
Incremental Computation via Function Caching
William Pugh+ and Tim TeitelbaumH

Dept. of Computer Science, Cornell University, Ithaca, NY 14853

1 Introduction
IncrementaZ computafim is the technique of efficiently
updating the result of a computation when the input is
changed. This idea is used in doing semantic checking in
programming environments, document formatting in
WYSIWYG editors and many other applications. From a
different perspective, incremental computation concerns the
efficient on-line computation of flx&j&), . . . wheref is some
program and xo, xl, . . . is a sequence of input values, each
differing from its predecessor only slightly.

It is possible to achieve incremental computation by
writing an explicitly incremental algorithm - an algorithm
that not only specifies how to compute the output from the
input, but also specifies how to update the output when the
input changes. This can be difficult and error-prone, so
when possible we would prefer to use an incremental
evaluator - an evaluator that uses just a description of how
to compute the output from the input and is responsible for
determining how to update the output correctly and
efficiently when the input changes.

Incremental attribute grammar evaluation and
incremental dependency graph evaluation have proven to
be useful and efficient paradigms for producing incremental
evaluators (DRT811 [Rep821 IRep841 [Ho0861 IHT861
[ACR+871 [Hoo871 fYS881. Unfortunately, they are only
suitable for certain kinds of problems. For example, while it
it possible to use such techniques for incremental proof
verification [RA841, it seems impossible to use these
techniques for incremental theorem proving. We present a
new paradigm for incremental evaluation based on function
caching that works well in some situations for which
incremental attribute grammar evaluation and incremental
dependency graph evaluation techniques are unusable. Our
paradigm also works reasonably well in many of those
situations best suited for incremental attribute grammar
evaluation and incremental dependency graph evaluation.
We give a comparison of our techniques and Reps’s optimal
incremental attribute grammar algorithm in Section 7.

+ Supported by an AT&T Sell Labs Scholarship. Current address:

“Pt
t. of Comp. sd., Univ. of Maryland, College Park, Md, 20742

Supported by NSF and ONR grant 0X85-14862.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACM 0-89791-294-2/89/0001/0315 $1.50

2 An Incremental Evaluator for
Functional languages

In its most elementary form, incremental computation is the
technique of saving time by reusing or updating the results
of previous computations. Function caching, or memoising
[Mic68], is the technique of remembering the results of pre+
vious function calls and saving time by avoiding their
recomputation (when the result of a function call is
computed, the call and the result are stored in a function
cache; a later function call need not be performed if the
result is already stored in the cache). Considering the
similarity of our goal with the technique of function caching,
it seems promising to examine the usefulness of function
caching for incremental evaluation.

Function caching has typically been advocated for uses
other than incremental evaluation. Many recursive functions
have a pattern of repetitively requesting the value of certain
function calls. The classical example of a function whose
evaluation can be improved by function caching is the
recursive definition of the Fibonacci function, given below.
Function caching reduces the time requirements for this
function from exponential to linear.

fib(n) E if n < 2 then 1 elsej%n-1) +Jib(n-2) fi

2.1 Using Function Caching to Obtain
Incremental Evaluation

The best way to get a quick understanding of situations in
which function caching gives us incremental computation is
to look at some examples. The function SZ (for square-Z%) in
Figure 2.1 yields a list of the squares of a list of numbers.
Figure 2.2 shows the results of a sample use of this program
with function caching. The center column shows the
function calls produced by an initial request for the value of
sZ[l,2,3,4,5,6, 7,81. After the computation is complete, the
left column shows the results of making a request for the
value of ~210, 2, 3, ..,, 81 - reflecting a change in the first
element. The request for sZ[O, 2,3, 81 invokes a request for
the value of sZ12, 81, which is in the cache. Here, function
caching provides incremental performance. The right
column shows what would happen if, instead, the last
element of the list were changed to 9, and a request for the
value of sZ[l, 6, 7, 91 were made. No significant results
from the computation of sZ[l, 2,3,4,5,6,7,81 could be used.

315

sl(L) = (square list)
if null(L) then L

else cons(head(L) * head(L). sl(tail(L)))

FIGURE 2.1 - AZgorithm to prod’uce tk squares of fk numba
a list

afttr changing
ffic last dancnt

r~~~~~ 2.2 - Computation resultingfrom tk use of tk algorithm
in Figure 2.1

Assume that we represent sequences in a way that allows
us to efficiently divide them into two nearly equal
subsequences and that we rewrite the algorithm in a divide
and conquer style, as in the function ss (for square-sequence)
shown in Figure 2.3. This produces the results shown in
Figure 2.4 and Figure 2.5. If function caching imposes only a
constant factor overhead and first-half, second-half, and
append are constant-time functions, only Oflog n) time will
be required to compute the new answer. Note that this
example is intended only as an illustrative example; it is
simple enough that we would probably use an explicitly
incremental algorithm.

What happens if an element is inserted into or deleted
from the sequence? Assume the decomposition operators
first-half and second-hatf split the sequence exactly in half if
the sequence has an even number of elements and if the
sequence has an odd number of elements, the extra element
goes into the second half. When an element is inserted at the
front of the sequence, this produces the results shown in
Figure 2.6; almost the entire computation needs to be
redone.

I I

else append(ss(first-half(S)). ss(seamd-half(S)))

FIGURE 2.3 - Divide ami conquer mien of Figure 2.1.

FIGLIRE 2.4 - Calls arisingfrom a call on ssU, 2,3,4,5,6,7,81.

FIGURE 25 - calls arisingfrom a cdl on ss[l, 2,3,4,5,6,7,91.-
Entries found in tk cache are shown in grey.

FIGURE 2.6 - Calls arisingfrom a call on ss[O, 1,2,3,4,5,6,7,
81. Entries found in tk cache are shown in gry.

We might represent a sequence as a balanced binary tree
and use the obvious decomposition rule that splits the
sequence represented by a tree T into the sequences
represented by the left and right subtrees of T. If T
represents the sequence [l, 2, 81, and 7” is the tree
returned by a function that inserted an 0 at the front of the
sequence represented by T, then computations involving T
and T’ would share common subproblems. However, if T
represented the sequence [l, 2, 81, and 7” represented the
sequence [0, 1,2, 81, but T’ were not derived from T, the
decompositions of T and T’ might not be similar, and
computations involving T and T’ might not share any
common subproblems.

To exploit function caching, two similar problems must be
broken down into sub-problems such that they share many
common sub-problems. This explains much of the behavior

316

Definition 3.3 (Opb). Let X(,,) be a random variable with a
probability distribution that is dependent on n (e.g., X(,)
=prob N&n, p)). We define X(n) to be Opr&n)) iff

V E s.t. E > Cl, 3 M, no s.t. V n s.f. n t no,
Prob(Xf,)<Mfln)lss.O

We introduce Theorem 3.1 to allow us to show probabilistic
order bounds on algorithms.

Theorem 3.1. Let X(,) be a random variable with a
probability distribution that is dependent on n.

Xf,) is O,,,.&avg(X(,,$ + stndrd-dev(X(,))).

Proof. By Chebyshev’s inequality,

Prob(X(,) L avg(X(,)) + M stndrd-dev(Xf(,))) < l/M*.

Givens,s>O,letM=l/fi.O

Theorem 3.2. If X(,) and Ytn) are random variables with
probability distributions that are dependent on n,

Xtn) lprob Y(,) and Y(,) is +d#lnN
=+ X(,) is +.&f(n)).

Proof. Follows directly from definition of partial ordering on
random variables and the definition of Opmb. Q

4 Data Structures and Algorithms
for Cncremental Computation

Functional programming languages (and function caching
implementations) typically support only simple types such
as S-expressions or tagged-tuplesl as values. Many
algorithms are designed to work with more complicated
types such as sets or sequences. Rather than extend the
interpreter and the function caching system to handle other
data types, values in other type systems are represented
using S-expressions or tagged-tuples. This sections
describes, in general, how problems and values can be
represented in a way such that function caching provides
efficient incremental evaluation. Sections 5 and 6 present
specific solutions for sequences and sets motivated by the
discussion in this section.

* In sections 5 and 6, we describe data structures using
tagged tuples: the value Id(x0, xl, xk-1) is the tuple
tagged with the token Id and containing the values x0, xl,
Xk-1. Each tag is associated with a fixed arity.

Tagged tuples are used for clarity of expression. The
tagged tuple Id{ xa ~1, xk-1) can be thought of syntactic
sugar for the Expression (Id, (x& (xl, . . . (xk-I, NIL) . . .))).
Tagged tuples can be combined with a type system to
produce typed-tuples; typed-tuples are supported by many
functional languages (e.g., ML).

4.1 Representation schemes
A representation scheme is used to represent values of an
abstract type 7 as values of a concrete type o. Typically, the
abstract type ‘E is a type that we would like to use in an
algorithm but is not a base type of the system in use. For
example, if lists are supported by the underlying system but
sets are not, we can use a representation scheme in which a
set is represented by a list of the elements of the set. In this
representation, the concrete list values 16, 3, ‘x’l and I’x’,
6,31 would both represent the abstract set value (3,6, ‘~‘1.

Definition 4.1 (representation function). We can formalize a
representation scheme by specifying a representation
function that, when applied to a concrete value, returns the
abstract value represented by that concrete value. Cl
Exumple: If R is a representation function that maps lists to
sets, R([6,3, ‘~‘1) = R([3, ‘x’, 61) = (3,6, ‘x’).

Note that a representation function is not implemented,
but is simply used for arguing about the correctness of al-
gorithms designed to work with that representation. If RI : p
+ o and R2 : o + T are representation functions, R2 o RI is a
representation function giving the value in r represented by
a value in p.

Typically, the representation we choose for an abstract
type depends on the operations we need to perform and the
efficiency with which those operations can be supported by
the representation. For incremental computation, we also
have to take into consideration the fact that we intend to use
function caching and that we wish to obtain efficient
incremental evaluation. The effects of these considerations
are discussed in Sections 4.2 and 4.3.

4.2 Data structures and algorithms for
function caching

Data structures that we plan to use with function caching
must be updatable applicatively and should provide unique
representations.

Applicative updates. The use of function caching precludes
the destructive updating of data structures. Updates must
produce new data structures representing the desired values
instead of overwriting existing data structures.

Unique representations. In order to make function caching
happen at the abstract level, we must use representations
schemes with unique representations. A representation
function R provides unique representations iff R is a
one-to-one function. Note that if R is a one-to-one function,
R-l is well-defined. The following example explains our
motivation. Let f be a function on sets that is designed to use
a representation scheme in which sets are represented as
lists and let R be the representation function that maps lists
to sets. If x and y are concrete values representing the same
set (i.e., R(x) = R(y)), we want to be able to reuse a

317

seen above; divide and conquer algorithms should be used,
because they solve a problem by breaking it down into sub-
problems, allowing for the possibility of sharing the results
to common sub-problems. The scheme shown in Figures
2.3-2.6 failed to work when elements were inserted or
deleted from the sequence because the decomposition
scheme did not break the problems into common sub-
problems. A decomposition scheme that decomposes two
similar problems in a way such that they share common
sub-problems is called a stnble decomposition. Whether a
decomposition scheme is stable depends on what we
consider similar problems; our definition of similar problems
should operate at the abstract level and not depend on how
the problems are represented. Creating data structures and
algorithms with a stable decomposition is an interesting
problem that is examined in detail and more formally in
Section 4.

2.2 The Implementation of Function
Cat hing

If we hope to use function caching to provide incremental
computation, we must have an efficient impIementation of
function caching. Some previous implementations of
function caching impose large overheads that make function
caching only appropriate for combinatorial functions like
the Fibonacci function. We report elsewhere solutions to a
number of problems related to the efficient implementation
of function caching [Pug88a] [Pug&Jb]. In our
implementation, we found that function caching imposed
about a 50% overhead on the speed of execution in
situations where no hits were obtained. In empirical tests of
applications such as incremental theorem proving, function
caching provide overall real-time speed-ups of 4 to 6. An
efficient function caching system must provide a method for
calculating a hash keys for values and efficient, constant-
time equality tests; we assume these are available in the rest
of this paper. Fast equality tests can be provided by hashed
consing [A11781 or lazy structure sharing [Pug88bl.

3 Randomized Data Structures
and Probabilistic Time Bounds

The data structures we present in the Sections 5 and 6 are
randomized (i.e., organized probabilistically). Algorithms
that work with randomized data structures have good
expected-time bounds and poor worst-case time bounds, In
this section, we briefly present a unified method for
analyzing both the expected performance a.nd the
probability distribution of the running times of algorithms.

A random nuri&t has a fixed but unpredictable value and
a predictable probability distribution and average. If X is a
random variable, PROB(X = x) denotes the probability that
X equals x and Prob{ XI x I denotes the probability that X is
at most x. For example, if X is defined as the number
obtained by throwing a perfect die, Prob(X I 3) = l/2. For

conciseness, we sometimes refer to a property of the prob-
ability distribution of a random variable as a property of the
random variable itself.

It is often preferable to find simple upper bounds on
values wh,ose exact value is difficult to calculate. In order to
discuss upper bounds on random variables, we need to
define a partial ordering on the probability distributions of
random variables:

Definition 3.1 (=prob and Ipro& Let X and Y be random
variables. We define equality and a partial ordering on the
probability distribution of random variables as follows:

The algorithms we analyze in this paper have running
times that are bounded by a negative binomial distribution.

Definition 3.2 (negatiw binomial distributions - NBfs, ~1). Let
s be a non-negative integer and p be a probability. The term
NB(s, p> denotes a random variable with the negative
binomial distribution equal to the distribution of the number
of failures seen before the s* success in a series of random
independent trials where the probability of a success in a
trial is p. We define NB(0, pl I 0 and NBfsl E NB(s, 051. Cl

Several well-known properties of the negative binomial
distribution are [TK841:

avgfNB(s, p>> = sCp)/p,
variance(NB0, pN= s&p)/?, and

Prob(NB(s, p) = k) =

If X and Y are two independent random variables, each
bounded by a negative binomial distribution, we can calcu-
late a probabilistic upper bound on X + Y:

X l@ cl + NB(q, p> A Y +,I, q + NWq, p)
A X is independent of Y

a X + Y +,& cl + c2 + NBCq + s2, ph

If X and Y are not independent, we can still calculate an
upper bound on the average of X + Y:

X w cl + NB(sl, p> A Y +& ~2 + NB(s2, p>
3 avg(X 4 Yl s avgfcl + c2 + NB(sl + ~2, p)>.

The probobilktic big-oh
Big-Oh notation is usually defined by saying that

fin) is O&(n)) iff 3 M, ng s.t.V n s.t. n 2 ng j(n) I M&t).

This is adequate for analyzing algorithms that do not
involve randomness; we introduce a new notation
appropriate for analyzing algorithms involving
randomness:

318

previously computed result fix) when computing f(y). This
will happen iff x = y. If R is a one-to-one function, this will
be true whenever R(x) = R(y). In this example, we could use
a representation scheme in which a set is represented by a
sorted list of the elements of the set.

It would be possible to side-step the requirement of unique
representation by expecting our function caching
implementation to match only arguments represented the
same way. This would decrease the effectiveness of the
cache, although in some circumstances the decrease might
be small. If it were very difficult to provide data structures
that had unique representations, we might wish to take this
route. However, sections 5 and 6 provide data structures for
sequences and sets that have the desired features.

4.3 Data structures and algorithms for
incremental evaluation

In order to use function caching to solve quickly a new
problem that is similar to a previous problem, the new
problem must be broken down into sub-problems in a way
such that solving the new problem involves solving
sub-problems that were solved for the previous problem.
Decomposing problems into sub-problems usually involves
decomposing large data structures into smaller ones. We
therefore wish to design data structures such that two
similar values have similnr decompositions.

Our definition of similar values depends on the type of
similarities in which we are interested.

Definition 4.2 (transfirmution). A transformation on type ‘5 is
a function that maps a value of type r (and possibly
additional arguments) to a value of type ‘t. Transformations
are not implemented; they are used only for discussing the
similarity of abstract values. Cl
Example: One of the transformations on sequences we will
be using in later examples is changefirst. If changeFirst
transforms Y into x’, then x and x’ differ in only their first
element. The meanings of other transformations we use is
largely self-evident from their names. The insert, delete and
change transformations on sequences reflect a change at any
location. The &Element and remuueEZ.em& transformations
on sets reflect a difference of a single element.

Definition 4.3 (distance betzueen abstract vahes -
tDistanceT(x, x’)). Let T be a set of transformations. We
define tDistance+, x’) = k iff k is the smallest integer such
that there is a sequence of k transformations chosen from T
that transforms x into x’. If no sequence of transformations
from T transforms x into x’, tDistanq(x, x’) is undefined.
Depending on If, this distance measurement may or may not
be symmetric. Cl
E-we: tDistUW(&gcFint. insnjBeforcF~@, 11, IS, 3,11)=
2 and tDistanq,hngeFirst, ins,gt~~wFi7st)([5,3,11, [5,11) is
undefined. For sets A and A’, tDiStance(,ddElement,
mMac~e@, A’) = 1 (A’ - A) u (A - A’) I.

Definitions 4.4,4.5 and 4.6 formalize the idea of similar
decompositions.
Definition 4.4 (decomposition scheme). A decomposition scheme
on type r is a 3-tuple of functions (atomic, split, bound) that
have the types and properties shown below.

ntomic : 7 + Bool,
bound : r + Nat,
split : r 3 (T, ‘L),
spZit is a one-to-one function,
-, atomic(x) =+ bound(x) > 0 A split(x) is defined,
(y, 2) = split(x) =

bound(y) < bound(x) A bound(z) < bound(x). 0

Informally, atomic(x) is true if it is impossible to further
decompose x, split(x) is the pair of values into which x is
decomposed and bound(x) is an upper bound on the number
of times x can be decomposed.

To implement a decomposition scheme D on abstract
values, we use a representation scheme R and
decomposition scheme D’ = (atomic’, spZit’, bound’) such
that D’ is an efficient implementation of D for R (e.g., split’
and atomic’ are constant-time functions and split’(x) = (y, z)
iff spZit(R(x)) = (R(y), R(z))).
Example: We can define a decomposition scheme linkedLists
on sequences as

atomic(S) = 1 S 1 5 1,
bound(S) E 1 S I, and
spZit([xa xl, xn-11) = ([x01, [x1, +-II).

Definition 4.5 (decomposition - dD(x)). The decomposition of
a value with respect to a decomposition scheme D = (afomic,
split, bound) is the set defined (recursively) by

do(x) = if atomic(x) then (x)
elsfz (xx) u dD(y) u d&z)

where (y, z) = spZit(x) fi. Cl

Example: Using the decomposition scheme given in the
example for Definition 4.4, dZinkd&Zs([l, 2,31) = { (1, z31,
r 1 I, R 31, El, [31 I.

Definition 4.6 (distance between decompositions -
dZJistanceD(x, x’)). Let x and x’ be values of type ‘t and D be a
decomposition scheme on type r.

dDistunceg(x, x’) denotes the distance from the decom-
position of x to the decomposition of x’ with respect to D:
dDisfanceD(x, x’) = 1 dD(x’) - dg(x) 1 . This distance
measurement is not symmetric. • i
Example: dDistanceZinkedLZsts([1,4,31, [I, 2,31 1 = I I&2,31,
I2,3l,Plll =3.

Now that we have defined measurements that
formalize the ideas of similar abstract values and of similar
decompositions, we are ready to talk about stabZe

319

decompositions and the relevance of stable decompositions to
incremental evaluation.

Definition 4.7 (stable decompositions). Let D be a
decomposition scheme for values of type z, T be a set of
transformations on type 7, and 1 x 1 be a measurement of the
size of x.

The decomposition scheme D is said to be
Ocf< 1 x’ 1)) stable for T transformations if, for all x and x in T
such that fDistance~(x, x’) is defined, dDisfunceg(x, x’) is
O(f Distunce~x, 29 p I i 1 I>.

If dDisfanceg(x, x’) is Opro~(t~sfanceT(x, x’) fl 1 x’ I)), D is
said to be OPbcfc 1 x’ I)) stable for T transformations. Cl

Example: The linkedLists decomposition scheme for
sequences (defined in the example for Definition 4.4) is O(1)
stable for (deleteFirst, changeFirst, insertBeforeFirst)
transformationsl, O(O) stable for (deleteFirst) transforma-
tions2 and 0 (n) stable For (changeLast, deletelast)
transformations3 (i.e., totally unstable).

Theorem 4.1. Let R : cr + % be a representation function and
T be a set of transformations on c Let D = (atomic, split,
bound) be a decomposition scheme for r and D’ = (atomic’,
split’, bound’) be a decomposition scheme on o that is an
implementation of D for R (e.g., split’(x) = (y, z) iff
spZit(R(x)) = (R(y), R(z))) such that atomic and split’ are
constant-time functions. Let 8 be a function on 0 defined as

gtx) = if atomic’(x) then kl(x) else kz(g(y), g<z>)
where (y, z) = split’(x) fi.

If
. D is O(fl I x I)) stable for T transformations,
l hl and k2 can be computed in constant time,
l the results of all the recursive invocations of g involved

in computing 8(x) are stored in the function cache, and
l function caching imposes only a constant-factor

overhead,
then the time required to compute 8(x’) is

Of fDisfuncefiR(x), R(x’H Jlj x I> 1.

If D is Opr&@ I x I)) stable, the time required to compute
gfx’) is Ow(tDistanc&R(x), R(x’)) fc I x 1) 1.

Proof. Computing g(x’) without function caching requires
computing g(y) for each y in du(x’). Excluding the cost of

’ The sequence of transformations that produces the
largest difference between the decompositions of x and x’ is
a series of insertions. If x’ is the result of inserting k new
elements at the front of x, then f%fU~(&&f&i&, &ngefirsf,
insertBefo&j~t](X, i) = k ad dDkfan~li~dLi&, x’) := 2k.

* If f~Sfun@(d&&int)(r, x’r) is defined, Y is a suffix of x
and dDktU?ICqi&dL&X, X’) = 0.

3 If x’ is identical to x except for the last element,
tDistmqchngelast, rieletelo&, x9= 1 and
dDiSta?&Z~i~dLists(X, f) = I1(1 +l.

performing recursive calls to g, each of these calls requires
constant time (e.g., the total time to compute g(Y) without
function caching is o(I dp(x’) I). The only calls tog that will
not be found in the function cache are the calls with
arguments from d&x’) - du(x). Because D’ is defined as an
implementation of D, I dD*(x’) - dDW I = I dD(R(x’)) -
dg(R(x)) 1. Since D is Ocfc 1 x 1)) stable for T transformations,
1 dg(R(x’)) - dD(R(x)) I is O(f DistunceT(R(x), R(x’N jX I x I 1).

The argument follows similarly for the 0~ case. 0

Of course, the idea of stable decompositions might be
somewhat pointless if data structures fulfilling these criteria
did not exist. We have developed efficient representations
for sequences and sets that allow efficient applicative
updates and have unique representations and stable
decompositions. In Section 5, we present a representation
for sequences that provides unique representations and is
OMfIog n) stable for (insert, change, &Z.&l transformations.
In Section 6, we present a representation for sets that
provides unique representations and is Opro~(log n) stable
for (addElement, removeElement) transformations.

4.4 Hash keys
The data structures we describe in Sections 5 and 6 are
organized on the basis of the hash keys of the values stored
in the data structures. The hash keys we need are the kind
usable for extendible hashing [Meh&ll (i.e., let hash(r) be a
hash function mapping LI to 0..2k-l; if for all j such that 1 s j
I k, hash(x) mod u’ is a “good” hash function, then hash(x) is
acceptable for our purposes). The function caching
implementation also requires hash keys, so these hash keys
are already available.

5 A Decomposition and
Representation Scheme for
Sequences

This section describes a stable decomposition scheme for
sequences (i.e., lists) and a scheme for representing
sequences using tagged-tuples or S-expressions. We also
describe algorithms that work with this representation: the
function that splits a sequence requires constant-time;
functions that access, change, delete and insert an element in
a sequence of length n requires Oprobflog n) time; and the
function that appends a sequence of length n to a sequence
of length m requires Oeflog n + log ml time.

5.1 The chunky decomposition scheme
The chunky decomposition scheme is OI,,,#og n) stable for
(insert, delete, change) transformations and is based on the
ZeueZs of elements of sequences, which are in turn based on
the hash keys of elements.

320

Definition 5.1 (Ze&(X)). The level of an element X, ZeueZ(x), is
the largest integer i such that hash(X) is a multiple of 2! 0

The properties of hash functions stated in Section 4.4
guarantee that the levels of elements have the same
probability distribution as NBC0 (e.g., on average, half of the
elements of a sequence are level 0, one quarter are level 1,
and so on). We assume that no duplicate elements exist; the
problems caused by duplicate elements are discussed in
Section 5.2, Occurrences of only a relatively small number of
duplicate elements has no significant effect.

Definition 5.2 (chunky decomposition scheme). The chunky
decomposition scheme on sequences is defined as:

atomic(S) E 1 S 1 I 1,
bound(S) = 1 S I, and
split([x0, X,-l I) = ([x0, xi-1 1, [ql . ..I X,-l I),

where i uniquely satisfies
O<i<n
A (V j S.t. 0 < j < i, Zf%?Z(Xi) Z h?Z(Xj))
A (V j S.t. i < i < n, ff?WZCXi) 7 ckWf(XjJ I.0

Informally, the chunky decomposition scheme divides a
sequence S = [x01 xn-l I at the most preferable break in S. A
break is a position between two elements in a sequence. The
break immediately before element Xi is preferable to the break
immediately before element Xj iff ZeoeZ(Xi) 7 ZeveZ(xj) or
(ZezteZ(XiI = ZeveZ(Xj) and i > j>. The most preferable break
therefore is immediately to the left of the rightmost element
of S with maximal level (ignoring the first element of S).
Figures 5.1 and 5.2 show the decompositions of two similar
sequences according to this decomposition scheme.

Theorem 5.1 characterizes the subsequences that appear
in the chunky decomposition of a sequence.

Theorem 5.1. Let S = [x0, xl, x,-l I. For all i, j such that 0
5 i 5 j < ?l, [Xi, Xj 1 appears in the decomposition of S iff i
= j or ZCUeZ(Xi) > max(ZCZV?Z(Xi+l), Ze%?Z(XZ+2), ZeoeZ(xj)) I
ZeveZ(Xj+l) (to handle boundary conditions, assume that
Z~Z(xo) = 00, and an element x,, exists and &1(x,,) = -1.
Proof. The sequence [xi Xj 1 appears in the decomposition
of S iff the breaks immediately before Xi and before Xi+1 are
preferable to the breaks before Xi+l, Xj. The break
immediately before Xi is preferable to the breaks before Xi+],
. . . . Xj iff ZeVc?Z(Xi) 7 max(ZCOd(Xi+~), ZeVeZ(Xi+2), ZUIeZ(Xj) 1.
The break immediately before Xj+l is preferable to the
breaks before Xi+l, Xj iff max(ZezleZ(Xi+l), ZfDeZ(Xi+2),
ZeTh?Z(XjJ) I ZeDeZ(Xj+l). q

Theorem 5.1 nicely describes why this decomposition
scheme is stable: whether or not 1 xi, Xj I appears in the
decomposition of S depends solely on the levels of the
elements Xi, xj and Xj+l .

FIGURE 5.1 - Decomposition of u sequence according to the chunky
decomposition scheme. Tk level of each element is indicated by

tk kight of the bm above that eZement.

FIGURE 5.2 - Chunky decomposition of a sequence thuf is simiZar
to tk sequence in Figure 5.1. Subse9uences that also appeu~ in

Figure 5.1 are shown in grey here and their decomposition is not
shown further.

321

We now analyze the stability of this decomposition
scheme with respect to (insert, delete, change)
transformations.

Theorem 5.2. Let S = [x0, Xi-l, Xf+l, x,-l I and S’ =
1 x0, -*-, x,-l] (i.e., S’ is the same as S except that a new
element Xi has been inserted). The only sequences that
appear in the decomposition of S’ but not in the
decomposition of S are those that include either Xi-1 or Xi.
Pmof. Let [xj# xk] be a sequence not including xc.1 or Xi
that appears in the decomposition of S’ (i.e., k c i-l or i c 1).
The presence of this sequence in the decomposition. of S’
does not depend on the level of xi and therefore it must also
appear in the decomposition of S.

Theorem 5.3. Let S = [~0, ‘.., ~~-1 1 and S’ =] ~0, Xi-l,
xi+l, x,-l] (i.e., S’ is the same as S except that xi has been
deleted). The only sequences that appear in the
decomposition of S’ but not in the decomposition of S are
those that include xi-l.
Proof. Let [xj$ xk] be a sequence not including xi-1 that
appears in the decomposition of S’ (i.e., k c i-l or i < j). The
presence of this sequence in the decomposition of S’ does
not depend on the absence of xl and therefore it must also
appear in the decomposition of S.

Theorem 5.4. Let S = I xgl .,., x,,-1 1 and S’ = [xg, xi-l, xl,
Xi+l, x,-l] (i.e., S’ is the same as S except that xi has been
replaced by xi). The only sequences that appear in the
decomposition of S’ but not in the decomposition of S are
those that include either Xi-1 or xi.
Proof. Let [xj# %k] be a sequence not including Xi-,1 or Xi’

that appears in the decomposition of S’ (i.e., k c i-l or i c Z).
The presence of this sequence in the decomposition of S’
does not depend on the level of xi, and therefore it must
also appear in the decomposition of S.

Theorems 5.5 and 5.6 show that the chunky decomposition
scheme is o@,(lOg n) stable for {insert, delete, ckange)
transformations.

Theorem 5.5. Let xd be a designated element in a sequence S
=] XI), x,-l 1. The number of sequences containing Xd that
appear in the deoomposition of S is OZ,,&log n).
Proof Let so, Sl, Sk-1 be the sequences that appear in the
decomposition of S that inchide x& where So=] xd 1, Sk-1 = S
and for all i, 0 I i c k-l, Si is a either a proper prefix or a
proper Suffix Of Si+l .

Let Lefti and Righti be defined such that Si = 1 XL+~,

*LEftiS XRighZi-1 1. For all i, 0 I i < k-l, either L&+1 <
Lefti and Right i = Righfi+l, or Lefti+ = Lefti and Rig&f <
Righfi+l.

If Lefff+l < L+f, then ZeneZ(xLefZi+l) > ZeoeZ(xL,f$. The
number of distinct values in [Leffo, L+$fl, Lc,f?k] I 1 + max(
ZeoeNxo), level(q), zevel(Xd)). From Theorem A-2, we
derive the result that maxC ZewZ(xo), ZcneZ(xl), ZeneZ(xd))
S@ lg d + NB(1 Il.

The number of distinct values in [Righto, Rig&, Righfk]
is the number of non-decreasing elements in [ZeaeZ(xd),
h&Td+]), . ..I Ze&(x,+l) I. From Theorem A.3, we derive the
result that this value is !+,b 1 + NB(1 + lg (?I-&) + NB(1,
l/3).

Therefore, k :I: (the number of of distinct values in [Lefty,
L&;.., Le+ll) + (the number of distinct vaIues in [Rig&o,

, Rig&l]) - 1. Combining our results, we get

k S@ I + lg d + NB(2 + lg (n-d)) + NB(l,1/3). 0

Theorem 5.6. The chunky decomposition scheme is
OZ,,&og n) stable for (insert, delete, change) transformations.
Proof. Let S and S’ be sequences such that fDisfance(i,,,f,
&Zck, chnrre](S, S’) = k. By Theorems 5.2,5.3 and 5.4, there is
a set D of no more than 2k elements from S’ such that a
sequence appears in the decomposition of S’ but not of S
only if it contains an element from D. Based on Theorem 5.5,
the number of sequences appearing in the decomposition of
S’ that contain an element from D is O@C I D I log I S’ I). Cl

5.2 Duplicate elements
The reason we have assumed that sequences do not contain
any duplicate elements is that we can then treat the levels of
elements as independent random variables. For example, if
a sequence simply contained n instances of an element x, all
the elements would have the same level, and the
decomposition rule would simply remove the rightmost
element of a sequence. If no more than a small proportion of
the elements in a sequence are duplicates, it should have no
significant impact. We are pursuing research on a
representation for sequences with many duplicate elements,
but it is currently an open problem.

5.3 The chunky list representation
scheme

In this section, we describe a representation scheme for
sequences that provides unique representations and allows
a sequence to be split according to the chunky
decomposition rule in constant time. We also describe
algorithms for appending the representation of two
sequences and accessing, deleting, changing or inserting
elements in the representation of a sequence; these
algorithms all require OZ,&log n) time.

We define the chunky representation scheme by defining
a inverse representation function R-l that maps a sequence
S to the S-expression that represents S. These S-expressions
are presented as tagged tuples, as described in Section 4.
Any Expression in the range of R-l is termed a chunky list.

322

Definition 5.3 (chunky lists). The inverse representation
function I@ that maps sequences to chunky lists is

k?‘(S) =
ifS=[lthenEmpty()
else if S = [x I then Element(c)

where c uniquely represents x
else cList(R%?, R-IW))

where (S’, S”) = split(S).

The chunky list already reflects the chunky
decomposition scheme, so no work is needed to decompose
the representation of a sequence; the split function on
chunky lists is constant-time. The implementation of append
described in Figure 5.3 requires O,c,Z,(log rt + Zag ml time to
append the representations of two sequences of length n
and m. The presentation of this algorithm uses the
pattern-matching case statement that is typical of functional
programming languages: free variables of a successively
matched pattern are bound to the appropriate components
of the value on which the case statement is discriminating.
Asterisks (*) represent wild-cards.

We extend level so that, when applied to a chunky list
representing a sequence S, it is the level of the first element
of S. By caching the level of the first element in a sequence S
with the data structure representing S, the level function
remains a constant-time function (i.e., we change the chunky
list representation scheme so that R-l([x0, xl, x,-l I) =
cList(R-16’), R1(S”), ZerxZ(xg)) where (S’, S”) = spZit([x0,
xl, ..,, xs-1 I)). This change decreases the clarity of the
algorithms slightly and is a fairly easy, mechanical change,
so it has been omitted from the descriptions given below.

The algorithm is based on the idea of maintaining the
invariants required by Definition 5.3. If S and T are both
sequences of more than one element, the most preferable
break in uppend(S,7’l is either:

l the most preferable break in S,
l the break between S and T, or
l the most preferable break in 7’.
By using the rules given for the chunky decomposition

rule, we can decide which of these breaks is most preferable.

Theorem 5.6. The time required by the algorithm of Figure
5.3 to append the representations of two sequences S and T
isOPb(log ISI +log ITI).
Proof. L.et S = 1 xo, x1, ..,, x,-l 1 and T = I yo, ~1, ym-l 1.
Each recursive step in append involves stepping down a
right branch of the data structure representing S or stepping
down a left branch on the data structure representing T. The
number of right steps in the data structure representing S is
the number of sequences containing x,-l that appear in the
decomposition of S, which is OZ,,& log 1 S I). The number
of left steps in the data structure representing T is the
number of sequences containing yo that appear in the
decomposition of T, which is O@(log I T I). Cl

appsnd(S, T) =
ceee(S,T)of

(Empty(),*)=+T
(*, EmpM)) * S
(Element(*), Element{ *)) * cList(S. T)

(Element(*), cList(TO. T1)) 3
if level(T0) 5 level(Tj)

(then break before T1 most prefernble 1
then cList(append(S, To), T,)
(else brtnk before T mod preferable I
else cList(S, T)

(cList(So, S1), Element(*)) =P
if level(S1) 5 level(T)

{ then break before T most preferable)
then cLi.st(S, T)
(else break before S1 most preferable)
else cList(SO, append(St , T))

(cList(SO, S1), cList(TO, T1)) *
if level(S1) 5 level(T1) and level(To) I level(T,)

(then break before T1 most preferab& I
then cList(append(S, TO), T1)

else if level(S,) I heI and beI < level(T0)
{ then break before T most preferable)
then cList(S, T)

I else break &fore Sl most preferable)
else cList(SO, append(&) T))

FIGURE 53 - Description 4 algorithm to append two sequences
represented as chunky lists.

We define functions length, first and last such that
length(S) is the number of elements in the sequence
represented by S,firsf(S, Q is the chunky list representing the
first i elements in the sequence represented by S, and la&S,
il is the chunky list representing the last i elements in the
sequence represented by S. The function length is cached
with the data structures, as described for the level function,
so that it is a constant-time function. We can implement fbst
and Zust as shown in Figure 5.4. Also described in Figure 5.4
are functions to access, change, insert, or delete elements.
Each of these operations requires OPb(log ?I) time.

323

FIGURE 5.4 - Lkscription of algorithms to extract the first and las
i elements of a sequence and to access, change, delete and insert

bgfore elentertt i of a sequence.

first(S, i) =
if i = 0 then Empty{)
l lee lf i = length(S) then S
l lee caee s of

cList(So, St) *
If i I length(So) then first&, i)
else 8cList(So, first(S1. i - length(So))

last(S, i) z
if i = 0 then Eimpty()
else lf i = length(S) then S
else case S of

cList(So, S1) =$
If i 5 length(S1) then last(S1, i)
else cList(last(So, i - length(Sl)), S1)

access(S, i) =
case last(first(S, i+l), 1) of

Element{ x) =+ x

change@ x, i) II
append(first(S, i),

append(Element(x), last(S, length(S) - i - 1)))

delete@, i) = append(first(S, i),
last(S. length(S) - i - 1))

insert@, x. i) I
append(first(!j, i),

append(lElement(x), last(S, length(S) - i)))

t

6 A Decomposition and
Representation Scheme for
Sets

This section describes a stable decomposition scheme for
sets and a scheme for representing sets using tagged-tuples
or S-expressions,. We also describe algorithms that work
with this representation and give time bounds for these
algorithms.

The algorithms and representations we describe use
annotated sets: a set annotated with a string of binary digits
(possibly null). For example, (S, L) is the set S annotated
with the string L. If (S, L) is an annotated-set value, then for
all elements x in S, L is a suffix of the hash(x). This label
encodes an invariant that is maintained by our set
algorithms; making it explicit simplifies our exposition. A
set S is represented by the annotated set value (S, E) (where
E is the null strhg). The predicate suffDc(l, k) is true iff L is a
suffix of the binary representation of k. The term hashBits

denotes the number of bits in a hash key (i.e., hash(x) E
O..2hashBits - 1). Since our set algorithms work with
annotated sets, we define our decomposition scheme on
annotated sets as shown below.

Definition 8.1 (decomposition scheme for annotated-sets). The
decomposition scheme for annotated sets is defined as:

atomic((S, L)) E I(hash(x) I x E S) 1 5 I,
bound((S, L)I = hashBits - 1 L 1, and
spZit((S, L)I = (((x E S I sufix(OL, hash(x)) }, OL),

((x E S 1 suffix(lL, hash(x)) 1, IL)). 0

The representation scheme we use for annotated sets can
be described by defining the inverse representation function
R-* as shown below. Let r1 be the inverse representation
function for a representation scheme in which sets are
represented by a sorted list of the elements of the set.

R-If{ S, L)) I
if S = 0 then EmptySet{ L)
else if atomic((S, L)I then AtomicSet(71(S), L)
else Pair(R-I((S’, OL)), R-I((S”, 1L)I, L),

where ((S’, OL), (S”, 1L)) = spZit((S, L)I

This representation scheme is equivalent to using binary
hash tries. Binary hash ties use a binary trie [Knu73] data
structure based on the hash keys of the elements. Atomic
annotated sets that appear in the decomposition of (S, E)
appear as leaf nodes in the trie representing (S, E) and
non-atomic annotated sets appear as interior nodes. Figure
8.1 shows the representation of a sample set, using the hash
keys given in Table 8.1.

The appropriate divide and conquer algorithms for
calculating the union, intersection or difference of
annotated-sets (or testing to see if one annotated set is a
subset of the other) are fairly obvious. For example, for set
union:

(A, L) u (B, L) = ((A’,OL) u (B’,OL), (A”,lL) u (B”,lL))
where split((A, L) I= ((A’,OL), (A”,lL)) and

split((B, L)) = ((B’,OL), (B”,lL)).

The algorithm for performing set union using this
representation of annotated sets is described in Figure 8.2.
One point to note is that our algorithms make use of unique
representations and constant-time equality tests. For
example, when computing (A, L) u (B, L), if A = B we can
immediately return (A, L) as the answer.

Pardo [Par781 suggested an equivalent data structure for
representing sets. He did not consider the application of this
representation for incremental computation, and his
analysis was more complicated than ours and achieved
pooter results. Part of the reason for his poorer results is that
he did not make use of the ability to perform constant-time
equality tests between sets provided by this representation.

If hash keys are chosen to be sufficiently long, atomic sets
will very rarely contain more than a single element;

324

therefore, an atomic set S can be efficiently represented by a
sorted list of the elements of S.

FIGURE 8.1- The representation of the set (t, Y, v, w, x, y, z) as ~1
binary hash trie, using the hash keys shown in Table 8.1.

element S-bit hash key
t 01010
U 01001
P 11010
W 00110
X 10010
Y 01001
2 10101

TABLE 8.1- l-l& keys of the
elements in the set in Figure
8.1

6.1 Set operations
The algorithms for performing set union are described in
Figure 8.2. Other standard set operations such as
intersection, difference and subset tests can be implemented
in a method similar to the method used for set union, and
the same time analysis holds.

6.2 Analysis
The complete analysis of this set representation is somewhat
complicated and beyond the scope of the paper. In this
section, we summarize the results presented in IPug88bJ.
Non-Incremental set operations
The time to compute A op B, where op E (u, n, -, c), is
bounded by

o@A Is21 cl+logds3I~ls2l)))
where S2 and $3 are the middle and largest of the sets A - B,
B -A, A n B. If the sets A and B differ in only k elements, the
time required to calculate A up B is therefore only

Oprob(k(l+log(lAnBl/k))).

union(X, Y) = (set union)
case(X,Y)of

(AnnotatedSet(A), AnnotatedSet(B > >
* aUnicn(A, B)

aUnion(X, Y) I (annotuted-set union }
ifX=YthenX
else If readyForAtomicUnion(X,Y)

then atomicUnion(X, Y)
else case (splitAtomic(splitAtomic) of

(*, Empty%{ L >) * X
(EmptySet(L). *) 3 Y
(Pair(AO,At,L),Pair(BO,B1,L))~

Pair{ aUnion&, Bc), aUnion(A1, St), L)

splitAtomic =
CaeeXof

EmptySet(L) * X
Pair{ *, *,*>=+x
AtomicSet(B, L) +

If suff ix(OL, hash(B))
then Pair(AtomicSet(B, OL),

EmptySet(1 L), L)
else Pair(EmptySet(OL),

AtomicSet(8, 1 L), L)

readyForAtomicUnion(X, Y) =
ceee(X,Y)of

(AtomicSet(A, L), AtomicSet(B, L))
9 hash(A) - hash(B)

(*, *) *false

atomicUnion(X, Y) e
case(X,Y)of

(AtomicSet{ A, L), AtomicSet(B, L)) *
AtomicSet(PrimitiveUnicn(A, B), L)

^ ^ . . . _. . _. . ._. r _ . L

FIGURE U.Z -A #esmptWn Of the algo?ItnmJor set unwn.
DecomposMon stablllty
The decomposition scheme we have described for annotated
sets is O@,(log n) stable for (addEIement, remoaeElement)
transformations. This would give us fairly good time
bounds for incremental set operations, but we can do even
better, as shown in the next two items.
Increment membership tests
Assume the computations involved in determining if x E S
are stored in the cache. Define AS to be 6 - S) u (S - S’).
The time required to determine if x E S’ is bounded by
O&log I AS 1) if x e AS and by Opmbflog I S’ I) otherwise.
Incremental set opwatlons
Assume that the computations involved in computing A op
B are stored in the cache and consider computing A’ op B’,
where A’ is similar to A and B’ is similar to B. Let Sl, S2 and
S3 be the smallest, middle and largest of the sets A’ - B’, B’ -

325

A’, A’ n B’. Let ABoth = (A’4 u (A-A’) u (B’-B) u (B-B’).
The time required to compute A’ op B’ is bounded by

opy& 1 ABoth .- 61 u S2) 1 log(1 S2 I/ 1 ABoth 1)
+ (AElothn(S1vS2)I log(lS3j/(ABotkI)).

6.3 Similar ablstract data types
Representations and algorithms for finite functions. (i.e.,
symbol tables), priority queues and bags can be based on
the idea of binary hash tries. used above for sets. A more
detailed presentation of the application of binary hash tries
to these data structures is described in [Pug88b].

7 A Compurison with Incremental
Attribute Grammar Evaluation

Our motivation in examining this approach was to develop
techniques for incremental evaluation in situations where
attribute grammar and dependency graph schemes are
unusable. How d.oes function caching compare against
incremental dependency graph evaluation on those
applications for ,which inc:remental dependency graph
evaluation does work well?

Graph evaluation and functional programs are
sufficiently different that it is difficult to make any sort of
direct comparison between the two approaches. For the case
of attribute grammars, however, we can make a direct
comparison. Katayma has described a method for
translating an attribute grammar G into a set of recursive
functions F(G) [Kat841. We can then compare the
incremental performance of the Reps optimal attribute
grammar propagation scheme [Rep821 on G with the
incremental performance of using function caching o’n F(G).
The material in this section assumes the reader is somewhat
familiar with attribute gra.mmars and optimal attribute
grammar evaluation.

The process of converting an attribute grammar into a set
of recursive functions is fairly straight forward. Let N be a
nonterminal in a grammar G. For each synthesized attribute
s of N, we define a corresponding function SN. Let r be a
node of fype N in a tree T. I.& Tr be the subtree root& at r.
The function so is defined such that in a consistently
attributed tree, I.!; = sN(T,, r.il, r.iZ, r.i3..., rim), where the set
(it, i2, i3... im) is the set of inherited attributes of I’ that s
might possibly depend on (i.e., (il, it i3... i,,,) = (i E Z(N) I
(i, s) is nn e&z of ZCJINI } 1.

The process of translating an attribute grammar is fairly
easy and can be Imechanized [Kat841, although we will not
go into the detaills of the translation process here. Because
we plan to make ‘use of function caching, we can avoid some
of the complexities introduced by Katayama. Figure 7.1
illustrates the translation from attribute grammars to
recursive functilons using the standard example of the
semantics of binary numerals. The recursive functions are
shown with a syntax that is similar to that of PRO’LOG in

order to make the correspondence between the attribution
rules and the functions more obvious. Some additional
mechanica. manipulation can combine the multiple
definitions given here for each SN into a single function with
a case statement. Efficient evaluation of the functional
program produced relies on the use of function caching.

po: Number + Integer
Numbcr.value = lntegermhe
zntt?gt?r.s& = 0

I
valueNumbe&$ integer))

= valuqnte&lnteger, 0)
~1: Integer + Integer Bit

lntegerl.tullue = lnteger2.vaIue + Bit.value
Znteger2.scale = Integer1 .scale + 1
Bit.scxle = lntegeqscale

valuejn~ger(pt(Integer, Bit). scale)
= valuel,teW,(lnteger, scale+l)

+ VdJ6g@t, scale)
~2: Integer + Bit

Znteger.vaIue = Bit.vaIue
Bitscale = lnteger.sde

I
valuqnwr(p2(Bit), scale) =

valuegit(Bit. scale)
p3: Bit + 0

Bit.oullue = 0
I valuegit(p3(0), scale) = 0

p4: Bit 4 1
Bit.mlw = $Jit.de

1 valuegit(pa(1), scale) I 2scale

FIGURE 7.1 - An sampZe atfribute grammar and its translation to
a set of recursive functions. The grammar defines tk integer

equivalent of a binary numeral.

Comparing function caching with incremental
attribute grammar evaluatton
We will now compare the performance of function caching
and incremental attribute grammar evaluation.

Theorem 7.1. Let T be a tree consistently attributed
according to an attribute grammar G. Define the set Affected
to be the set of attributes that receive a new value as a result
of a subtree replacement at a node new (as in Reps’s
discussion). Define path-to-root to be the set of nodes in T
that are an ancestor of nau (define @k-to-root so that it
includes new). Let New_Applications be the set of function
applications that need to be computed and will not be found
in an infinite cache when using function caching and F(G).
Then,

Proof. Define the set I_Affecfed~Nodes to be the set of nodes r
in T such that an inherited attribute of I receives a new value
as a result of a change. Since each attribute is an inherited
attribute of only one node, I I_AffededJVodes I S I Affcdul I.

326

Define NeededQ to be the set of function calls needed to
evaluate the function calls from F(G) corresponding to syn-
thesized attributes of the root of T. For a function call j, let
root(f) be the root of the subtree that is the first argument off
(e.g., if f is a function call whose first argument is Tr, root(f) =
r). Since the number of synthesized attributes at a node is
bounded by a constant based on the size of the grammar, for
all nodes r in T, the size of (f I f E Needed(T) A root(f) = Y} is
bounded by a constant.

In a function caching implementation, we cannot perform
destructive editing operations. To perform an edit operation
on a tree T, we create a new tree T’ and evaluate the
functions corresponding to the synthesized attributes of the
root of 7”. The nodes of T’ that cannot be reused from Tare
those in path-to-root.

are based on the idea of updating a specific previous
problem. In some situations, we can predict that
subproblems similar to previous subproblems will arise, but
we can’t establish apriori an appropriate one-to-one
correspondence between new subproblems and previous
subproblems. In situations such as this, function caching can
provide incremental evaluation and incremental
dependency graph techniques seem unusable.

There is no reason why these two paradigms can not be
profitably combined. In many incremental attribute
grammar systems, the attribute equations are specified
using recursive functions. If function caching is performed
on the calls made by these functions, we can use attribute
grammar and dependency graph techniques when they are
appropriate and function caching when they are not.

The only functions that need to be computed are those
that were not computed previously. Therefore,
New-Applications E; (f I f E Needed A root(f) E
I-Affecfed-Nodes u pnth-to-root}. Therefore,
I New-Applications I is Of I I-Affected-Nodes I +
I pafh-fo-root I) which is O(I Affected I + I path-to-root I). 0

How well have we done? For very narrow and stringy
trees, this would be very bad. In some situations, a change
in a tree of size n would involve a length n path to root.
Several points come to mind however. First, we feel that this
is an argument against narrow stringy trees, not against
function caching. Typically, program editors have used a
left or right recursive format for sequences such as
statement lists. The data structures we have presented in
this paper, or many other data structures, allow lists of
length n to be manipulated as trees of depth log n. Second,
the overhead of I path-to-root I is partially associated with
the fact that the conversion process is only appropriate for
attribute grammars that only produce information at the
synthesized attributes of the root of the syntax tree; for such
attribute grammars, function caching has the same
asymptotic time bounds as attribute grammars whenever a
change to the syntax tree causes a change in the output of
the algorithm.

Unique representations, combined with a method for
constant-time equality testing of concrete values, allows
constant-time equality testing of abstract values. For many
abstract data types, efficient representations that allow
constant-time equality testing have been open questions.
Sassa and Goto [SG76] describe a set representation that
allows constant-time equality tests. However, in their
representation, any set operation takes time at least
proportional to the size of the set being created (e.g., to
compute S + {x) requires O(I S I) time). A kinked list offers
unique representations for sequences, but modifying el-
ement i of a sequence requires Offi time.

We should also note that new research in incremental
dependency graph evaluation has improved and extended
Reps’s algorithms in new directions [HT&5] [Ho0871
]ACR+871. Even if we wanted to claim that we could do as
well as Reps’s original algorithm, this would not say much
about function caching verses attribute grammar or
dependency graph techniques, since many new results have
improved on Reps’s original results.

8 Conclusions

327

The idea of a stable decomposition also has implications
outside of incremental evaluation. Typically, if two values
have similar decompositions they have equal
subcomponents. When combined with a technique such as
hashed consing, this allows two representations of similar
values to share storage. Reps discusses using sharable 2-3
trees for sharing storage between similar values in his thesis
[Rep&#]. However, using his methods, two values can share
storage only if they are similar in a “computation-oriented”
sense, rather than in a “valueoriented” sense (e.g., if the set
B has been calculated as A + (x], the sets A and B can share
storage; if the set B happens to be equal to A + (x), but was
not calculated that way, it might not be possible for the sets
to share storage). Reps noted as an open problem a scheme
that allows “value-oriented” similar values to share storage;
we have closed this problem for sets and sequences without
duplicate elements.

Appendix

Function caching and stable decompositions provide a new
paradigm for incremental evafuation. The essential
difference between this paradigm and techniques based on
incremental dependency graph analysis is that our approach
is based on reusing the previously computed solution to any
similar problem; incremental dependency graph techniques

This appendix includes the statement of two theorems,
proved in [Pug&%], that are used in the analysis of chunky
lists. These results concern collections of random variables,
each bounded by a negative binomial distribution.

Theorem A.2 Let p be a probability, and Xo, Xl, X,+1 be
independent random variables, each bounded by NBfl, p).

maxo[o, XI, X,+1> +t, logl/(j-p) n + NBC p>

Theorem A.3. Let p be a probability, and Xo, X1, X,-l be
independent rand,om variables, each bounded by NB(1, p).
Let ND be the set of non-decreasing elements in the
sequence [X0, Xl, X,-l], which is equal to { Xi I max(X&
Xl, -*v xi> s Xi).

I ND I spd 1 + NB(logl/ l-p) a, P)
+ NB(‘1, a /cl - p + t;L,,
+ NBCl, 1 - p)

Reference!;
fACRi871

IA11781

[DRTSI]

[HO0861

IHoo871

n-n-w

1Kat841

IKnu73J

IMeh841

IMic681

[Par781

P@Bal

mq@w

IRA841

B. Alpem, A. Carle, B.Rosen, P. Sweeney, and K.
&deck Incremenfal evdaufion of attributed graphs.
Technical Report RC 13205, IBM, Thomas J.
Watson Research Center, Yorktown Heights,
New York 10598, October 1987.
John Allen, Anatomy of LISP, McGraw Hill Book
Compmy, NY, 1978.
Alan Demers, Thomas Reps and Tim
Teitelbaum. Incremental evaluation of attribute
grammars with application to syntax-directed
editors. PROC offk Eigtih POPL, pages 105-116,
1981.
Roger Hoover, Dynamically bypassing copy
rules in attribute grammar. PROC of Tkirfeenfk
POPL,. pages 14-25,1986.
Roger Hoover, hcremenfal Graph Evahat ion.
Ph.D. Thesis, Cornell University, 1987.
Susan Horowitz and Tim Teitelbaum,
Generating editing environments based on
relations and attributes. TOPLAS, pages 577-608,
1986.
Takuya Katayama. Translation of attribute
grammars into procedures. TOPLAS, 6(3):345-
369, July 1984.
Donald Knuth, Sorting and Searching, Tke Art of
Computer Programming, Vol. 3,1973.
Kurt :Mehlhom. Data Structures and Algorithms 1:
Sot&g and !%rarching. Springer-Verlag, 1984.
D. Michie. “Memo” functions and machine
learning. Nature, (218):19-22, April 1968.
Luis .Isidoro Trabb Pardo, Sef Representation and
Sef Z&rsecfion, Ph.D. thesis, Stanford University,
1978
William Pugh. An Improved Cache Replacement
Strategy for Function Caching. PROC of the ACM
Conf on Lisp and Funcfional Programming, pages
269~276,1988.
William Pugh, Incremental Computation and the
Incremental Evahafion ojFuncfiona2 Programming.
Ph.D. Thesis, Cornell University, 1988.
Thomas W. Reps and Bowen Alpern. Interactive
proof checking. PROC of fke Elewnfh POPL,
pages 36-45,1984.

V+Ql

RpW

ISG761

rrK841

wsw

Thomas Reps, Optimal-time incremental
semantic analysis for syntax-directed editors.
PROC of fke Ninth POPL, pages 169-176,1982.
Thomas W. Reps. Generating Language-Based
Environments. The MIT Press, Cambridge
Massachusetts, 1984.
M. Sassa and E. Goto, A hashing method for fast
set operations. hf. Proc. M. 5(2):31-34, June 1976.
H. Taylor and S. Karlin. An Introduction to
Sfockasfic Modeling, Academic Press, Orlando,
Florida, 1984.
D. Yellin and R. Strom. INC: a Language for
Incremental Computations. SZGPLAN ‘88
Conference on Programming Language LIzsign and
ImpZnumfafion, pages 115-124,1988.

328

