ( S, E ) (where 
E is the null strhg). The predicate suffDc(l, k) is true iff L is a 
suffix of the binary representation of k. The term hashBits 

denotes the number of bits in a hash key (i.e., hash(x) E 
O..2hashBits - 1). Since our set algorithms work with 
annotated sets, we define our decomposition scheme on 
annotated sets as shown below. 

Definition 8.1 (decomposition scheme for annotated-sets). The 
decomposition scheme for annotated sets is defined as: 

atomic(( S, L )) E I( hash(x) I x E S ) 1 5 I, 
bound(( S, L )I = hashBits - 1 L 1, and 
spZit(( S, L )I = ( ( ( x E S I sufix(OL, hash(x)) }, OL ), 

( ( x E S 1 suffix(lL, hash(x)) 1, IL ) ). 0 

The representation scheme we use for annotated sets can 
be described by defining the inverse representation function 
R-* as shown below. Let r1 be the inverse representation 
function for a representation scheme in which sets are 
represented by a sorted list of the elements of the set. 

R-If{ S, L )) I 
if S = 0 then EmptySet{ L ) 
else if atomic(( S, L )I then AtomicSet( 71(S), L ) 
else Pair( R-I(( S’, OL )), R-I(( S”, 1L )I, L ), 

where ( ( S’, OL ), ( S”, 1L ) ) = spZit(( S, L )I 

This representation scheme is equivalent to using binary 
hash tries. Binary hash ties use a binary trie [Knu73] data 
structure based on the hash keys of the elements. Atomic 
annotated sets that appear in the decomposition of ( S, E) 
appear as leaf nodes in the trie representing ( S, E ) and 
non-atomic annotated sets appear as interior nodes. Figure 
8.1 shows the representation of a sample set, using the hash 
keys given in Table 8.1. 

The appropriate divide and conquer algorithms for 
calculating the union, intersection or difference of 
annotated-sets (or testing to see if one annotated set is a 
subset of the other) are fairly obvious. For example, for set 
union: 

(A, L ) u ( B, L ) = ((A’,OL) u (B’,OL), (A”,lL) u (B”,lL)) 
where split( ( A, L ) I= ( (A’,OL), (A”,lL) ) and 

split( ( B, L ) ) = ( (B’,OL), (B”,lL) ). 

The algorithm for performing set union using this 
representation of annotated sets is described in Figure 8.2. 
One point to note is that our algorithms make use of unique 
representations and constant-time equality tests. For 
example, when computing ( A, L ) u ( B, L ), if A = B we can 
immediately return ( A, L ) as the answer. 

Pardo [Par781 suggested an equivalent data structure for 
representing sets. He did not consider the application of this 
representation for incremental computation, and his 
analysis was more complicated than ours and achieved 
pooter results. Part of the reason for his poorer results is that 
he did not make use of the ability to perform constant-time 
equality tests between sets provided by this representation. 

If hash keys are chosen to be sufficiently long, atomic sets 
will very rarely contain more than a single element; 
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therefore, an atomic set S can be efficiently represented by a 
sorted list of the elements of S. 

FIGURE 8.1- The representation of the set (t, Y, v, w, x, y, z) as ~1 
binary hash trie, using the hash keys shown in Table 8.1. 

element S-bit hash key 
t 01010 
U 01001 
P 11010 
W 00110 
X 10010 
Y 01001 
2 10101 

TABLE 8.1- l-l& keys of the 
elements in the set in Figure 
8.1 

6.1 Set operations 
The algorithms for performing set union are described in 
Figure 8.2. Other standard set operations such as 
intersection, difference and subset tests can be implemented 
in a method similar to the method used for set union, and 
the same time analysis holds. 

6.2 Analysis 
The complete analysis of this set representation is somewhat 
complicated and beyond the scope of the paper. In this 
section, we summarize the results presented in IPug88bJ. 
Non-Incremental set operations 
The time to compute A op B, where op E ( u, n, -, c ), is 
bounded by 

o@A Is21 cl+logds3I~ls2l))) 
where S2 and $3 are the middle and largest of the sets A - B, 
B -A, A n B. If the sets A and B differ in only k elements, the 
time required to calculate A up B is therefore only 

Oprob(k(l+log(lAnBl/k))). 

union(X, Y) = (set union ) 
case(X,Y)of 

( AnnotatedSet( A ), AnnotatedSet( B > > 
* aUnicn(A, B) 

aUnion(X, Y) I ( annotuted-set union } 
ifX=YthenX 
else If readyForAtomicUnion(X,Y) 

then atomicUnion(X, Y) 
else case (splitAtomic( splitAtomic ) of 

( *, Empty%{ L > ) * X 
( EmptySet( L ). * ) 3 Y 
(Pair(AO,At,L),Pair(BO,B1,L))~ 

Pair{ aUnion&, Bc), aUnion(A1, St), L) 

splitAtomic = 
CaeeXof 

EmptySet( L ) * X 
Pair{ *, *,*>=+x 
AtomicSet( B, L ) + 

If suff ix(OL, hash(B) ) 
then Pair( AtomicSet( B, OL ), 

EmptySet( 1 L ), L ) 
else Pair( EmptySet( OL ), 

AtomicSet( 8, 1 L ), L ) 

readyForAtomicUnion(X, Y) = 
ceee(X,Y)of 

( AtomicSet( A, L ), AtomicSet( B, L ) ) 
9 hash(A) - hash(B) 

( *, * ) *false 

atomicUnion(X, Y) e 
case(X,Y)of 

( AtomicSet{ A, L ), AtomicSet( B, L ) ) * 
AtomicSet( PrimitiveUnicn(A, B), L ) 

^ ^ . . . _. . _. . ._. r _ . L 

FIGURE U.Z -A #esmptWn Of the algo?ItnmJor set unwn. 
DecomposMon stablllty 
The decomposition scheme we have described for annotated 
sets is O@,(log n) stable for (addEIement, remoaeElement) 
transformations. This would give us fairly good time 
bounds for incremental set operations, but we can do even 
better, as shown in the next two items. 
Increment membership tests 
Assume the computations involved in determining if x E S 
are stored in the cache. Define AS to be 6 - S) u (S - S’). 
The time required to determine if x E S’ is bounded by 
O&log I AS 1) if x e AS and by Opmbflog I S’ I ) otherwise. 
Incremental set opwatlons 
Assume that the computations involved in computing A op 
B are stored in the cache and consider computing A’ op B’, 
where A’ is similar to A and B’ is similar to B. Let Sl, S2 and 
S3 be the smallest, middle and largest of the sets A’ - B’, B’ - 
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A’, A’ n B’. Let ABoth = (A’4 u (A-A’) u (B’-B) u (B-B’). 
The time required to compute A’ op B’ is bounded by 

opy& 1 ABoth .- 61 u S2) 1 log( 1 S2 I/ 1 ABoth 1) 
+ (AElothn(S1vS2)I log(lS3j/(ABotkI)). 

6.3 Similar ablstract data types 
Representations and algorithms for finite functions. (i.e., 
symbol tables), priority queues and bags can be based on 
the idea of binary hash tries. used above for sets. A more 
detailed presentation of the application of binary hash tries 
to these data structures is described in [Pug88b]. 

7 A Compurison with Incremental 
Attribute Grammar Evaluation 

Our motivation in examining this approach was to develop 
techniques for incremental evaluation in situations where 
attribute grammar and dependency graph schemes are 
unusable. How d.oes function caching compare against 
incremental dependency graph evaluation on those 
applications for ,which inc:remental dependency graph 
evaluation does work well? 

Graph evaluation and functional programs are 
sufficiently different that it is difficult to make any sort of 
direct comparison between the two approaches. For the case 
of attribute grammars, however, we can make a direct 
comparison. Katayma has described a method for 
translating an attribute grammar G into a set of recursive 
functions F(G) [Kat841. We can then compare the 
incremental performance of the Reps optimal attribute 
grammar propagation scheme [Rep821 on G with the 
incremental performance of using function caching o’n F(G). 
The material in this section assumes the reader is somewhat 
familiar with attribute gra.mmars and optimal attribute 
grammar evaluation. 

The process of converting an attribute grammar into a set 
of recursive functions is fairly straight forward. Let N be a 
nonterminal in a grammar G. For each synthesized attribute 
s of N, we define a corresponding function SN. Let r be a 
node of fype N in a tree T. I.& Tr be the subtree root& at r. 
The function so is defined such that in a consistently 
attributed tree, I.!; = sN(T,, r.il, r.iZ, r.i3..., rim), where the set 
(it, i2, i3... im) is the set of inherited attributes of I’ that s 
might possibly depend on (i.e., (il, it i3... i,,,) = ( i E Z(N) I 
(i, s) is nn e&z of ZCJINI } 1. 

The process of translating an attribute grammar is fairly 
easy and can be Imechanized [Kat841, although we will not 
go into the detaills of the translation process here. Because 
we plan to make ‘use of function caching, we can avoid some 
of the complexities introduced by Katayama. Figure 7.1 
illustrates the translation from attribute grammars to 
recursive functilons using the standard example of the 
semantics of binary numerals. The recursive functions are 
shown with a syntax that is similar to that of PRO’LOG in 

order to make the correspondence between the attribution 
rules and the functions more obvious. Some additional 
mechanica. manipulation can combine the multiple 
definitions given here for each SN into a single function with 
a case statement. Efficient evaluation of the functional 
program produced relies on the use of function caching. 

po: Number + Integer 
Numbcr.value = lntegermhe 
zntt?gt?r.s& = 0 

I 
valueNumbe&$ integer )) 

= valuqnte&lnteger, 0) 
~1: Integer + Integer Bit 

lntegerl.tullue = lnteger2.vaIue + Bit.value 
Znteger2.scale = Integer1 .scale + 1 
Bit.scxle = lntegeqscale 

valuejn~ger(pt( Integer, Bit ). scale) 
= valuel,teW,(lnteger, scale+l) 

+ VdJ6g@t, scale) 
~2: Integer + Bit 

Znteger.vaIue = Bit.vaIue 
Bitscale = lnteger.sde 

I 
valuqnwr(p2( Bit ), scale) = 

valuegit(Bit. scale) 
p3: Bit + 0 

Bit.oullue = 0 
I valuegit(p3( 0 ), scale) = 0 

p4: Bit 4 1 
Bit.mlw = $Jit.de 

1 valuegit(pa( 1 ), scale) I 2scale 

FIGURE 7.1 - An sampZe atfribute grammar and its translation to 
a set of recursive functions. The grammar defines tk integer 

equivalent of a binary numeral. 

Comparing function caching with incremental 
attribute grammar evaluatton 
We will now compare the performance of function caching 
and incremental attribute grammar evaluation. 

Theorem 7.1. Let T be a tree consistently attributed 
according to an attribute grammar G. Define the set Affected 
to be the set of attributes that receive a new value as a result 
of a subtree replacement at a node new (as in Reps’s 
discussion). Define path-to-root to be the set of nodes in T 
that are an ancestor of nau (define @k-to-root so that it 
includes new). Let New_Applications be the set of function 
applications that need to be computed and will not be found 
in an infinite cache when using function caching and F(G). 
Then, 

Proof. Define the set I_Affecfed~Nodes to be the set of nodes r 
in T such that an inherited attribute of I receives a new value 
as a result of a change. Since each attribute is an inherited 
attribute of only one node, I I_AffededJVodes I S I Affcdul I. 
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Define NeededQ to be the set of function calls needed to 
evaluate the function calls from F(G) corresponding to syn- 
thesized attributes of the root of T. For a function call j, let 
root(f) be the root of the subtree that is the first argument off 
(e.g., if f is a function call whose first argument is Tr, root(f) = 
r). Since the number of synthesized attributes at a node is 
bounded by a constant based on the size of the grammar, for 
all nodes r in T, the size of ( f I f E Needed(T) A root(f) = Y} is 
bounded by a constant. 

In a function caching implementation, we cannot perform 
destructive editing operations. To perform an edit operation 
on a tree T, we create a new tree T’ and evaluate the 
functions corresponding to the synthesized attributes of the 
root of 7”. The nodes of T’ that cannot be reused from Tare 
those in path-to-root. 

are based on the idea of updating a specific previous 
problem. In some situations, we can predict that 
subproblems similar to previous subproblems will arise, but 
we can’t establish apriori an appropriate one-to-one 
correspondence between new subproblems and previous 
subproblems. In situations such as this, function caching can 
provide incremental evaluation and incremental 
dependency graph techniques seem unusable. 

There is no reason why these two paradigms can not be 
profitably combined. In many incremental attribute 
grammar systems, the attribute equations are specified 
using recursive functions. If function caching is performed 
on the calls made by these functions, we can use attribute 
grammar and dependency graph techniques when they are 
appropriate and function caching when they are not. 

The only functions that need to be computed are those 
that were not computed previously. Therefore, 
New-Applications E; (f I f E Needed A root(f) E 
I-Affecfed-Nodes u pnth-to-root}. Therefore, 
I New-Applications I is Of I I-Affected-Nodes I + 
I pafh-fo-root I ) which is O( I Affected I + I path-to-root I ). 0 

How well have we done? For very narrow and stringy 
trees, this would be very bad. In some situations, a change 
in a tree of size n would involve a length n path to root. 
Several points come to mind however. First, we feel that this 
is an argument against narrow stringy trees, not against 
function caching. Typically, program editors have used a 
left or right recursive format for sequences such as 
statement lists. The data structures we have presented in 
this paper, or many other data structures, allow lists of 
length n to be manipulated as trees of depth log n. Second, 
the overhead of I path-to-root I is partially associated with 
the fact that the conversion process is only appropriate for 
attribute grammars that only produce information at the 
synthesized attributes of the root of the syntax tree; for such 
attribute grammars, function caching has the same 
asymptotic time bounds as attribute grammars whenever a 
change to the syntax tree causes a change in the output of 
the algorithm. 

Unique representations, combined with a method for 
constant-time equality testing of concrete values, allows 
constant-time equality testing of abstract values. For many 
abstract data types, efficient representations that allow 
constant-time equality testing have been open questions. 
Sassa and Goto [SG76] describe a set representation that 
allows constant-time equality tests. However, in their 
representation, any set operation takes time at least 
proportional to the size of the set being created (e.g., to 
compute S + {x) requires O( I S I ) time). A kinked list offers 
unique representations for sequences, but modifying el- 
ement i of a sequence requires Offi time. 

We should also note that new research in incremental 
dependency graph evaluation has improved and extended 
Reps’s algorithms in new directions [HT&5] [Ho0871 
]ACR+871. Even if we wanted to claim that we could do as 
well as Reps’s original algorithm, this would not say much 
about function caching verses attribute grammar or 
dependency graph techniques, since many new results have 
improved on Reps’s original results. 

8 Conclusions 
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The idea of a stable decomposition also has implications 
outside of incremental evaluation. Typically, if two values 
have similar decompositions they have equal 
subcomponents. When combined with a technique such as 
hashed consing, this allows two representations of similar 
values to share storage. Reps discusses using sharable 2-3 
trees for sharing storage between similar values in his thesis 
[Rep&#]. However, using his methods, two values can share 
storage only if they are similar in a “computation-oriented” 
sense, rather than in a “valueoriented” sense (e.g., if the set 
B has been calculated as A + (x], the sets A and B can share 
storage; if the set B happens to be equal to A + (x), but was 
not calculated that way, it might not be possible for the sets 
to share storage). Reps noted as an open problem a scheme 
that allows “value-oriented” similar values to share storage; 
we have closed this problem for sets and sequences without 
duplicate elements. 

Appendix 

Function caching and stable decompositions provide a new 
paradigm for incremental evafuation. The essential 
difference between this paradigm and techniques based on 
incremental dependency graph analysis is that our approach 
is based on reusing the previously computed solution to any 
similar problem; incremental dependency graph techniques 

This appendix includes the statement of two theorems, 
proved in [Pug&%], that are used in the analysis of chunky 
lists. These results concern collections of random variables, 
each bounded by a negative binomial distribution. 

Theorem A.2 Let p be a probability, and Xo, Xl, . . . . X,+1 be 
independent random variables, each bounded by NBfl, p). 

maxo[o, XI, . . . . X,+1> +t, logl/(j-p) n + NBC p> 



Theorem A.3. Let p be a probability, and Xo, X1, . . . . X,-l be 
independent rand,om variables, each bounded by NB(1, p). 
Let ND be the set of non-decreasing elements in the 
sequence [X0, Xl, . . . . X,-l], which is equal to { Xi I max(X& 
Xl, -*v xi> s Xi). 

I ND I spd 1 + NB(logl/ l-p) a, P) 
+ NB(‘1, a /cl - p + t;L,, 
+ NBCl, 1 - p) 
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