
Implicit Self-Adjusting Computation
for Purely Functional Programs

Yan Chen Jana Dunfield Matthew A. Hammer Umut A. Acar

Max Planck Institute for Software Systems

chenyan@mpi-sws.org, jd169@queensu.ca, {hammer, umut}@mpi-sws.org

Abstract

Computational problems that involve dynamic data, such as physics
simulations and program development environments, have been an
important subject of study in programming languages. Building on
this work, recent advances in self-adjusting computation have de-
veloped techniques that enable programs to respond automatically
and efficiently to dynamic changes in their inputs. Self-adjusting
programs have been shown to be efficient for a reasonably broad
range of problems but the approach still requires an explicit pro-
gramming style, where the programmer must use specific monadic
types and primitives to identify, create and operate on data that can
change over time.

We describe techniques for automatically translating purely
functional programs into self-adjusting programs. In this implicit
approach, the programmer need only annotate the (top-level) input
types of the programs to be translated. Type inference finds all other
types, and a type-directed translation rewrites the source program
into an explicitly self-adjusting target program. The type system
is related to information-flow type systems and enjoys decidable
type inference via constraint solving. We prove that the transla-
tion outputs well-typed self-adjusting programs and preserves the
source program’s input-output behavior, guaranteeing that trans-
lated programs respond correctly to all changes to their data. Using
a cost semantics, we also prove that the translation preserves the
asymptotic complexity of the source program.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.3 [Logics
and Meanings of Programs]: Studies of Program Constructs

General Terms Algorithms, Languages, Performance

1. Introduction

Dynamic changes are pervasive in computational problems: physics
simulations often involve moving objects; robots interact with dy-
namic environments; compilers must respond to slight modifica-
tions in their input programs. Such dynamic changes are often
small, or incremental, and result in only slightly different output,
so computations can often respond to them asymptotically faster
than performing a complete re-computation. Such asymptotic im-
provements can lead to massive speedup in practice but tradition-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’11, September 19–21, 2011, Tokyo, Japan.
Copyright © 2011 ACM 978-1-4503-0865-6/11/09. . . $10.00

ally require careful algorithm design and analysis (e.g., Chiang and
Tamassia [1992]; Guibas [2004]; Demetrescu et al. [2005]), which
can be challenging even for seemingly simple problems.

Motivated by this problem, researchers have developed language-
based techniques that enable computations to respond to dynamic
data changes automatically and efficiently (see Ramalingam and
Reps [1993] for a survey). This line of research, traditionally
known as incremental computation, aims to reduce dynamic prob-
lems to static (conventional or batch) problems by developing com-
pilers that automatically generate code for dynamic responses. This
is challenging, because the compiler-generated code aims to handle
changes asymptotically faster than the source code. Early propos-
als [Demers et al. 1981; Pugh and Teitelbaum 1989; Field and
Teitelbaum 1990] were limited to certain classes of applications
(e.g., attribute grammars), allowed limited forms of data changes,
and/or yielded suboptimal efficiency. Some of these approaches,
however, had the important advantage of being implicit: they re-
quired little or no change to the program code to support dynamic
change—conventional programs could be compiled to executables
that respond automatically to dynamic changes.

Recent work based on self-adjusting computation made progress
towards achieving efficient incremental computation by providing
algorithmic language abstractions to express computations that re-
spond automatically to changes to their data [Ley-Wild et al. 2008;
Acar et al. 2009]. Self-adjusting computation can deliver asymp-
totically efficient updates in a reasonably broad range of problem
domains [Acar et al. 2007, 2010a], and have even helped solve chal-
lenging open problems [Acar et al. 2010b]. Existing self-adjusting
computation techniques, however, require the programmer to pro-
gram explicitly by using a certain set of primitives [Carlsson 2002;
Ley-Wild et al. 2008; Acar et al. 2009]. Specifically the program-
mer must manually distinguish stable data, which remains the
same, from changeable data, which can change over time, and
operate on changeable data via a special set of primitives. As a
result, rewriting a conventional program into a self-adjusting pro-
gram requires extensive changes to the code. For example, a purely
functional program will need to be rewritten in imperative style
using write-once, monadic references.

In this paper, we present techniques for implicit self-adjusting
computation that allow conventional programs to be translated au-
tomatically into efficient self-adjusting programs. Our approach
consists of a type system for inferring self-adjusting computation
types from purely functional programs and a type-guided transla-
tion algorithm that rewrites purely functional programs into self-
adjusting programs.

The type system hinges on a key observation connecting self-
adjusting computation to information flow [Pottier and Simonet
2003; Sabelfeld and Myers 2003]: both involve tracking data de-
pendencies (of changeable data and sensitive data, respectively)
as well as dependencies between expressions and data. Specifi-

129

cally, we show that a type system that encodes the changeability
of data and expressions in self-adjusting computation as secrecy of
information suffices to statically enforce the invariants needed by
self-adjusting computation. The type system uses polymorphism
to capture stable and changeable uses of the same data or expres-
sion. Our type system admits a constraint-based formulation where
the constraints are a strict subset of those needed by traditional
information-flow type systems. Consequently, as with information
flow, our type system admits an HM(X) inference algorithm [Oder-
sky et al. 1999] that can infer all type annotations from top-level
type specifications on the input of a program.

For this work, determination of types via type inference is not
an end unto itself but a means for translating purely functional
programs into self-adjusting programs. To achieve this, we first
present a set of compositional, non-deterministic transformation
rules. Guided by the types, the rules identify the set of all change-
able expressions that operate on changeable data and rewrite them
into the self-adjusting target language. We then present a deter-
ministic translation algorithm that applies the compositional rules
judiciously, considering the type and context (enclosing expres-
sions) of each translated subexpression, to generate a well-typed
self-adjusting target program.

Taken together, the type system, its inference algorithm, and the
translation algorithm enable translating purely functional source
programs to self-adjusting target programs using top-level type an-
notations on the input type of the source program. These top-level
type annotations simply mark what part of the input data is sub-
ject to change. Figure 1 illustrates how source programs written
in Level ML, a purely functional subset of ML with level types,
can be translated to self-adjusting programs in the target language
AFL, a language for self-adjusting computation with explicit prim-
itives [Acar et al. 2006]. We prove three critical properties of the
approach.

• Type soundness. On source code of a given type, the trans-
lation algorithm produces well-typed self-adjusting code of a
corresponding target type (Theorem 6.1).

• Observational equivalence. The translated self-adjusting pro-
gram, when evaluated, produces the same value as the source
program (Theorem 6.5).

• Asymptotic complexity. The time to evaluate the translated
program is asymptotically the same as the time to evaluate the
source program (Theorem 6.9).

Type soundness and observational equivalence together imply a
critical consistency property: that self-adjusting programs respond
correctly to changing data (via the consistency of the target self-
adjusting language [Acar et al. 2006]). The third property shows
that the translated program takes asymptotically as long to evaluate
(from scratch) as the corresponding source program. In addition,
it places a worst-case bound on the time taken to self-adjust via
change propagation, which can and often does take significantly
less time when data changes are small. To prove this complexity
result, we use a cost semantics [Sands 1990; Sansom and Peyton
Jones 1995] that enables precise reasoning about the complexity of
the evaluation time. We do not, however, prove tighter bounds on
the complexity of self-adjustments; this would be beyond the scope
of this paper.

We intend to complete an implementation of our approach as
an extension of Standard ML and the MLton compiler [MLton].
However, we expect the proposed approach could be implemented
in other languages such as Haskell, where self-adjusting libraries
also exist [Carlsson 2002]. In general, since our approach simply
generates target code, it is agnostic to implementation details of

Level ML

AFL

e e : τ

e′ : τ ′

v

w

Type inference Evaluation

in k steps

Evaluation

in Θ(k) steps

Type-Directed
Translation

Type
Soundness

Observational
Equivalence

Figure 1. Visualizing the translation between the source language
Level ML and the target language AFL, and related properties.

the explicit self-adjusting-computation mechanisms employed in
the target language and thus can be applied broadly.

Paper guide. We find it better to give an overview of the proposed
approach by focusing on the translation problem and working back
to the type system in a “top-down” manner (Section 2). The details
of the translation algorithm and our theorems, however, rely on the
type system. We therefore take a more “bottom-up” approach in
the rest of the paper: we first present the static semantics (the syntax
and the type system) (Sections 3 and 4), and then describe the target
language AFL (Section 5) and the translation (Section 6). Finally,
we discuss related work (Section 7) and conclude. Due to space
restrictions, we include all the proofs in the appendix [Chen et al.
2011].

2. Overview

We present an informal overview of our approach via examples.
First we briefly describe explicit self-adjusting computation, as laid
out in previous work, and which we use as a target language. Then
we outline our proposed approach.

2.1 Explicit Self-Adjusting Computation

The key concept behind explicit approaches is the notion of a
modifiable (reference), which stores changeable values that can
change over time [Acar et al. 2006]. The programmer operates on
modifiables with mod, read, and write constructs to create, read
from, and write into modifiables. The run-time system of a self-
adjusting language uses these constructs to represent the execution
as a graph, enabling efficient change propagation when the data
changes in small amounts.

As an example, consider a trivial program that computes x2+y:

squareplus: int * int → int
fun squareplus (x, y) =

let x2 = x * x in
let r = x2 + y in

r

To make this program self-adjusting with respect to changes in
y, while leaving x unchanging or stable, we assign y the type
int mod (of modifiables containing integers) and read the con-
tents of the modifiable. The body of the read is a changeable ex-
pression ending with a write. This function has a changeable arrow
type →

C
:

squareplus_SC: int * int mod →
C

int

fun squareplus_SC (x, y) =
let x2 = x * x in

read y as y’ in
let r = x2 + y’ in

write(r)

The read operation delineates the code that depends on the
changeable value y, and the changeable arrow type ensures a crit-
ical consistency property: →

C
-functions can only be called within

130

the context of a changeable expression. If we change the value of
y, change propagation can update the result, re-executing only the
read and its body, reusing the computation of the square x2.

Suppose we wish to make x changeable while leaving y stable.
We need to read x and place x2 into a modifiable (because we
can only read within the context of a changeable expression), and
immediately read back x2 and finish by writing the sum. (To avoid
creating this modifiable would require further structural changes to
the code.)

squareplus_CS: int mod * int →
C

int

fun squareplus_CS (x, y) =
let x2 = mod (read x as x’ in write(x’ * x’)) in

read x2 as x2’ in
let r = x2’ + y in

write(r)

As this example shows, rewriting even a trivial program can
require modifications to the code, and different choices about what
is or is not changeable lead to different code. Moreover, if we need
squareplus SC and squareplus CS—for instance, if we want
to pass squareplus to various higher-order functions—we must
write, and maintain, both versions.

Conservatively treating all data as changeable would require
writing just one version, but treating all data as modifiable can in-
troduce unacceptably high overhead. At the other extreme, making
everything stable requires no rewriting, but forgoes the benefits of
change propagation. Instead, we take an approach where data is
modifiable only where necessary.

2.2 Implicit Self-Adjusting Computation

To make self-adjusting computation implicit, we use type infor-
mation to insert reads, writes, and mods automatically. The user
annotates the input type of the program; we infer types for all ex-
pressions, and use this information to guide a translation algorithm.
The translation algorithm returns well-typed self-adjusting target
programs. The translation requires no expression-level annotations.
For the example function squareplus above, we can automat-
ically derive squareplus SC and squareplus CS from just the
type of the function (expressed in a slightly different form, as we
discuss next).

Level types. To uniformly describe source functions (more gener-
ally, expressions) that differ only in their “changeability”, we need
a more general type system than that of the target language. This
type system refines types with levels S (stable) and C (changeable).
The type intδ is an integer whose level is δ; for example, to get
squaresum CS we can annotate squaresum’s argument with the
type intC × intS.

Level types are an important connection between information-
flow types [Pottier and Simonet 2003] and those needed for our
translation: high-security secret data (levelH) behaves like change-
able data (level C), and low-security public data (level L) behaves
like stable data (level S). In information flow, data that depends
on secret data must be secret; in self-adjusting computation, data
that depends on changeable data must be changeable. Building on
this connection, we develop a type system with several features
and mechanisms similar to information flow. Among these is level
polymorphism; our type system assigns level-polymorphic types to
expressions that accommodate various “changeabilities”. (As with
ML’s polymorphism over types, our level polymorphism is prenex.)
Another similarity is evident in our constraint-based type inference
system, where the constraints are a strict subset of those in Pottier
and Simonet [2003]. As a corollary, our system admits a constraint-
based type inference algorithm [Odersky et al. 1999].

Translation. The main purpose of our type system is to support
translation. Given a source expression and its type, translation in-

datatype α list = nil | cons of α * α list

inc : int → int
fun inc (x) = x+1

map : (α → β) → α list → β list
fun map f l =

case l of
nil ⇒ nil

| cons(h,t) ⇒ cons(f h, map f t)

mapPair : (int list * int list) → (int list * int list)
fun mapPair (l,a) = (map inc l, map inc a)

Figure 2. Function mapPair in ML

datatype α listδ = nil | cons of α * (α listδ)

mapPair : ((intS listC) * (intC listS))
→
S

((intS listC) * (intC listS))

... (* inc, map, mapPair same as in Figure 1. *)

Figure 3. Function mapPair in Level ML, with level types

serts the appropriate mod, read, and write primitives and restruc-
tures the code to produce an expression that is well-typed in the tar-
get language. The type system of the target language, which is ex-
plicitly self-adjusting, is monomorphic in the levels or changeabil-
ity, while the implicitly self-adjusting source language is polymor-
phic over levels. Consequently, translation also needs to monomor-
phize the source code. Our translation generates code that is well-
typed, has the same input-output behavior as the source program,
and is, at worst, a constant factor slower than the source program.
Since the source and target languages differ, proving these proper-
ties is nontrivial; in fact, the proofs critically guided our formula-
tion of the type system and translation algorithm.

A more detailed example: mapPair. To illustrate how our trans-
lation works, consider a function mapPair that takes two integer
lists and increments the elements in both lists. This function can be
written by applying the standard higher-order map over lists. Fig-
ure 2 shows the purely functional code in an ML-like language for
an implementation of mapPair, with a datatype α list, an incre-
ment function inc, and a polymorphic map function. Type signa-
tures give the types of functions.

To obtain a self-adjusting mapPair, we first decide how we
wish to allow the input to change. Suppose that we want to allow
insertion and deletion of elements in the first list, but we expect the
length of the second list to remain constant, with only its elements
changing. We can express this with the versions of the list type with
different changeability:

• α listC for lists of α with changeable tails;

• α listS for lists of α with stable tails.

Then a list of integers allowing insertion and deletion has type
intS listC, and one with unchanging length has type intC listS.
Now we can write the type annotation on mapPair shown in Fig-
ure 3. Given only that annotation, type inference can find appropri-
ate types for inc and map and our translation algorithm generates
self-adjusting code from these annotations. Note that to obtain a
self-adjusting program, we only had to provide types for the func-
tion. We call this language with level types Level ML.

Target code for mapPair. Translating the code in Figure 3 pro-
duces the self-adjusting target code in Figure 4. Note that inc and
map have level-polymorphic types. In map inc l we increment sta-

131

datatype α list_S = nil | cons of α * α list_S
datatype α list_C = nil | cons of α * (α list_C) mod

inc_S : int →
S

int (* ‘inc’ specialized for stable data *)

funS inc_S (x) = x+1

inc_C : int →
C

int (* ‘inc’ specialized for changeable data *)

funC inc_C (x) = read x as x’ in write (x’+1)

inc : ∀δ. intδ →
δ

intδ

val inc = select {δ=S ⇒ inc_S
| δ=C ⇒ inc_C}

map_SC : (α →
S

β) →
S

(α list_C) mod →
S

(β list_C) mod

funS map_SC f l = (* ‘map’ for stable heads, changeable tails *)
mod (read l as x in

case x of
nil ⇒ write nil

| cons(h,t) ⇒ write (cons(f h, map_SC f t)))

map_CS : (α →
C

β) →
S

(α list_S) →
S

(β list_S)

funS map_CS f l = (* ‘map’ for changeable heads, stable tails *)
case l of

nil ⇒ nil
| cons(h,t) ⇒ let val h’ = mod (f h)

in cons(h’, map_CS f t)

map : ∀δh, δt. (α →
δh

β) →
S

α listδt →
S

β listδt

val map = select {δh=S, δt=C ⇒ map_SC
| δh=C, δt=S ⇒ map_CS}

mapPair : ((int list_C) mod * (int mod) list_S)
→
S

((int list_C) mod * (int mod) list_S)

funS mapPair (l, a) = (map[δh=S,δt=C] inc[δ=S] l,

map[δh=C,δt=S] inc[δ=C] a)

Figure 4. Translated mapPair with mod types and explicit level
polymorphism.

ble integers, and in map inc a we increment changeable integers,
so the type inferred for inc must be generic: ∀δ. intδ →

δ
intδ . Our

translation produces two implementations of inc, one per instanti-
ation (δ=S and δ=C): inc S and inc C (in Figure 4). Sine we want
to use inc with the higher-order function map, we need to generate
a “selector” function that takes an instantiation and picks out the
appropriate implementation:

inc : ∀δ. intδ →
δ

intδ

val inc = select {δ=S ⇒ inc_S
| δ=C ⇒ inc_C}

In mapPair itself, we pass a level instantiation to the selector:
inc[δ=S]. (This instantiation is known statically, so it could be
replaced with inc S at compile time.)

Observe how the single annotation on mapPair led to dupli-
cation of the two functions it uses. While inc S is the same as
the original inc, the changeable version inc C adds a read and a
write. Note also that the two generated versions of map are both
different from the original.

The interplay of type inference and translation. Given user an-
notations on the input, type inference finds a satisfying type assign-
ment, which then guides our translation algorithm to produce self-
adjusting code. In many cases, multiple type assignments could sat-
isfy the annotations; for example, subsumption allows any stable
type to be promoted to a changeable type. Translation yields target
code that satisfies the crucial type soundness, operational equiva-
lence, and complexity properties under any satisfying assignment.

Levels δ, ε : := S | C | α

Types τ : := intδ | (τ1×τ2)
δ | (τ1+τ2)

δ | (τ1 →
ε τ2)

δ

Constraints C,D : := true | false | ∃~α.C | C ∧D |
α = β | α ≤ β | δ ✁ τ

Type schemes σ : := τ | ∀~α[D]. τ

Figure 5. Levels, constraints, types, and type schemes

But some type assignments are preferable, especially when one
considers constant factors. Choosing C levels whenever possible is
always a viable strategy, but treating all data as changeable results
in more overhead. As in information flow, where we want to con-
sider data secret only when absolutely necessary, inference yields
principal typings that are minimally changeable, always preferring
S over C.

3. From Information Flow Types to SAC

Self-adjusting computation separates the computation and data into
two parts: stable and changeable. Changeable data refers to data
that can change over time; all non-changeable data is stable. Sim-
ilarly, changeable expressions refers to expressions that operate
(via elimination forms) on changeable data; all non-changeable ex-
pressions are stable. Evaluation of changeable expressions (that is,
changeable computations) can change as the data that they operate
on changes: changes in data cause changes in control flow. These
distinctions are critical to effective self-adjustment: previous work
shows that it suffices to track and remember changeable data and
evaluations of changeable expressions because stable data and eval-
uations of stable expressions remain invariant over time. Previous
work therefore presents languages that enable the programmer to
separate stable and changeable data, and type systems that enforce
the correct usage of these constructs.

In this section, we describe the self-adjusting computation types
that we infer for purely functional programs. A key insight behind
our approach is that in information-flow type systems, secret (high-
security) data is infectious: any data that depends on secret data it-
self must be secret. This corresponds to self-adjusting computation:
data that depends on changeable data must itself be changeable. In
addition, self-adjusting computation requires expressions that in-
spect changeable data—elimination forms—to be changeable. To
encode this invariant, we extend function types with a mode, which
is either stable or changeable; only changeable functions can in-
spect changeable data. This additional structure preserves the spirit
of information flow-based type systems, and, moreover, supports
constraint-based type inference in a similar style.

The starting point for our formulation is Pottier and Simonet
[2003]. Our types include two (security) levels, stable and change-
able. We generally follow their approach and notation. The two key
differences are that (1) since Level ML is purely functional, we
need no “program counter” level “pc”; (2) we need a mode ε on
function types.

Levels. The levels S (stable) and C (changeable) have a total order:

S ≤ S C ≤ C S ≤ C

To support polymorphism and enable type inference, we allow level
variables α, β to appear in types.

Types. Types consist of integers tagged with their level, prod-
ucts1 and sums with an associated level, and arrow (function) types.
Function types (τ1 →

ε τ2)
δ carry two level annotations ε and δ.

1 In Pottier and Simonet [2003], product types are low-security (stable) be-
cause pairing adds no extra information. In our setting, changeable products
give more control over the granularity of change propagation.

132

δ ≤ δ′

int
δ <: int

δ′
(subInt)

τ1 <: τ
′

1 τ2 <: τ
′

2 δ ≤ δ′

(τ1 × τ2)
δ <:

(
τ ′1 × τ ′2

)δ′
(subProd)

τ1 <: τ
′

1 τ2 <: τ
′

2 δ ≤ δ′

(τ1 + τ2)
δ <:

(
τ ′1 + τ ′2

)δ′
(subSum)

ε = ε′ δ ≤ δ′ τ ′1 <: τ1 τ2 <: τ
′

2

(τ1 →
ε τ2)

δ <: (τ ′1 →
ε′

τ ′2)
δ′

(subArrow)

Figure 6. Subtyping

δ ≤ δ′

δ ✁ int
δ′

(✁-Int)
δ ≤ δ′

δ ✁ (τ1 × τ2)
δ′

(✁-Prod)

δ ≤ δ′

δ ✁ (τ1 →
ε τ2)

δ′
(✁-Arrow)

δ ≤ δ′

δ ✁ (τ1 + τ2)
δ′

(✁-Sum)

Figure 7. Lower bound of a type

int
S
O.S. (τ1 →

ε τ2)
S
O.S. (τ1 × τ2)

S
O.S. (τ1+τ2)

S
O.S.

int
C
O.C. (τ1 →

ε τ2)
C
O.C. (τ1 × τ2)

C
O.C. (τ1+τ2)

C
O.C.

intδ1 ⊜ intδ2 (τ1 + τ2)
δ1 ⊜ (τ1 + τ2)

δ2

(τ1 × τ2)
δ1 ⊜ (τ1 × τ2)

δ2 (τ1 →
ε τ2)

δ1 ⊜ (τ1 →
ε τ2)

δ2

Figure 8. Outer-stable and outer-changeable types, and equality
up to outer levels

The mode ε is the level of the computation encapsulated by the
function. This mode determines how a function can manipulate
changeable values: a function in stable mode cannot directly ma-
nipulate changeable values; it can only pass them around. By con-
trast, a changeable-mode function can directly manipulate change-
able values. The outer level δ is the level of the function itself, as a
value. We say that a type is ground if it contains no level variables.

Subtyping. Figure 6 shows the subtyping relation τ <: τ ′, which
is standard except for the levels. It requires that the outer level of
the subtype is smaller than the outer level of the supertype and
that the modes match in the case of functions: a stable-mode func-
tion is never a subtype or supertype of a changeable-mode func-
tion. (It would be sound to make stable-mode functions subtypes
of changeable-mode functions, but changeable mode functions are
more expensive; silent coercion would make performance less pre-
dictable.)

Levels and types. We rely on several relations between levels and
types to ascertain various invariants. A type τ is higher than δ,
written δ ✁ τ , if the outer level of the type is at least δ. In other
words, δ is a lower bound of the outer level(s) of τ . Figure 7
defines this relation. We distinguish between outer-stable and outer-
changeable types (Figure 8). We write τ O.S. if the outer level
of τ is S. Similarly, we write τ O.C. if the outer level of τ is
C. Finally, two types τ1 and τ2 are equal up to their outer levels,
written τ1 ⊜ τ2, if τ1 = τ2 or they differ only in their outer levels.

Constraints. To perform type inference, we extend levels with
level variables α and β, and use a constraint solver to find solu-

Values v : := n | x | (v1, v2) | inl v | inr v | fun f(x) = e

Expr.’s e : := v | ⊕(x1, x2) | fst x | snd x |
case x of {x1 ⇒ e1 , x2 ⇒ e2} |
apply(x1, x2) | let x = e1 in e2

Figure 9. Abstract syntax of the source language Level ML

tions for the variables. Our constraints C, D include level-variable
comparisons ≤ and level-type comparisons δ✁τ , which type infer-
ence composes into conjunctions of satisfiability predicates ∃~α.C.

The subtyping and lower bound relations defined in Figures 6
and 7 consider closed types only. For type inference, we can extend
these with a constraint to allow non-closed types.

A (ground) assignment, written φ, substitutes concrete levels S
and C for level variables. An assignment φ satisfies a constraint C,
written φ ⊢ C, if and only if C holds true after the substitution of
variables to ground types as specified by φ. We say that C entails
D, written C
 D, if and only if every assignment φ that satisfies
C also satisfies D. We write φ(α) for the solution of α in φ, and
[φ]τ for the usual substitution operation on types. For example, if

φ(α) = S then [φ]
((

intα + intC
)α)

=
(
intS + intC

)S
.

Type schemes. A type scheme σ is a type with universally quan-
tified level variables: σ = ∀~α[D]. τ . We say that the variables ~α
are bound by σ. The type scheme is bounded by the constraint D,
which specifies the conditions that must hold on the variables. As
usual, we consider type schemes equivalent under capture-avoiding
renaming of their bound variables. Ground types can be written as
type schemes, e.g. intC as ∀∅[true]. intC.

4. Source Language

4.1 Static Semantics

Syntax. Figure 9 shows the syntax for our source language Level
ML, a purely functional language with integers (as base types),
products, and sums. The expressions consist of values (integers,
pairs, tagged values, recursive functions), projections, case expres-
sions, function applications, and let bindings. For convenience, we
consider only expressions in A-normal form, which names inter-
mediate results. A-normal form simplifies some technical issues,
while maintaining expressiveness.

Constraint-based type system. We could define types as

τ : := int | τ1 × τ2 | τ1 + τ2 | τ1 → τ2

Such a type system would be completely standard. Instead, we use a
richer type system that allows us to directly translate Level ML pro-
grams into self-adjusting programs in AFL. This constraint-based
type system has the level-decorated types, constraints, and type
schemes in Figure 5 and described in Section 3. After discussing
the rules themselves, we will look at type inference (Section 4.2).

Typing takes place in the context of a constraint formula C
and a typing environment Γ that maps variables to type schemes:
Γ : := · | Γ, x : σ. The typing judgment C; Γ ⊢ε e : τ has
a constraint C and typing environment Γ, and infers type τ for
expression e in mode ε. Beyond the usual typing concerns, there
are three important aspects of the typing rules: the determination
of modes and levels, level polymorphism, and constraints. To help
separate concerns, we discuss constraints later in the section—at
this time, the reader can ignore the constraints in the rules and read
C; Γ ⊢ε e : τ as Γ ⊢ε e : τ , read C
 δ ✁ τ2 as δ ✁ τ2, and so on.

The mode of each typing judgment affects the types that can
be used “directly” by the expression being typed. Specifically, the
mode discipline prevents the elimination forms from being applied

133

C; Γ ⊢ε e : τ
Under constraint C and source typing
environment Γ, source expression e has type τ

C; Γ ⊢ε n : intS
(SInt)

Γ(x) = ∀~α[D]. τ C
 ∃~β.[~β/~α]D

C ∧ [~β/~α]D; Γ ⊢ε x : [~β/~α]τ
(SVar)

C; Γ ⊢ε v1 : τ1 C; Γ ⊢ε v2 : τ2

C; Γ ⊢ε (v1, v2) : (τ1 × τ2)
S

(SPair)

C; Γ ⊢ε v : τ1

C; Γ ⊢ε inl v : (τ1 + τ2)
S

(SSum)

C; Γ, x : τ1, f : (τ1 →
ε τ2)

S ⊢ε e : τ2 C
 ε✁ τ2

C; Γ ⊢ε′ (fun f(x) = e) : (τ1 →
ε τ2)

S
(SFun)

C; Γ ⊢S x1 : intδ1

C; Γ ⊢S x2 : intδ2
C
 δ1 = δ2
C
 δ1 ≤ ε ⊕ : int × int → int

C; Γ ⊢ε ⊕(x1, x2) : intδ1
(SPrim)

C; Γ ⊢S x : (τ1 × τ2)
δ C
 δ ≤ ε

C; Γ ⊢ε fst x : τ1
(SFst)

C; Γ ⊢ε′ e1 : τ ′

C
 τ ′ <: τ ′′
C; Γ, x : τ ′′ ⊢ε e2 : τ
C
 τ ′ ⊜ τ ′′

C; Γ ⊢ε let x = e1 in e2 : τ
(SLetE)

C ∧D; Γ ⊢S v1 : τ ′ C; Γ, x : ∀~α[D]. τ ′′ ⊢ε e2 : τ
~α∩FV (C,Γ) = ∅ C
 τ ′ <: τ ′′ C
 τ ′ ⊜ τ ′′

C ∧ ∃~α.D; Γ ⊢ε let x = v1 in e2 : τ
(SLetV)

C; Γ ⊢S x1 : (τ1 →
ε′

τ2)
δ

C; Γ ⊢S x2 : τ1
C
 ε′ = ε
C
 δ ✁ τ2

C; Γ ⊢ε apply(x1, x2) : τ2
(SApp)

C; Γ ⊢S x : (τ1 + τ2)
δ

C
 δ ≤ ε C
 δ ✁ τ
C; Γ, x1 : τ1 ⊢ε e1 : τ
C; Γ, x2 : τ2 ⊢ε e2 : τ

C; Γ ⊢ε case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
(SCase)

Figure 10. Typing rules for Level ML

to changeable values in the stable mode. This is a key principle of
the type system.

No computation happens in values, so they can be typed in ei-
ther mode. The typing rules for variables (SVar), integers (SInt),
pairs (SPair), and sums (SSum) are otherwise standard (we omit
the symmetric judgment inr v). Rule (SVar) instantiates a variable’s
polymorphic type. For clarity, we also make explicit the renaming

of the quantified type variables ~α to some fresh ~β (which will be
instantiated later by constraint solving). To type a function (SFun),
we type the body in the mode ε specified by the function type
(τ1 →

ε τ2)
δ , and require the result type τ2 to be higher than the

mode, ε ✁ τ2. As a result, a changeable-mode function must have
a changeable return type. This captures the idea that a changeable-
mode function is a computation that depends on changeable data,
and thus its result must accommodate changes to that data. Primi-
tive operators ⊕ take two stable integers and return a stable integer
result.

As is common in Damas-Milner-style systems, when typing let
we can generalize variables in types (in our system, level variables)
to yield a polymorphic value only when the bound expression is a
value. This value restriction is not essential because Level ML is
pure, but facilitates adding side effects at a later date. In the first

case (SLetE), the expression bound may be a non-value, so we do
not generalize and simply type the body in the same mode as the
whole let, assuming that the bound expression has the specified
type in any mode ε′.2 We allow subsumption only when the subtype
and supertype are equal up to their outer levels, e.g. from a bound
expression e1 of subtype intS to an assumption x : intC. This
simplifies the translation, with no loss of expressiveness: to handle
“deep” subsumption, such as (intS →

S
intS)S <: (intS →

S
intC)C,

we can insert coercions into the source program before typing it
with these rules. (This process could easily be automated.)

In the second case (SLetV), when the expression bound is a
value, we type the let expression in mode ε by typing the body in
the same mode ε, assuming that the value bound is typed in the
stable mode (the mode is ignored in the rules typing values). As
in (SLetE), we allow subsumption on the bound value only when
the types are equal up to their outer level. Because we are binding
a value, we generalize its type by quantifying over the type’s free
level variables.

Function application, ⊕, fst, and case are the forms that elim-
inate values of changeable type. An application is typed in the
mode ε′ of the function being applied because changeable func-
tions can operate on changeable values; the typing mode must
match (ε′ = ε). Furthermore, the result of the function must be
higher than the function’s level: if a function is itself changeable,
(τ1 →

ε τ2)
C, then it could be replaced by another function and

thus the result of this application must be changeable. (Due to let-
subsumption, checking this in (SFun) alone is not enough.)

The rule (SCase) types a case expression, in either mode ε,
by typing each branch in ε. The mode ε must be higher than the
level δ of the scrutinee to ensure that a changeable sum type is not
inspected at the stable mode. Furthermore, the level of the result τ
must also be higher than δ: if the scrutinee changes, we may take
the other branch, requiring a changeable result.

Rule (SFst) enforces a condition, similar to (SCase), that we
can project out of a changeable tuple of type (τ1 × τ2)

C
only in

changeable mode. We omit the symmetric rule for snd.
Our premises on variables, such as the scrutinee of (SCase), are

stable-mode (⊢S), but this was an arbitrary decision; since (SVar) is
the only rule that can derive such premises, their mode is irrelevant.

4.2 Constraints and Type Inference

Many of the rules simply pass around the constraint C. An imple-
mentation of rules with constraint-based premises, such as (SFun),
implicitly adds those premises to the constraint, so that C =
. . . ∧ (ε ✁ τ2). Rule (SLetV) generalizes level variables instead
of type variables, with the “occurs check” ~α∩FV (C,Γ) = ∅.

Standard techniques in the tradition of Damas and Milner
[1982] can infer types for Level ML. In particular, our rules and
constraints fall within the HM(X) framework [Odersky et al. 1999],
permitting inference of principal types via constraint solving. As
always, we cannot infer the types of polymorphically recursive
functions.

Using a constraint solver that, given the choice between as-
signing S or C to some level variable, prefers S, inference finds
principal typings that are minimally changeable. Thus, data and
computations will only be made changeable—and incur tracking
overhead—where necessary to satisfy the programmer’s annota-
tion. This corresponds to preferring a lower security level in in-
formation flow [Pottier and Simonet 2003].

2 In the target language, bound expressions must be stable-mode, but the
translation puts changeable bound expressions inside a mod, yielding a
stable-mode bound expression.

134

Levels δ, ε : := S | C

Types τ : := int | τ mod | τ1 × τ2 | τ1 + τ2 | τ1 →
ε τ2

Type schemes σ : := Π~α[D]. τ

Typing Γ : := · | Γ, x : σ | Γ, x : τ
environments

Variables x : := x | x[~α = ~δ]

Values v : := n | x | ℓ | (v1, v2) | inl v | inr v |

funS f(x) = eS | funC f(x) = eC |

select {(~αi = ~δi) ⇒ ei}i
Expressions e : := eS | eC

Stable eS : := v | ⊕(x1, x2) | fst x | snd x |
expressions applyS(x1, x2) | let x = eS in eS |

case x of {x1 ⇒ eS , x2 ⇒ eS} |
mod eC

Changeable eC : := applyC(x1, x2) | let x=eS in eC |
expressions case x of {x1 ⇒ eC , x2 ⇒ eC} |

read x as y in eC | write(x)

Figure 11. Types and expressions in the target language AFL

4.3 Dynamic Semantics

The call-by-value semantics of source programs is defined by a
big-step judgment e ⇓ v, read “e evaluates to value v”. Our rules
in Figure 13 are standard; we write [v/x]e for capture-avoiding
substitution of v for the variable x in e.

5. Target Language

The target language AFL (Figure 11) is a self-adjusting language
with modifiables. In addition to integers, products, and sums, the
target type system makes a modal distinction between ordinary
types (e.g. int) and modifiable types (e.g. int mod). It also distin-
guishes stable-mode and changeable-mode functions. Level poly-
morphism is supported through an explicit select construct and an
explicit polymorphic instantiation. In Section 6, we describe how
polymorphic source expressions become selects in AFL.

The values of the language are integers, variables, polymorphic

variable instantiation x[~α = ~δ], locations ℓ (which appear only at
runtime), pairs, tagged values, stable and changeable functions, and
the select construct, which acts as a function and case expression
on levels: if x is bound to select {(α = S) ⇒ e1 | (α = C) ⇒ e2}
then x[α = S] yields e1. The symbol x stands for a bare variable x

or an instantiation x[~α = ~δ].
We distinguish stable expressions eS from changeable expres-

sions eC. Stable expressions create purely functional values; applyS

applies a stable-mode function. The mod construct evaluates a
changeable expression and writes the output value to a modifiable,
yielding a location, which is a stable expression. Changeable ex-
pressions are computations that end in a write of a pure value.
Changeable-mode application applyC applies a changeable-mode
function.

The let construct is either stable or changeable according to
its body. When the body is a changeable expression, let enables
a changeable computation to evaluate a stable expression and bind
its result to a variable. The case expression is likewise stable or
changeable, according to its case arms. The read expression binds
the contents of a modifiable x to a variable y and evaluates the body
of the read.

The typing rules in Figure 12 follow the structure of the expres-
sions. Rule (TSelect) checks that each monomorphized expression

ei in a select has type ‖[~δ/~α]τ‖, where [~δ/~α]τ is a source-level

Λ; Γ ⊢ε v : σ
Under store typing Λ
and target typing environment Γ,
target value v has type scheme σ

for all ~δi such that ~α = ~δi
 D

Λ; Γ ⊢S ei : ‖[~δi/~α]τ‖

Λ; Γ ⊢S select {~δi ⇒ ei}i : Π~α[D]. τ
(TSelect)

Λ; Γ ⊢ε e
ε : τ

Under store typing Λ
and target typing environment Γ,
target expression eε has target type τ

Λ(ℓ) = τ

Λ; Γ ⊢S ℓ : τ
(TLoc)

Λ; Γ ⊢S n : int
(TInt)

Γ(x) = τ

Λ; Γ ⊢S x : τ
(TPVar)

Γ(x) = Π~α[D]. τ

Λ; Γ ⊢S x[~α = ~δ] : ‖[~δ/~α]τ‖
(TVar)

Λ; Γ ⊢S v1 : τ1 Λ; Γ ⊢S v2 : τ2
Λ; Γ ⊢S (v1, v2) : τ1 × τ2

(TPair)

Λ; Γ, x : τ1, f : (τ1 →
ε τ2) ⊢ε e : τ2

Λ; Γ ⊢S fun
ε f(x) = e : (τ1 →

ε τ2)
(TFun)

Λ; Γ ⊢S v : τ1
Λ; Γ ⊢S inl v : τ1 + τ2

(TSum)
Λ;Γ ⊢S x : τ1 × τ2
Λ; Γ ⊢S fst x : τ1

(TFst)

Λ; Γ ⊢S x1 : int
Λ; Γ ⊢S x2 : int ⊢ ⊕ : int × int → int

Λ; Γ ⊢S ⊕(x1, x2) : int
(TPrim)

Λ; Γ ⊢S eS1 : σ Λ; Γ, x : σ ⊢ε e2 : τ ′

Λ; Γ ⊢ε let x = eS1 in e2 : τ ′
(TLet)

Λ; Γ ⊢S x1 : (τ1 →
ε τ2) Λ; Γ ⊢S x2 : τ1

Λ; Γ ⊢ε apply
ε(x1, x2) : τ2

(TApp)

Λ; Γ ⊢S x : τ1 + τ2

Λ; Γ, x1 : τ1 ⊢ε e1 : τ
Λ; Γ, x2 : τ2 ⊢ε e2 : τ

Λ; Γ ⊢ε case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
(TCase)

Λ; Γ ⊢C e : τ

Λ; Γ ⊢S mod e : τ mod
(TMod)

Λ; Γ ⊢S x : τ

Λ; Γ ⊢C write(x) : τ
(TWrite)

Λ; Γ ⊢S x1 : τ1 mod Λ; Γ, x : τ1 ⊢C e2 : τ2
Λ; Γ ⊢C read x1 as x in e2 : τ2

(TRead)

Figure 12. Typing rules of the target language AFL

polymorphic type with the levels ~δ substituted for the variables ~α,
and ‖−‖ translates source types to target types (see Section 6.1).
Rule (TPVar) is a standard rule for variables of monomorphic type,

but rule (TVar) gives the instantiation x[~α = ~δ], of a variable x of

polymorphic type, the type‖[~δ/~α]τ‖—matching the monomorphic
expression from the select to which x is bound.

5.1 Dynamic Semantics

For the source language, our big-step evaluation rules (Figure 13)
are standard. In the target language AFL, our rules (Figure 14)
model the evaluation of a first run of the program: modifiables are
created, written to (once), and read from (any number of times), but
never updated to reflect changes to the program input. Both sets of
rules permit expressions that are not in A-normal form, enabling

135

e ⇓ v Source expression e evaluates to v

v ⇓ v
(SEvValue)

e1 ⇓ v1 e2 ⇓ v2

(e1, e2) ⇓ (v1, v2)
(SEvPair)

e ⇓ v

inl e ⇓ inl v
(SEvSum)

e1 ⇓ v1
e2 ⇓ v2 ⊕(v1, v2) = v′

⊕(e1, e2) ⇓ v
′

(SEvPrimop)

e ⇓ (v1, v2)

fst e ⇓ v1
(SEvFst)

e1 ⇓ v1 [v1/x]e2 ⇓ v2

let x = e1 in e2 ⇓ v2
(SEvLet)

e ⇓ inl v1 [v1/x1]e1 ⇓ v

case e of {x1 ⇒ e1 , x2 ⇒ e2} ⇓ v
(SEvCaseLeft)

e1 ⇓ fun f(x) = e
e2 ⇓ v2 [(fun f(x) = e)/f][v2/x]e ⇓ v

apply(e1, e2) ⇓ v
(SEvApply)

Figure 13. Dynamic semantics of source Level ML programs

standard capture-avoiding substitution. To simplify the translation,

we call instantiations x[~α = ~δ] values, even though x[~α = ~δ] does
not evaluate to itself. So we distinguish machine values w—which
do evaluate to themselves—from values v. The only difference is

that machine values do not include x[~α = ~δ].

Machine w : := n | x | ℓ | (w,w) | inl w | inr w |
values funε f(x) = eε | select {(~αi = ~δi) ⇒ ei}i

6. Translation

We specify the translation from Level ML to the target language
AFL by a set of a rules. Because AFL is a modal language that dis-
tinguishes stable and changeable expressions, with a corresponding
type system (Section 5), the translation is also modal: the transla-
tion in the stable mode →֒

S
produces a stable AFL expression eS,

and the translation in the changeable mode →֒
C

produces a change-

able expression eC.
It is not enough to generate AFL expressions of the right syn-

tactic form; they must also have the right type. To achieve this,
the rules are type-directed: we translate a source expression e at
type τ . But we are transforming expressions from one language to
another, where each language has its own type system; translating
some e : τ cannot produce some e′ : τ , but some e′ : τ ′ where τ ′

is a target type that corresponds to τ . To express this vital property,
we need to translate types, as well as expressions. We developed
the translation of expressions and types together (along with the
proof that the property holds); the translation of types was instru-
mental in getting the translation of expressions right. To understand
how to translate expressions, it is helpful to first understand how we
translate types.

6.1 Translating Types

Figure 15 defines the translation of types via two mutually recursive
functions from Level ML types to AFL types. The first function,
‖τ‖, tells us what type the target expression eS should have when
we translate e in the stable mode, e : τ →֒

S
eS. We also use it

to translate the types in the environment Γ. The second function,
‖τ‖�C, makes sense in two related situations: translating the type
τ of an expression e in the changeable mode (e : τ →֒

C
eC) and

translating the codomain of changeable functions.
In the stable mode, values of stable type can be used and cre-

ated directly, so the “stable” translation‖intS‖ of a stable integer is

ρ ⊢ e ⇓ (ρ′ ⊢ w) In the store ρ, target expression e
evaluates to w with updated store ρ′

ρ ⊢ w ⇓ (ρ ⊢ w)
(TEvMachineValue)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1) ρ1 ⊢ e2 ⇓ (ρ2 ⊢ w2)

ρ ⊢ (e1, e2) ⇓ (ρ2 ⊢ (w1, w2))
(TEvPair)

ρ ⊢ e ⇓ (ρ′ ⊢ w)

ρ ⊢ inl e ⇓ (ρ′ ⊢ inl w)
(TEvSum)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1)
ρ1 ⊢ e2 ⇓ (ρ2 ⊢ w2) ⊕(w1, w2) = w′

ρ ⊢ ⊕(e1, e2) ⇓ (ρ2 ⊢ w′)
(TEvPrimop)

ρ ⊢ e ⇓ (ρ′ ⊢ (w1, w2))

ρ ⊢ fst e ⇓ (ρ′ ⊢ w1)
(TEvFst)

ρ ⊢ e1 ⇓ (ρ1 ⊢ w1) ρ1 ⊢ [w1/x]e2 ⇓ (ρ2 ⊢ w2)

ρ ⊢ let x = e1 in e2 ⇓ (ρ2 ⊢ w2)
(TEvLet)

ρ ⊢ e⇓ (ρ1 ⊢ inl w1)
ρ1 ⊢ [w1/x1]e1 ⇓ (ρ2 ⊢w)

ρ ⊢ case e of {x1 ⇒ e1 , x2 ⇒ e2} ⇓ (ρ2 ⊢w)
(TEvCaseLeft)

ρ ⊢ eε1 ⇓ (ρ1 ⊢ fun
ε f(x) = eε)

ρ1 ⊢ eε2 ⇓ (ρ2 ⊢ w2)
ρ2 ⊢ [(fun

ε f(x) = eε)/f][w2/x]e
ε ⇓ (ρ3 ⊢ w)

ρ ⊢ apply
ε(eε1, e

ε
2) ⇓ (ρ3 ⊢ w)

(TEvApply)

ρ ⊢ e ⇓ (ρ′ ⊢ w)

ρ ⊢ write(e) ⇓ (ρ′ ⊢ w)
(TEvWrite)

ρ ⊢ e1 ⇓ (ρ1 ⊢ ℓ) ρ1 ⊢ [ρ1(ℓ)/x
′]eC ⇓ (ρ2 ⊢ w)

ρ ⊢ read e1 as x′ in eC ⇓ (ρ2 ⊢ w)
(TEvRead)

ρ1 ⊢ e1 ⇓ (ρ′ ⊢ w)

ρ ⊢ (select {. . . , ~δ ⇒ e1, . . . })[~α = ~δ] ⇓ (ρ′ ⊢ w)
(TEvSelectE)

ρ ⊢ eC ⇓ (ρ′ ⊢ w)

ρ ⊢ mod eC ⇓ ((ρ′, ℓ 7→ w) ⊢ ℓ)
(TEvMod)

Figure 14. Dynamic semantics for first runs of AFL programs

just int. In contrast, a changeable integer cannot be inspected or di-
rectly created in stable mode, but must be placed into a modifiable:
‖intC‖= int mod. The remaining parts of the definition follow this
pattern: the target type is wrapped with mod if and only if the outer
level of the source type is C. When we translate a changeable-mode
function type (with C below the arrow), its codomain is translated
“output-changeable”: ‖(τ1 →

C
τ2)

S‖ = ‖τ1‖ →
C

‖τ2‖
�C. The

reason is that a changeable-mode function can only be applied in
the changeable mode; the function result is not placed into a mod-
ifiable until we return to the stable mode, so putting a mod on the
codomain would not match the dynamic semantics of AFL.

The second function ‖τ‖�C defines the type of a changeable
expression e that writes to a modifiable containing τ , yielding a
changeable target expression eC. The source type has an outer C,
so when the value is written, it will be placed into a modifiable
and have mod type. But while evaluating eC, there is no outer
mod. Thus the translation‖τ‖�C ignores the outer level (using the

function
∣
∣−

∣
∣S, which replaces an outer level C with S), and never

136

∣
∣intC

∣
∣S = intS

∣
∣(τ1 × τ2)

C
∣
∣S = (τ1 × τ2)

S

∣
∣(τ1 + τ2)

C
∣
∣S = (τ1 + τ2)

S

∣
∣(τ1 →

ε τ2)
C
∣
∣S = (τ1 →

ε τ2)
S

‖intS‖ = int

‖intC‖ = int mod

‖(τ1 →
S
τ2)

S‖ = ‖τ1‖ →
S

‖τ2‖

‖(τ1 →
S
τ2)

C‖ =
(

‖τ1‖ →
S

‖τ2‖
)

mod

‖(τ1 →
C
τ2)

S‖ = ‖τ1‖ →
C

‖τ2‖
�C

‖(τ1 →
C
τ2)

C‖ =
(

‖τ1‖ →
C

‖τ2‖
�C

)

mod

‖(τ1 × τ2)
S‖ = ‖τ1‖×‖τ2‖

‖(τ1 × τ2)
C‖ = (‖τ1‖×‖τ2‖) mod

‖(τ1 + τ2)
S‖ = ‖τ1‖+‖τ2‖

‖(τ1 + τ2)
C‖ = (‖τ1‖+‖τ2‖) mod

‖τ‖�C =

{
‖
∣
∣τ
∣
∣S‖ if τ O.C.

‖τ‖ if τ O.S.

‖·‖ = ·

‖Γ, x : ∀∅[true]. τ‖ = ‖Γ‖, x : ‖τ‖

‖Γ, x : ∀~α[D]. τ‖ = ‖Γ‖, x : Π~α[D]. τ

‖τ‖φ = ‖[φ]τ‖

‖τ‖�C

φ = ‖[φ]τ‖�C

‖Γ‖φ = ‖[φ]Γ‖

Figure 15. Stabilization of types
∣
∣τ
∣
∣S; translations‖τ‖and‖τ‖�C

of types; translation of typing environments‖Γ‖

returns a type of the form (· · · mod). However, since the value
being returned may contain subexpressions that will be placed
into modifiables, we use ‖−‖ for the inner types. For instance,

‖(τ1 + τ2)
δ‖�C = ‖τ1‖+‖τ2‖.

These functions are defined on closed types—types with no free
level variables. Before applying one of these functions to a type
found by the constraint typing rules, we always need to apply the
satisfying assignment φ to the type, so for convenience we write
‖τ‖φ for ‖[φ]τ‖, and so on. Because the translation only makes
sense for closed types, type schemes ∀~α[D]. τ cannot be translated.
The translation ‖Γ‖ therefore translates only monomorphic types
τ ; type schemes are left alone (except for replacing the symbol ∀
with Π) until instantiation. Once instantiated, the type scheme is an
ordinary closed source type, and can be translated by rule (TVar).

6.2 Translating Expressions

We define the translation of expressions as a set of type-directed
rules. Given (1) a derivation of C; Γ ⊢ε e : τ in the constraint-
based typing system and (2) a satisfying assignment φ for C, it is
always possible to produce a correctly typed stable target expres-
sion eS and a correctly typed changeable target expression eC (see
Theorem 6.1 below). The environment Γ in the translation rules is
a source typing environment, but must have no free level variables.
Given an environment Γ from the constraint typing, we apply the
satisfying assignment φ to eliminate its free level variables before
using it for the translation: [φ]Γ. With the environment closed, we
need not refer to C.

Many of the rules in Figure 17 are purely syntax-directed and
are similar to the constraint-based rules. One exception is the (Var)
rule, which needs the source type to know how to instantiate the
level variables in the type scheme. For example, given the poly-
morphic x : ∀α[true]. (intα →

α
intα)S, we need the type from

C; Γ ⊢ε x : (intC →
C

intC)S so we can instantiate α in the trans-

lated term x[α = C].

Γ ⊢ e ❀ (x ≫ x′ : τ ⊢ e′)
Under source typing Γ,
renaming the “head” x in e
to x′ : τ yields expression e′

Γ ⊢ x1 : τ

Γ ⊢ ⊕(x1, x2) ❀ (x1 ≫ x′1 : τ ⊢ ⊕(x′1, x2))
(LPrimop1)

Γ ⊢ x2 : τ

Γ ⊢ ⊕(x1, x2) ❀ (x2 ≫ x′2 : τ ⊢ ⊕(x1, x
′

2))
(LPrimop2)

Γ ⊢ x : τ

Γ ⊢ fst x❀ (x≫ x′ : τ ⊢ fst x′)
(LFst)

Γ ⊢ x1 : τ

Γ ⊢ apply(x1, x2) ❀ (x1 ≫ x′ : τ ⊢ apply(x′, x2))
(LApply)

Γ ⊢ x : τ

Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2}
❀ (x≫ x′ : τ ⊢ case x′ of {x1 ⇒ e1 , x2 ⇒ e2})

(LCase)

Figure 16. Renaming the variable to be read (elimination forms)

Our rules are nondeterministic, avoiding the need to “decorate”
them with context-sensitive details. Our algorithm in Section 6.3
resolves the nondeterminism through type information.

Stable rules. The rules (Int), (Var), (Pair), (Fun), (Sum), (Fst)
and (Prim) can only translate in the stable mode. To translate to
a changeable expression, use a rule that shifts to changeable mode.

Shifting to changeable mode. Given a translation of e in the sta-
ble mode to some eS, the rules (Write) and (ReadWrite) at the bot-
tom of Figure 17 translate e in the changeable mode, producing an
eC. If the expression’s type τ is outer stable (say, intS), the (Write)
rule simply binds it to a variable and then writes that variable. If τ
is outer changeable (say, intC) it will be in a modifiable at runtime,
so we read it into r′ and then write it. (The let-bindings merely
satisfy the requirements of A-normal form.)

Shifting to stable mode. To generate a stable expression eS based
on a changeable expression eC, we have the (Lift) and (Mod) rules.
These rules require the source type τ to be outer changeable: in

(Lift), the premise
∣
∣τ
∣
∣S = τ ′ requires that

∣
∣τ
∣
∣S is defined, and it is

defined only for outer changeable τ ; in (Mod), the requirement is
explicit: ⊢ τ O.C.

(Mod) is the simpler of the two: if e translates to eC at type
τ , then e translates to the stable expression mod eC at type τ .
In (Lift), the expression is translated not at the given type τ but

at its stabilized
∣
∣τ
∣
∣S, capturing the “shallow subsumption” in the

constraint typing rules (SLetE) and (SLetV): a bound expression of
type τ S0 can be translated at type τ S0 to eS, and then “promoted” to
type τC0 by placing it inside a mod.

Reading from changeable data. To use an expression of change-
able type in a context where a stable value is needed—such as pass-
ing some x : intC to a function expecting intS—the (Read) rule
generates a target expression that reads the value out of x : intC

into a variable x′ : intS. The variable-renaming judgment Γ ⊢ e❀
(x ≫ x′ : τ ⊢ e′) takes the expression e, finds a variable x about
to be used, and yields an expression e′ with that occurrence re-
placed by x′. For example, Γ ⊢ case x of . . . ❀ (x ≫ x′ :
τ ⊢ case x′ of . . .). This judgment is derivable only for apply,
case, fst, and ⊕, because these are the elimination forms for outer-
changeable data. For ⊕(x1, x2), we need to read both variables, so
we have one rule for each. The rules are given in Figure 16.

137

Γ ⊢ e : τ →֒
ε eε

Under closed source typing environment Γ,
source expression e is translated at type τ
in mode ε to target expression eε

Γ ⊢ n : int
δ →֒

S
n

(Int)
Γ(x) = ∀~α[D]. τ

Γ ⊢ x : [~δ/~α]τ →֒
S
x[~α = ~δ]

(Var)

Γ ⊢ v1 : τ1 →֒
S
v′1 Γ ⊢ v2 : τ2 →֒

S
v′2

Γ ⊢ (v1, v2) : (τ1 × τ2)
S →֒

S
(v′1, v

′

2)
(Pair)

Γ, x : τ1, f : (τ1 →
ε τ2)

S ⊢ e : τ2 →֒
ε eε

Γ ⊢ fun f(x) = e : (τ1 →
ε τ2)

S →֒
S

fun
ε f(x) = eε

(Fun)

Γ ⊢ v : τ1 →֒
S
v′

Γ ⊢ inl v : (τ1 + τ2)
S →֒

S
inl v′

(Sum)

Γ ⊢ x : (τ1 × τ2)
S →֒

S
x

Γ ⊢ fst x : τ1 →֒
S

fst x
(Fst)

Γ ⊢ x1 : int
S →֒

S
x1 Γ ⊢ x2 : int

S →֒
S
x2

Γ ⊢ ⊕(x1, x2) : int
δ →֒

S
⊕(x1, x2)

(Prim)

Γ ⊢ x1 : (τ1 →
ε τ2)

S →֒
S
x1 Γ ⊢ x2 : τ1 →֒

S
x2

Γ ⊢ apply(x1, x2) : τ2 →֒
ε apply

ε(x1, x2)
(App)

Γ ⊢ x : (τ1 + τ2)
S →֒

S
x

Γ, x1 : τ1 ⊢ e1 : τ →֒
ε e′1

Γ, x2 : τ2 ⊢ e2 : τ →֒
ε e′2

Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ
→֒
ε case x of {x1 ⇒ e′1 , x2 ⇒ e′2}

(Case)

Γ⊢e :τ ′ →֒
C

eC
∣

∣τ
∣

∣

S
= τ ′

Γ ⊢ e : τ →֒
S

mod eC
(Lift)

Γ⊢e :τ →֒
C

eC τ O.C.

Γ ⊢ e : τ →֒
S

mod eC
(Mod)

Γ ⊢ e1 : τ ′ →֒
S
eS Γ, x : τ ′ ⊢ e2 : τ →֒

ε e′2

Γ ⊢ let x = e1 in e2 : τ →֒
ε let x = eS in e′2

(LetE)

Γ, x : ∀~α[D]. τ ′ ⊢ e : τ →֒
ε e′

For all ~δi s.t. ~α = ~δi
 D,

Γ ⊢ v : [~δi/~α]τ
′ →֒

S
e′i

Γ ⊢ let x = v in e : τ →֒
ε let x = select {(~α=~δi) ⇒ e′i}i in e′

(LetV)

Γ ⊢ e❀ (x≫ x′ : τ ′ ⊢ e′)

Γ, x′ :
∣
∣τ ′

∣
∣S ⊢ e′ : τ →֒

C
eC

τ ′ O.C.

Γ ⊢ x : τ ′ →֒
S
x

Γ ⊢ e : τ →֒
C

read x as x′ in eC
(Read)

Γ ⊢ e : τ →֒
S
eS τ O.S.

Γ ⊢ e : τ →֒
C

let r = eS in write(r)
(Write)

Γ ⊢ e : τ →֒
S
eS τ O.C.

Γ ⊢ e : τ →֒
C

let r = eS in read r as r′ in write(r′)
(ReadWrite)

Figure 17. Monomorphizing translation

Monomorphization. A polymorphic source expression has no di-
rectly corresponding target expression: the map function from Sec-
tion 2 corresponds to the two functions map SC and map CS. Given
a polymorphic source value v : ∀~α[D]. τ ′, the (LetV) rule trans-

lates v once for each instantiation ~δi that satisfies the constraint D
(each ~δi such that ~α = ~δi
 D). That is, we translate the value

at source type [~δi/~α]τ
′. This yields a sequence of source expres-

sions e1, . . . , en for the n possible instances. For example, given
∀α[true]. τ ′, we translate the value at type [S/α]τ ′ yielding e1 and
at type [C/α]τ ′ yielding e2. Finally, the rule produces a select ex-

pression, which acts as a function that takes the desired instance ~δi
and returns the appropriate ei.

Since (LetV) generates one function for each satisfying ~δi, it
can create up to 2n instances for n variables. However, dead-code
elimination can remove functions that are not used. Moreover, the
functions that are used would have been handwritten in an explicit
setting, so while the code size is exponential in the worst case, the
saved effort is as well.

6.3 Algorithm

The system of translation rules in Figure 17 is not deterministic.
In fact, if the wrong choices are made it can produce painfully
inefficient code. Suppose we have 2 : intC, and want to translate
it to a stable target expression. Choosing rule (Int) yields the target
expression 2. But we could use (Int), then (ReadWrite)—which
generates an eC with a let, a read and a write—then (Mod), which
wraps that eC in a mod. Clearly, we should have stopped with (Int).

To resolve this nondeterminism in the rules would complicate
them further. Instead, we give the algorithm in Figure 18, which
examines the source expression e and, using type information,
applies the rules necessary to produce an expression of mode ε.

6.4 Properties

Given a constraint-based source typing derivation and assignment
φ for some term e, there are translations from e to (1) a stable eS

and (2) a changeable eC, with appropriate target types:

Theorem 6.1 (Translation Type Soundness).
If C; Γ ⊢ε e : τ and φ is a satisfying assignment for C then

(1) there exists eS such that [φ]Γ ⊢ e : [φ]τ →֒
S
eS and

·;‖Γ‖φ ⊢S eS : ‖τ‖φ and, if e is a value, then eS is a value;

(2) there exists eC such that [φ]Γ ⊢ e : [φ]τ →֒
C
eC

and ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ .

The proof (in the appendix [Chen et al. 2011]) is by induction on
the height of the given derivation of C; Γ ⊢ε e : τ . If the conclud-
ing rule was (SLetE), we use a substitution property (Lemma A.2)

for each ~δi to get a monomorphic constraint typing derivation; that
derivation is not larger than the input derivation, so we can apply
the induction hypothesis to get a translated e′i. The proof constructs
the same translation derivations as the algorithm in Figure 18 (in
fact, we extracted the algorithm from the proof).

We also prove that running a translated program gives the same
result as running the source program. Theorem 6.5 states that in an
initially empty store ·, if evaluating the translated program e′ yields
v′ with new store ρ′, then e evaluates to v where v corresponds to
[ρ′]v′ (the result of substituting values in the store ρ′ for locations
appearing in v′).

To define this correspondence, we use a device somewhat sim-
ilar to logical relations: a relation # on source and target ex-
pressions, allowing us to show that if e : τ # e′ : τ ′ then
v : τ # [ρ]v′ : τ ′. Both e and e′ must be closed. Our defini-
tion is weaker than the equivalence relations used in logical rela-
tions proofs: apply(id, 4) 6# 4, for example. It does not attempt to
equate all programs that have the same meaning, but only particu-

138

function trans (e, ε) = case (e, ε) of

| (n, S) ⇒ Int

| (x, S) ⇒ Var

| ((v1, v2), S) ⇒ Pair(trans(v1, S), trans(v2, S))

| (fun f(x) = e′ : (τ1 →
ε′

τ2)S, S) ⇒ Fun(trans(e′, ε′))

| (inl v, S) ⇒ Sum(trans(v, S))

| (fst (x : (τ1 × τ2)
δ, ε) ⇒ case (δ, ε) of

| (S,S) ⇒ Fst(trans(x, S))
| (S,C) ⇒ if τ1 O.S. then Write(trans(e, S))

else ReadWrite(trans(e, S)))

| (C,C) ⇒ Read(LFst, trans(fst (x′ : (τ1×τ2)
S), C),

trans(x, S))

| (⊕(x1 : intS, x2 : intS), S) ⇒
Prim(trans(x1, S), trans(x2, S))

| (⊕(x1 : intS, x2 : intS), C) ⇒ Write(trans(e, S))))

| (⊕(x1 : intC, x2 : intC), C) ⇒
Read(LPrimop1,

Read(LPrimop2, Write(trans(⊕(x′

1, x
′

2), S))))

| (let x : τ ′′ = e1 : τ ′ in e2, ε) ⇒
LetE(if τ ′′ O.S. then trans(e1, S)

else (if τ ′ = τ ′′ then Mod(trans(e1, C))
else Lift(trans(e1, C))),

trans(e2, ε))

| (let x : ∀~α[D]. τ ′′ = v1 : τ ′ in e2, ε) ⇒

let variants = all ~δi such that ~α = ~δi
 D in

let f = λs. if τ ′′ O.S. then trans(v1, S)

else (if τ ′ = τ ′′ then Mod(trans(v1, C))
else Lift(trans(v1, C))) in

LetV(map f variants, trans(e2, ε))

| (apply(x1 : (τ1 →
ε′

τ2)δ , x2), ε) ⇒ case (ε′, δ, ε) of

| (S,S,S) ⇒ App(trans(x1, S), trans(x2, S))
| (C,S,C) ⇒ App(trans(x1, S), trans(x2, S))

| (S,S,C) ⇒ if τ2 O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))

| (ε′,C,C) ⇒ Read(LApply,

trans(apply(x′ : (τ1 →
ε′

τ2)S, x2), C),

trans(x1, S))

| (C,S,S) ⇒ Mod(trans(e, C))

| (ε′,C,S) ⇒ Mod(trans(e, C))

| (case x : τ of {x1⇒e1 , x2⇒e2}, ε) ⇒
if τ O.S. then

Case(trans(x, S), trans(e1, ε), trans(e2, ε))
else Read(LCase,

trans(case x′ :
∣

∣τ
∣

∣

S
of {x1⇒e1 , x2⇒e2},C),

trans(x, S))

| (x : τ, C) ⇒ if τ O.S. then Write(trans(e, S))
else ReadWrite(trans(e, S))

| (fun f(x) = e′, C) | (inl v, C)

| (n,C) | ((v1, v2),C) ⇒ Write(trans(e, S))

Figure 18. Translation algorithm

lar Level ML terms to AFL terms that are similarly structured, but
have overhead (mod, write, etc.). Thus, integers are related to inte-
gers, pairs are related if their components are related, and so forth.
The definition essentially ignores mod and write and ignores the
mode in applyε. Since translated programs can have “extra” read
and let expressions, these are “substituted out” in the relation, so
that 3 # let x = 3 in x. Functions are related if, given related ar-
guments, they produce related results. Note that we will not induct
over this relation; neither the term, nor the type, gets smaller.

We also relate substitutions: a source substitution s and a target
substitution s,

s = v1/x1, . . . , vn/xn

s = w1/x1, . . . , wn/xn

are related at their environments Γ = x1 : τ1, . . . , xn : τn and
Γ′ = x1 : τ ′1, . . . , xn : τ ′n, written

(v1/x1, . . . , vn/xn) : (x1 : τ1, . . . , xn : τn)
(w1/x1, . . . , wn/xn) : (x1 : τ ′1, . . . , xn : τ ′n)

if, for all k from 1 to n, we have vk : τk # wk : τk.
The key lemma (Lemma 6.3) is that if e →֒

ε e′, the target

program e′ is related to e. Combined with Theorem 6.4, which
shows that related programs evaluate to related values, this means
that the translated program e′ evaluates to the same value that e
does. (Actually, e′ is a value related to that value; only at intδ/int,
and products thereof, are they identical.)

We begin by defining a store substitution operation:

Definition 6.2. The store substitution [ρ]e is defined as an ordinary
substitution, except for e = ℓ, in which case [ρ]ℓ = [ρ](mod ρ(ℓ)).

For example, [ℓ1 7→ 1, ℓ2 7→ 2](ℓ1, ℓ2) = (mod 1,mod 2).
Proofs and several other lemmas can be found in the ap-

pendix [Chen et al. 2011].

Lemma 6.3 (Relation of Translation). If Γ ⊢ e : τ →֒
ε e′ and

· ⊢ s : Γ and · ⊢ s : ‖Γ‖ and s : Γ # s : ‖Γ‖ then

[s]e : τ # [s]e′ : τ ′

where τ ′ = ‖τ‖ if ε = S, and τ ′ = ‖τ‖�C if ε = C.

Theorem 6.4 (Generalized Translation Soundness).
If e : σ # [ρ]e′ : σ′ and D :: ρ ⊢ e′ ⇓ (ρ′ ⊢ w)
then D′ :: e ⇓ v where v : σ # [ρ′]w : σ′.

Translation soundness now follows from Lemma 6.3 and Theo-
rem 6.4:

Theorem 6.5 (Translation Soundness). If · ⊢ e : τ →֒
ε e′ and

· ⊢ e′ ⇓ (ρ′ ⊢ w), then e ⇓ v where v : τ # [ρ′]w : τ ′.

Finally, we extend Theorem 6.5 to further show that the size
W (D) of the derivation of the target-language evaluation is within
a constant factor of the size W (D′) of the derivation of e ⇓ v.
We need a few definitions and intermediate results, which can
be found in the appendix. The proof hinges on classifying the
keywords added by the translation, such as write, as “dirty”: a dirty
keyword will lead to applications of the dirty rule (TEvWrite) in
the evaluation derivation; such applications have no equivalent in
the source-language evaluation.

We then define the “head cost” HC of terms and derivations,
which counts the number of dirty rules applied near the root of the
term, or the root of the derivation, without passing through clean
parts of the term or derivation. Just counting all the dirty keywords
in a term would not rule out a β-reduction duplicating a particularly
dirty part of the term. By defining head cost and proving that
the translation generates terms with bounded head cost—including
for all subterms—we ensure that no part of the term is too dirty;
consequently, substituting a subterm during evaluation yields terms
that are not too dirty.

Definition 6.6. A term e is shallowly k-bounded if HC(e) ≤ k.
A term e is deeply k-bounded if every subterm of e (including e
itself) is shallowly k-bounded. Similarly, a derivation D is shal-
lowly k-bounded if HC(D) ≤ k, and deeply k-bounded if all its
subderivations are shallowly k-bounded.

Theorem 6.7. If trans (e, ǫ) = e′ then e′ is deeply 6-bounded.

139

e : σ # e′ : σ′ Source expression e at type [schema] σ is related to target expression e′ at type [schema] σ′

n : intδ # n : int

(e1, e2) : (τ1 × τ2)
δ
(e′1, e

′

2) : τ
′

1 × τ ′2 if e1 : τ1 # e′1 : τ ′1 and e2 : τ2 # e′2 : τ ′2
(inl e) : (τ1 + τ2)

δ
(inl e′) : τ ′1 + τ ′2 if e : τ1 # e′ : τ ′1

(fst e) : τ # (fst e′) : τ ′ if e : (τ × τ2)
δ
e′ : τ ′ × τ ′2

⊕(e1, e2) : τ # ⊕(e′1, e
′

2) : τ
′ if e1 : τ1 # e′1 : τ ′1 and e2 : τ2 # e′2 : τ ′2

e : τ # (mod eC) : τ ′ mod if e : τ # eC : τ ′

e : τ # (write(eS)) : τ ′ if e : τ # eS : τ ′

[e1/x]e : τ2 # (read eS as x in eC) : τ ′2 if e1 : τ1 # eS : τ ′1 mod and for all v : τ1 # w : τ ′1,
we have [v/x]e : τ2 # [w/x]eC : τ ′2

apply(e1, e2) : τ2 # applyε(e′1, e
′

2) : τ
′

2 if e1 : (τ1 →
ε τ2)

δ
e′1 : τ ′1 →

ε τ ′2 and e2 : τ1 # e′2 : τ ′1

e : [~δ/~α]τ # e′[~α = ~δ] : ‖[~δ/~α]τ‖ if e : ∀~α[D]. τ # e′ : Π~α[D]. τ

v : ∀~α[D]. τ # select {~δi ⇒ ei}i : Π~α[D]. τ if for all i we have v : [~δ/~α]τ # ei : ‖[~δ/~α]τ‖

(fun f(x) = e) : (τ1 →
ε τ2)

δ
(funε f(x) = eε) : τ ′1 →

ε τ ′2 if for all v : τ1 # w : τ ′1,

([(fun f(x) = e)/f][v/x]e) : τ2
([(funε f(x) = eε)/f][w/x]eε) : τ ′2

(let x = e1 in e2) : τ2 # (let x = e′1 in e′2) : τ
′

2 if e1 : τ1 # e′1 : τ ′1 and
for all v : τ1 # w : τ ′1, [v/x]e2 : τ2 # [w/x]e′2 : τ ′2

[e1/x]e2 : τ2 # (let x = e′1 in e′2) : τ
′

2 if e1 : τ1 # e′1 : τ ′1 and
for all v : τ1 # w : τ ′1, [v/x]e2 : τ2 # [w/x]e′2 : τ ′2

(case e of {x1 ⇒ e1 , x2 ⇒ e2}) : τ # (case e′ of {x1 ⇒ e′1 , x2 ⇒ e′2}) : τ
′ if e : (τ1 + τ2)

δ
e′ : τ ′1 + τ ′2 and

for all v : τk # w : τ ′k,
[v/xk]ek : τ # [w/xk]e

′

k : τ ′ for k ∈ {1, 2}

Figure 19. Correspondence of source and target expressions, used in Theorem 6.5 and other results

Theorem 6.8 (Cost Result). Given D :: ρ ⊢ e′ ⇓ (ρ′ ⊢ w)
where for every subderivation D∗ :: ρ∗1 ⊢ e∗ ⇓ (ρ∗2 ⊢ w∗)
of D (including D), HC(D∗) ≤ k, then the number of dirty rule

applications in D is at most k
k+1

W (D).

The cost theorem follows from Theorem C.5 (in the appendix)—
a generalization of Theorem 6.4—and Theorem 6.8:

Theorem 6.9. If D derives · ⊢ trans(e, ε) ⇓ (ρ′ ⊢ w) then D′

derives e ⇓ v where v : τ # [ρ′]w : τ ′ and W (D) ≤ 7W (D′).

Acar et al. [2006] proved that given a well-typed AFL program,
change propagation updates the output consistently with an initial
run. Using Theorems 6.1 and 6.5, this implies that change propaga-
tion is consistent with an initial run of the source program.

7. Related Work

Incremental computation. Self-adjusting computation provides
an approach to incremental computation, which has been studied
extensively [Ramalingam and Reps 1993; Demers et al. 1981; Pugh
and Teitelbaum 1989; Abadi et al. 1996]. Key techniques behind
self-adjusting computation include dynamic dependence graphs,
which allows a fully general change propagation mechanism [Acar
et al. 2006], and a form of memoization that allows inexact compu-
tations to be reused via memoized computations that are (recur-
sively) self-adjusting [Acar et al. 2009]. Programming-language
features allow writing self-adjusting programs but these require
syntactically separating stable and changeable data, as well as code
that operates on such data [Acar et al. 2006, 2009; Ley-Wild et al.
2008; Hammer et al. 2009]. DITTO [Shankar and Bodik 2007]
shows the benefits of eliminating user annotations. By customiz-
ing dependency tracking for invariant checking programs, DITTO
provides a fully automatic incremental invariant checker. The ap-

proach, however, is domain-specific and only works for certain pro-
grams (e.g., functions cannot return arbitrary values): it is unsound
in general.

Information flow and constraint-based type inference. A num-
ber of information flow type systems have been developed to check
security properties, including the SLam calculus [Heintze and
Riecke 1998], JFlow [Myers 1999] and a monadic system [Crary
et al. 2005]. Our type system uses many ideas from Pottier and
Simonet [2003], including a form of constraint-based type infer-
ence [Odersky et al. 1999], and is also broadly similar to other
systems that use subtyping constraints [Simonet 2003; Foster et al.
2006].

Cost semantics. To prove that our translation yields efficient self-
adjusting target programs, we use a simple cost semantics. The idea
of instrumenting evaluations with cost information goes back to the
early ’90s [Sands 1990]. Cost semantics is particularly important
in lazy [Sands 1990; Sansom and Peyton Jones 1995]) and parallel
languages [Spoonhower et al. 2008] where it is especially difficult
to relate execution time to the source code, as well as in self-
adjusting computation [Ley-Wild et al. 2009].

8. Conclusion

This paper presents techniques for translating purely functional
programs to programs that can automatically self-adjust in re-
sponse to dynamic changes to their data. Our contributions in-
clude a constraint-based type system for inferring self-adjusting-
computation types from purely functional programs, a type-directed
translation algorithm that rewrites purely functional programs into
self-adjusting programs, and proofs of critical properties of the
translation: type soundness and observational equivalence, as well
as the intrinsic property of time complexity. Perhaps unsurprisingly,

140

the theorems and their proofs were critical to the determination of
the type systems and the translation algorithm: many of our initial
attempts at the problem resulted in target programs that were not
type sound, that did not ensure observational equivalence, or were
asymptotically slower than the source.

These results take an important step towards the development
of languages and compilers that can generate code that can respond
automatically to dynamically changing data correctly and asymp-
totically optimally, without substantial programming effort. Re-
maining open problems include generalization to imperative pro-
grams with references, techniques and proofs to determine or im-
prove the asymptotic complexity of dynamic responses, and a com-
plete and careful implementation and its evaluation.

Acknowledgments

We thank the anonymous ICFP reviewers, as well as Arthur
Charguéraud, for their useful comments on the submitted version
of this paper.

References

M. Abadi, B. W. Lampson, and J.-J. Lévy. Analysis and caching
of dependencies. In International Conference on Functional
Programming, pages 83–91, 1996.

U. A. Acar, G. E. Blelloch, and R. Harper. Adaptive functional
programming. ACM Trans. Prog. Lang. Sys., 28(6):990–1034,
2006.

U. A. Acar, A. Ihler, R. Mettu, and O. Sümer. Adaptive Bayesian
inference. In Neural Information Processing Systems (NIPS),
2007.

U. A. Acar, G. E. Blelloch, M. Blume, R. Harper, and K. Tang-
wongsan. An experimental analysis of self-adjusting computa-
tion. ACM Trans. Prog. Lang. Sys., 32(1):3:1–53, 2009.

U. A. Acar, G. E. Blelloch, R. Ley-Wild, K. Tangwongsan, and
D. Türkoğlu. Traceable data types for self-adjusting computa-
tion. In Programming Language Design and Implementation,
2010a.

U. A. Acar, A. Cotter, B. Hudson, and D. Türkoğlu. Dynamic well-
spaced point sets. In Symposium on Computational Geometry,
2010b.

M. Carlsson. Monads for incremental computing. In International
Conference on Functional Programming, pages 26–35, 2002.

Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar. On-
line appendix to Implicit Self-Adjusting Computation for Purely
Functional Programs, 2011. http://www.mpi-sws.org/

~joshua/Chen11appendix.pdf.

Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computa-
tional geometry. Proceedings of the IEEE, 80(9):1412–1434,
1992.

K. Crary, A. Kliger, and F. Pfenning. A monadic analysis of infor-
mation flow security with mutable state. Journal of Functional
Programming, 15(2):249–291, Mar. 2005.

L. Damas and R. Milner. Principal type-schemes for functional
programs. In Principles of Programming Languages, pages
207–212. ACM, 1982.

A. Demers, T. Reps, and T. Teitelbaum. Incremental evaluation of
attribute grammars with application to syntax-directed editors.
In Principles of Programming Languages, pages 105–116, 1981.

C. Demetrescu, I. Finocchi, and G. Italiano. Handbook on Data
Structures and Applications, chapter 36: Dynamic Graphs. CRC
Press, 2005.

J. Field and T. Teitelbaum. Incremental reduction in the lambda
calculus. In ACM Conf. LISP and Functional Programming,
pages 307–322, 1990.

J. S. Foster, R. Johnson, J. Kodumal, and A. Aiken. Flow-
insensitive type qualifiers. ACM Trans. Prog. Lang. Sys., 28:
1035–1087, 2006.

L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry,
pages 1117–1134. Chapman and Hall/CRC, 2nd edition, 2004.

M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-based lan-
guage for self-adjusting computation. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
2009.

N. Heintze and J. G. Riecke. The SLam calculus: programming
with secrecy and integrity. In Principles of Programming Lan-
guages (POPL ’98), pages 365–377, 1998.

R. Ley-Wild, M. Fluet, and U. A. Acar. Compiling self-adjusting
programs with continuations. In Proceedings of the Interna-
tional Conference on Functional Programming, 2008.

R. Ley-Wild, U. A. Acar, and M. Fluet. A cost semantics for self-
adjusting computation. In Proceedings of the 26th Annual ACM
Symposium on Principles of Programming Languages, 2009.

MLton. MLton web site. http://www.mlton.org.

A. C. Myers. JFlow: practical mostly-static information flow con-
trol. In Principles of Programming Languages, pages 228–241,
1999.

M. Odersky, M. Sulzmann, and M. Wehr. Type inference with
constrained types. Theory and Practice of Object Systems, 5
(1):35–55, 1999.

F. Pottier and V. Simonet. Information flow inference for ML. ACM
Trans. Prog. Lang. Sys., 25(1):117–158, Jan. 2003.

W. Pugh and T. Teitelbaum. Incremental computation via function
caching. In Principles of Programming Languages, pages 315–
328, 1989.

G. Ramalingam and T. Reps. A categorized bibliography on incre-
mental computation. In Principles of Programming Languages,
pages 502–510, 1993.

A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. Selected Areas in Communications, 21(1),
2003.

D. Sands. Calculi for Time Analysis of Functional Programs. PhD
thesis, University of London, Imperial College, Sept. 1990.

P. M. Sansom and S. L. Peyton Jones. Time and space profiling
for non-strict, higher-order functional languages. In Principles
of Programming Languages, pages 355–366, 1995.

A. Shankar and R. Bodik. DITTO: Automatic incrementalization
of data structure invariant checks (in Java). In Programming
Language Design and Implementation, 2007.

V. Simonet. Type inference with structural subtyping: A faithful
formalization of an efficient constraint solver. In APLAS, pages
283–302, 2003.

D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons.
Space profiling for parallel functional programs. In Interna-
tional Conference on Functional Programming, 2008.

141

http://www.mpi-sws.org/~joshua/Chen11appendix.pdf
http://www.mpi-sws.org/~joshua/Chen11appendix.pdf
http://www.mlton.org

Appendix to Chen et al., ICFP 2011

Appendix to Chen et al., Implicit self-adjusting computation for purely functional programs (ICFP 2011)

In Section A, we show that translation maps source types to corresponding target types. We further prove, in Section B, that translated
programs evaluate to the same (corresponding) values as source programs. Finally, we show in Section C that translated programs take (at
worst) a constant factor longer than source programs.

A. Translation Type Soundness

Lemma A.1 (Translation of Outer Levels).

[φ]τ O.C. if and only if ‖τ‖φ = ‖τ‖�C

φ mod;

[φ]τ O.S. if and only if ‖τ‖φ = ‖τ‖�C

φ .

Proof. Case analysis on [φ]τ , using the definitions of − O.S., − O.C.,‖−‖φ and‖−‖�C

φ .

Lemma A.2 (Substitution). Suppose φ is a satisfying assignment for C, and φ(~α) = ~δ, where ~α ⊆ FV (C).

1. If D derives C; Γ ⊢ε e : τ , then there exists D′ deriving C; [~δ/~α]Γ ⊢ε e : [~δ/~α]τ , where D′ has the same height as D.

2. If C
 δ′ ✁ τ , then C
 [~δ/~α]δ′ ✁ [~δ/~α]τ .

3. If C
 τ ′ <: τ ′′, then C
 [~δ/~α]τ ′ <: [~δ/~α]τ ′′.

4. If C
 τ ′ ⊜ τ ′′, then C
 [~δ/~α]τ ′ ⊜ [~δ/~α]τ ′′.

Proof. By induction on the given derivation.

Lemma A.3. Given τ ′ <: τ ′′ and τ ′ ⊜ τ ′′:

(1) If τ ′′ O.S. then τ ′ = τ ′′.

(2) If τ ′′ O.C. then either τ ′ = τ ′′ or τ ′ =
∣
∣τ ′′

∣
∣S.

Proof. By induction on the derivation of τ ′ <: τ ′′.

• Case (subInt): τ ′ = intδ
′

and τ ′′ = intδ
′′

, where δ′ ≤ δ′′.

(1) If τ ′′ O.S. then δ′′ = S. So τ ′ = τ ′′.

(2) If τ ′′ O.C. then δ′′ = C. If δ′ = S then
∣
∣τ ′′

∣
∣S = intS = intδ

′

= τ ′; if δ′ = C then τ ′′ = intC = intδ
′

= τ ′.

• Case (subProd):

(1) By definition of ⊜, τ ′ = τ ′′.
(2) τ ′′ O.C. is impossible.

• Case (subSum):

(1) If τ ′′ O.S. then τ ′′ = (τ ′′1 + τ ′′2)
S
. By inversion on (subSum), τ ′ = (τ ′1 + τ ′2)

S
. By definition of ⊜, τ ′1 = τ ′′1 and τ ′2 = τ ′′2 . Therefore

τ ′ = τ ′′.

(2) If τ ′′ O.C. then τ ′′ = (τ ′′1 + τ ′′2)
C

. By inversion on (subSum), τ ′ = (τ ′1 + τ ′2)
δ′

. By definition of ⊜, τ ′1 = τ ′′1 and τ ′2 = τ ′′2 . If δ′ = S

then
∣
∣τ ′′

∣
∣S = (τ ′′1 + τ ′′2)

S
, which is equal to τ ′. If δ′ = C then τ ′′ = (τ ′′1 + τ ′′2)

C
= (τ ′1 + τ ′2)

C
= (τ ′1 + τ ′2)

δ′

= τ ′.

• Case (subArrow): Similar to the (subSum) case.

Theorem 6.1 (Translation Type Soundness). If

(a) C; Γ ⊢ε e : τ , and

(b) φ is a satisfying assignment for C

then

(1) there exists eS such that [φ]Γ ⊢ e : [φ]τ →֒
S
eS and

·;‖Γ‖φ ⊢S eS : ‖τ‖φ, and if e is a value, then eS is a value;

(2) there exists eC such that [φ]Γ ⊢ e : [φ]τ →֒
C
eC

and ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ .

Proof. By induction on the height of the derivation of C; Γ ⊢ε e : τ .
We present the proof in a line-by-line style, with the justification for each step on the right. Since we need to show that four different

judgments are derivable (translation in the S mode, typing in the S mode, translation in the C mode, and typing in the C mode), and often
arrive at some of them early, we indicate them with Z.

1 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.1

• Case C; Γ ⊢ε n : int
S

︸︷︷︸
τ

(SInt)

Part (1): Let eS be n.
[φ]Γ ⊢ n : intS →֒

S
n By (Int)

Z [φ]Γ ⊢ e : [φ](intS) →֒
S
eS and eS is a value. By n = e and defn. of substitution

·;‖Γ‖φ ⊢S n : int By (TInt)

·;‖Γ‖φ ⊢S eS : ‖intS‖φ By int = ‖intS‖= ‖[φ]intS‖= ‖intS‖φ and n = eS

Z ·;‖Γ‖φ ⊢S eS : ‖τ‖φ By τ = intS

Part (2): Let eC be let r = n in write(r).
[φ]Γ ⊢ n : intS →֒

S
n Above

[φ]Γ ⊢ n : intS →֒
C

let r = n in write(r) By (Write)

Z [φ]Γ ⊢ e : [φ](intS) →֒
C
eC By n = e and defn. of substitution and eC

·;‖Γ‖φ ⊢S n : int By (TInt)

·;‖Γ‖φ, r : int ⊢S r : int By (TVar)

·;‖Γ‖φ, r : int ⊢C write(r) : int By (TWrite)

·;‖Γ‖φ ⊢C let r = n in write(r) : int By (TLet)

·;‖Γ‖φ ⊢C eC : int By defn. of eC

·;‖Γ‖φ ⊢C eC : ‖intS‖�C

φ By int = ‖intS‖�C

φ

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By τ = intS

• Case
Γ(x) = ∀~α[D]. τ0 C
 ∃~β.[~β/~α]D

C ∧D; Γ ⊢ε x : [~β/~α]τ0
(SVar)

Part (1): Let eS be x[~α = ~δ].
Γ(x) = ∀~α[D]. τ0 Premise

([φ]Γ)(x) = [φ](∀~α[D]. τ0) = ∀~α[[φ]D]. [φ]τ0 By defn. of substitution

[φ]Γ ⊢ x : [~δ/~α]([φ]τ0) →֒
S
x[~α = ~δ] By (Var)

[φ]Γ ⊢ x : [φ][~δ/~α]τ0 →֒
S
x[~α = ~δ] ~δ closed and ~α ∩ dom(φ) = ∅

[φ]Γ ⊢ x : [φ][~δ/~β]([~β/~α]τ0) →֒
S
x[~α = ~δ] Intermediate subst.

[φ]Γ ⊢ x : [φ]([~β/~α]τ0
︸ ︷︷ ︸

τ

) →֒
S
x[~α = ~δ] φ(~β) = ~δ

Z [φ]Γ ⊢ e : [φ]τ →֒
S
eS and eS is a value By e = x and τ = [~β/~α]τ0 and eS = x[~α = ~δ]

(‖Γ‖φ)(x) = Π~α[[φ]D]. [φ]τ0 By defn. of‖−‖φ and defn. of substitution

·;‖Γ‖φ ⊢S x[~α = ~δ] : ‖[~δ/~α]([φ]τ0)‖ By (TVar)

·;‖Γ‖φ ⊢S eS : ‖[φ][~δ/~α]τ0‖ ~α ∩ dom(φ) = ∅

·;‖Γ‖φ ⊢S eS : ‖[~β/~α]τ0‖φ Intermediate subst., φ(~β) = ~δ, def. of‖−‖φ
Z ·;‖Γ‖φ ⊢S eS : ‖τ‖φ τ = [~β/~α]τ0

Part (2), subcase (a) where [φ]τ O.S.: Let eC be let r = x[~α = ~δ] in write(r).

[φ]Γ ⊢ x : [φ]τ →֒
S
x[~α = ~δ] Above

[φ]Γ ⊢ x : [φ]τ →֒
C

let r = x[~α = ~δ] in write(r) By (Write)

Z [φ]Γ ⊢ e : [φ]τ →֒
C
eC By e = x and defn. of eC

·;‖Γ‖φ ⊢S x[~α = ~δ] : ‖τ‖φ Above

·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TVar)

·;‖Γ‖φ, r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

·;‖Γ‖φ ⊢C let r = x[~α = ~δ] in write(r) : ‖τ‖φ By (TLet)

⊢ [φ]τ O.S. Subcase (a) assumption

‖τ‖φ = ‖τ‖�C

φ By Lemma A.1

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By above equality

Part (2), subcase (b) where [φ]τ O.C.: Let eC = let r = eS in read r as r′ in write(r′).

2 2020/8/16

Proof of Theorem 6.1 Appendix to Chen et al., ICFP 2011

[φ]Γ ⊢ x : [φ]τ →֒
S
eS Above

[φ]τ O.C. Subcase (b) assumption

Z [φ]Γ ⊢ x : [φ]τ →֒
C

let r = eS in read r as r′ in write(r′) By (ReadWrite)

·;‖Γ‖φ ⊢S eS : ‖τ‖φ Above

[φ]τ O.C. Subcase (b) assumption

·;‖Γ‖φ, r : ‖τ‖
�C

φ mod, r′ : ‖τ‖�C

φ ⊢S r
′ : ‖τ‖�C

φ By (TPVar)

·;‖Γ‖φ, r : ‖τ‖
�C

φ mod, r′ : ‖τ‖�C

φ ⊢C write(r′) : ‖τ‖�C

φ By (TWrite)

·;‖Γ‖φ, r : ‖τ‖
�C

φ mod ⊢S r : ‖τ‖
�C

φ By (TVar)

·;‖Γ‖φ, r : ‖τ‖
�C

φ mod ⊢C read r as r′ in write(r′) By (TRead)

‖τ‖φ = ‖τ‖�C

φ mod By Lemma A.1

·;‖Γ‖φ ⊢S eS : ‖τ‖�C

φ mod By previous line

Z ·;‖Γ‖φ, x
′ : ‖τ‖�C

φ ⊢C let r = eS in read r as r′ in write(r′)
︸ ︷︷ ︸

eC

: ‖τ‖�C

φ By (TLet)

• Case

C; Γ ⊢ε v1 : τ1 C; Γ ⊢ε v2 : τ2

C; Γ ⊢ε (v1, v2)
︸ ︷︷ ︸

e

: (τ1 × τ2)
S

︸ ︷︷ ︸
τ

(SPair)

Part (1), stable mode translation:
C; Γ ⊢ε v1 : τ1 Subderivation

[φ]Γ ⊢ v1 : [φ]τ1 →֒
S
v1 By i.h.

·;‖Γ‖φ ⊢S v1 : ‖τ1‖φ
′′

C; Γ ⊢ε v2 : τ2 Subderivation

[φ]Γ ⊢ v2 : [φ]τ2 →֒
S
v2 By i.h.

·;‖Γ‖φ ⊢S v2 : ‖τ2‖φ
′′

Let eS = (v1, v2).

[φ]Γ ⊢ (v1, v2) : ([φ]τ1 × [φ]τ2)
S →֒

S
(v1, v2) By (Pair)

Z [φ]Γ ⊢ e : [φ]((τ1 × τ2)
S

︸ ︷︷ ︸
τ

) →֒
S
eS and eS is a value By def. of substitution and eS = (v1, v2)

·;‖Γ‖φ ⊢S (v1, v2) : ‖τ1‖φ ×‖τ2‖φ By (TPair)

Z ·;‖Γ‖φ ⊢S eS : ‖(τ1 × τ2)
S

︸ ︷︷ ︸
τ

‖φ By defn. of‖−‖φ

Part (2), changeable mode translation: Let eC be let r = eS in write(r).
[φ]Γ ⊢ e : [φ]τ →֒

S
eS Above

(τ1 × τ2)
S

︸ ︷︷ ︸
τ

O.S. By definition of O.S.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r = eS in write(r) By (Write)

·;‖Γ‖φ ⊢S eS : ‖τ‖φ Above

·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ, r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

‖τ‖φ = ‖τ‖�C

φ By Lemma A.1

·;‖Γ‖φ, r : ‖τ‖φ ⊢C write(r) : ‖τ‖�C

φ By above equality

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By (TLet)

• Case

C; Γ, x : τ1, f : (τ1 →
ε τ2)

S ⊢ε e
′ : τ2

C; Γ ⊢ε′ fun f(x) = e′
︸ ︷︷ ︸

e

: (τ1 →
ε τ2)

S

︸ ︷︷ ︸
τ

(SFun)

(a) Suppose [φ]ε = S.

3 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.1

C; Γ, x : τ1, f : (τ1 →
ε τ2)

S ⊢ε e
′ : τ2 Subderivation

[φ](Γ, x : τ1, f : (τ1 →
ε τ2)

S) ⊢ e′ : [φ]τ2 →֒
S
e′ By i.h. and [φ]ε = S

·;‖Γ, x : τ1, f : (τ1 →
ε τ2)

S‖φ ⊢S e
′ : ‖τ2‖φ

′′

[φ]Γ ⊢ e : [φ]τ →֒
S

funS f(x) = e′ By (Fun) and ([φ]τ1 →
S

[φ]τ2)
S = [φ]τ

Let eS be funS f(x) = e′.
(1)Z [φ]Γ ⊢ e : [φ]τ →֒

S
eS and eS is a value

·;‖Γ‖φ, x : ‖τ1‖φ, f : ‖τ1‖φ →
S

‖τ2‖φ ⊢S e
′ : ‖τ2‖φ By defn. of‖−‖φ

·;‖Γ‖φ ⊢S (funS f(x) = e′) : ‖τ1‖φ →
S

‖τ2‖φ By (TFun)

(1)Z ·;‖Γ‖φ ⊢S (fun
S f(x) = e′)

︸ ︷︷ ︸
eS

: ‖(τ1 →
ε τ2)

S

︸ ︷︷ ︸
τ

‖φ By defn. of‖−‖φ

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r = eS in write(r) By (Write)

Let eC be let r = eS in write(r).
·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ, r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

(2)Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By (TLet) and Lemma A.1

(b) Suppose [φ]ε = C.

[φ](Γ, x : τ1, f : (τ1 →
ε τ2)

S) ⊢ e′ : [φ]τ2 →֒
C
e′ By i.h. and [φ]ε = C

·;‖Γ, x : τ1, f : (τ1 →
ε τ2)

S‖φ ⊢C e
′ : ‖τ2‖

�C

φ
′′

[φ]Γ ⊢ e : [φ]τ →֒
S

funC f(x) = e′ By (Fun) and ([φ]τ1 →
C

[φ]τ2)
S = [φ]τ

Let eS be funC f(x) = e′.
(1)Z [φ]Γ ⊢ e : [φ]τ →֒

S
eS and eS is a value

·;‖Γ‖φ, x : ‖τ1‖φ, f : ‖τ1‖φ →
C

‖τ2‖
�C

φ ⊢C e
′ : ‖τ2‖

�C

φ By defn. of‖−‖φ

(1)Z ·;‖Γ‖φ ⊢S (funC f(x) = e′) : ‖τ‖φ By (TFun)

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

let r = eS in write(r) Analogous to (a)

(2)Z ·;‖Γ‖φ ⊢C let r = eS in write(r) : ‖τ‖�C

φ
′′

• Case

C; Γ ⊢ε v : τ1

C; Γ ⊢ε inl v
︸︷︷︸

e

: (τ1 + τ2)
S

︸ ︷︷ ︸
τ

(SSum)

Part (1):
C; Γ ⊢ε v : τ1 Subderivation

[φ]Γ ⊢ v : [φ]τ1 →֒
S
v By i.h.

·;‖Γ‖φ ⊢S v : ‖τ1‖φ
′′

Z [φ]Γ ⊢ e : [φ]τ →֒
S

inl v By (Sum)

Let eS = inl v.

·;‖Γ‖φ ⊢S inl v : ‖τ1‖φ +‖τ2‖φ By (TSum)

Z ·;‖Γ‖φ ⊢S inl v
︸︷︷︸
eS

: ‖(τ1 + τ2)
S

︸ ︷︷ ︸
τ

‖φ By (TSum)

Part (2): Similar to (SPair), using (τ1 + τ2)
S
O.S.

• Case
C; Γ ⊢ε x : (τ1 × τ2)

δ C
 δ ≤ ε

C; Γ ⊢ε fst x
︸︷︷︸

e

: τ1
(SFst)

Suppose [φ]δ = S.
Part (1):

C; Γ ⊢ε x : (τ1 × τ2)
δ

Subderivation

[φ]Γ ⊢ x : ([φ]τ1 × [φ]τ2)
S →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖τ1‖φ ×‖τ2‖φ
′′

Z [φ]Γ ⊢ e : [φ]τ1 →֒
S

fst x By (Fst)

Let eS = fst x.

Z ·;‖Γ‖φ ⊢S fst x : ‖τ1‖φ By (TFst)

Part (2): Similar to (SVar):

− If τ1 O.S., let eC be let r = fst x in write(r) and apply rule (Write).

− If τ1 O.C., let eC be let r = fst x in read r as r′ in write(r′) and apply rule (ReadWrite).

4 2020/8/16

Proof of Theorem 6.1 Appendix to Chen et al., ICFP 2011

Suppose [φ]δ = C. We have the premise C
 δ ≤ ε, so [φ]ε = C; we only need to show part (2).
Part (2):

− If τ1 O.S., let eC be read x as x′ in let r = fst x′ in write(r) and apply rule (Read) with (LFst).

. . . , r : ‖τ1‖⊢S r : ‖τ1‖ By (TPVar)

. . . , r : ‖τ1‖⊢C write(r) : ‖τ1‖ By (TWrite)

. . . , r : ‖τ1‖⊢C write(r) : ‖τ1‖
�C τ1 O.S.

‖Γ‖, x′ : ‖τ1‖×‖τ2‖⊢S fst x′ : ‖τ1‖ By (TPVar) then (TFst)

‖Γ‖, x′ : ‖τ1‖×‖τ2‖⊢C let r = fst x′ in write(r) : ‖τ1‖
�C By (TLet)

‖Γ‖⊢S x : ‖(τ1 × τ2)
C‖ By i.h.

‖Γ‖⊢S x : (‖τ1‖×‖τ2‖) mod By def. of‖−‖

‖Γ‖⊢C read x as x′ in let r = fst x′ in write(r) : ‖τ1‖
�C By (TRead)

− If τ1 O.C., then‖τ1‖= τ ′1 mod for some τ ′1.
Let eC be read x as x′ in let r = fst x′ in read r as r′ in write(r′) and apply rule (Read) with (LFst).

. . . , r′ : τ ′1 ⊢C write(r′) : τ ′1 By (TPVar) then (TWrite)

. . . , r′ : τ ′1 ⊢C write(r′) : ‖τ1‖
�C τ1 O.C.

. . . , r : τ ′1 mod ⊢C r : τ
′

1 mod By (TPVar)

. . . , r : τ ′1 mod ⊢C read r as r′ in write(r) : ‖τ1‖
�C By (TRead)

The remaining steps are similar to the τ1 O.S. subcase immediately above.

• Case

C; Γ ⊢ε′ e1 : τ ′ C; Γ, x : τ ′′ ⊢ε e2 : τ C
 τ ′ <: τ ′′ C
 τ ′ ⊜ τ ′′

C; Γ ⊢ε let x = e1 in e2
︸ ︷︷ ︸

e

: τ
(SLetE)

(a) Subcase for [φ]τ ′′ O.C.
C; Γ ⊢ε′ e1 : τ ′ Subderivation

[φ]Γ ⊢ e1 : [φ]τ ′ →֒
C
eC By i.h.

·;‖Γ‖φ ⊢C eC : ‖τ ′‖�C

φ
′′

C
 τ ′ <: τ ′′ Premise

[φ]τ ′ <: [φ]τ ′′ By Lemma A.2

C
 τ ′ ⊜ τ ′′ Premise

[φ]τ ′ ⊜ [φ]τ ′′ By Lemma A.2

[φ]τ ′′ O.C. Subcase (a) assumption

[φ]τ ′ = [φ]τ ′′ or [φ]τ ′ =
∣
∣[φ]τ ′′

∣
∣S By Lemma A.3 (2)

If the former, then:
[φ]Γ ⊢ e1 : [φ]τ ′ →֒

S
mod eC By (Mod)

[φ]Γ ⊢ e1 : [φ]τ ′′ →֒
S

mod eC By [φ]τ ′ = [φ]τ ′′

If the latter, then:
[φ]Γ ⊢ e1 : [φ]τ ′′ →֒

S
mod eC By (Lift)

Now we have the same judgment no matter which equation Lemma A.3 gave us.

·;‖Γ‖φ ⊢C eC : ‖τ ′‖�C

φ Above

·;‖Γ‖φ ⊢S mod eC : ‖τ ′‖�C

φ mod By (TMod)

·;‖Γ‖φ ⊢S mod eC : ‖
∣
∣τ ′′

∣
∣S‖�C

φ mod or ·;‖Γ‖φ ⊢S mod eC : ‖τ ′′‖�C

φ mod By τ ′ = τ ′′ or
∣
∣τ ′′

∣
∣S = τ ′

·;‖Γ‖φ ⊢S mod eC : ‖τ ′′‖�C

φ mod By defn. of
∣
∣−

∣
∣S or copying

[φ]τ ′′ O.C. Subcase (a) assumption

‖τ ′′‖�C

φ = ‖τ ′′‖φ mod By Lemma A.1

·;‖Γ‖φ ⊢S mod eC
︸ ︷︷ ︸

eS

: ‖τ ′′‖φ By above equation

(b) Subcase for [φ]τ ′′ O.S.
C; Γ ⊢ε′ e1 : τ ′ Subderivation

[φ]Γ ⊢ e1 : [φ]τ ′ →֒
S
eS By i.h.

·;‖Γ‖φ ⊢S eS : ‖τ ′‖φ
′′

[φ]τ ′′ O.S. Subcase (b) assumption

[φ]τ ′′ = [φ]τ ′ By Lemma A.3 (1)

·;‖Γ‖φ ⊢S eS : ‖τ ′′‖φ By above equation

5 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.1

For both subcases, we have:
C; Γ, x : τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ, x : [φ]τ ′′ ⊢ e2 : [φ]τ →֒
S
eS2 By i.h. and defn. of substitution

·;‖Γ‖φ, x : ‖τ ′′‖φ ⊢S eS2 : ‖τ‖φ By i.h. and defn. of‖−‖φ

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

let x = eS in eS2 By (LetE)

(1)Z ·;‖Γ‖φ ⊢S let x = eS in eS2 : ‖τ‖φ By (TLet)

C; Γ, x : τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ, x : [φ]τ ′′ ⊢ e2 : [φ]τ →֒
C
eC2 By i.h. and defn. of substitution

·;‖Γ‖φ, x : ‖τ ′′‖φ ⊢C eC2 : ‖τ‖�C

φ By i.h. and defn. of‖−‖φ
(2)Z [φ]Γ ⊢ e : [φ]τ →֒

C
let x = eS in eC2 By (LetE)

(2)Z ·;‖Γ‖φ ⊢C let x = eS in eC2 : ‖τ‖�C

φ By (TLet)

• Case
C ∧D; Γ ⊢S v1 : τ ′ ~α ∩ FV (C,Γ) = ∅ C; Γ, x : ∀~α[D]. τ ′′ ⊢ε e2 : τ

C
 τ ′ <: τ ′′

C
 τ ′ ⊜ τ ′′

C ∧ ∃~α.D; Γ ⊢ε let x = v1 in e2
︸ ︷︷ ︸

e

: τ
(SLetV)

For all ~δi such that ~α = ~δi
 D:

(a) Suppose [φ][~δi/~α]τ
′′ O.S., that is, this ith monomorphic instance is outer-stable, and will not need a mod in the target.

C ∧D; Γ ⊢S v1 : τ ′ Subderivation

~α ∩ FV (C,Γ) = ∅ Premise

C ∧D; [~δi/~α]Γ ⊢S v1 : [~δi/~α]τ
′ By Lemma A.2

[φ]([~δi/~α]Γ) ⊢ v1 : [φ]([~δi/~α]τ
′) →֒

S
vi By i.h., using the lemma’s guarantee about derivation height

~α not free in Γ Above disjointness

[φ]Γ ⊢ v1 : [φ]([~δi/~α]τ
′) →֒

S
vi By above line

·;‖Γ‖φ ⊢S vi : ‖[~δi/~α]τ
′‖φ By i.h. and defn. of substitution

Let ei be vi.
C
 τ ′ <: τ ′′ Premise

C
 τ ′ ⊜ τ ′′ Premise

[φ]τ ′ ⊜ [φ]τ ′′ By Lemma A.2

[φ]τ ′′ O.S. Subcase (a) assumption

[φ]τ ′ = [φ]τ ′′ By Lemma A.3 (1)

[φ]Γ ⊢ v1 : [φ]([~δi/~α]τ
′) →֒

S
vi Above

~α∪ dom(φ) = ∅ By ~α ∩ FV (C,Γ) = ∅ and appropriateness of φ wrt C

[φ]Γ ⊢ v1 : [~δi/~α]([φ]τ
′) →֒

S
vi Property of substitution

[φ]Γ ⊢ v1 : [~δi/~α]([φ]τ
′′) →֒

S
ei By [φ]τ ′ = [φ]τ ′′ and ei = vi

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ
′‖φ Above and ei = vi

·;‖Γ‖φ ⊢S ei : ‖[φ][~δi/~α]τ
′‖ Definition of‖−‖φ

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]([φ]τ
′)‖ By ~α∪ dom(φ) = ∅

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]([φ]τ
′′)‖ By [φ]τ ′ = [φ]τ ′′

·;‖Γ‖φ ⊢S ei : ‖[φ]([~δi/~α]τ
′′)‖ By ~α∪ dom(φ) = ∅

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ
′′‖φ Definition of‖−‖φ

·;‖Γ‖φ, {yk : ‖[~δi/~α]τ
′′‖φ}k ⊢S yi : ‖[~δi/~α]τ

′′‖φ By (TPVar)

End of subcase (a)

(b) Suppose [φ][~δi/~α]τ
′′ O.C., that is, this ith monomorphic instance is outer-changeable, and therefore needs a mod in the target.

6 2020/8/16

Proof of Theorem 6.1 Appendix to Chen et al., ICFP 2011

C ∧D; Γ ⊢S v1 : τ ′ Subderivation

~α ∩ FV (C,Γ) = ∅ Premise

C ∧D; [~δi/~α]Γ ⊢S v1 : [~δi/~α]τ
′ By Lemma A.2

[φ]([~δi/~α]Γ) ⊢ v1 : [φ]([~δi/~α]τ
′) →֒

C
eCi By i.h., using the lemma’s guarantee about derivation height

·;‖Γ‖φ ⊢C eCi : ‖[~δi/~α]τ
′‖�C

φ By i.h. and defn. of‖−‖�C

φ

[φ][~δi/~α]τ
′ <: [φ][~δi/~α]τ

′′ By Lemma A.2

[φ][~δi/~α]τ
′ =

∣
∣[φ][~δi/~α]τ

′′
∣
∣S or [φ][~δi/~α]τ

′ = [φ][~δi/~α]τ
′′ By Lemma A.3 (2)

If the former, then:

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ
′ →֒

C
eCi By

∣
∣[φ][~δi/~α]τ

′′
∣
∣S = [φ][~δi/~α]τ

′

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ
′′ →֒

S
mod eCi By (Lift)

If the latter, then:
[φ]Γ ⊢ v1 : [φ][~δi/~α]τ

′′ →֒
C
eCi By [φ][~δi/~α]τ

′′ = [φ][~δi/~α]τ
′

[φ]Γ ⊢ v1 : [φ][~δi/~α]τ
′′ →֒

S
mod eCi By (Mod)

Let ei be mod eCi .

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ
′‖�C

φ mod By (TMod)

·;‖Γ‖φ ⊢S ei : ‖
∣
∣[~δi/~α]τ

′′
∣
∣S‖�C

φ mod By
∣
∣[φ][~δi/~α]τ

′′
∣
∣S = [φ][~δi/~α]τ

′

·;‖Γ‖φ ⊢S ei : (‖[~δi/~α]τ
′′‖�C

φ) mod By definition of‖−‖�C

φ (φ-shuffling)

·;‖Γ‖φ ⊢S ei : ‖[~δi/~α]τ
′′‖φ By Lemma A.1

End of subcase (b)

This ends the “for all ~δi” above. We now have translation judgments for each instance, and target typings for each ei and associated
variable yi.

C; Γ, x : ∀~α[D]. τ ′′ ⊢ε e2 : τ Subderivation

[φ]Γ, x : ∀~α[D]. τ ′′ ⊢ e2 : [φ]τ →֒
S
eS2 By i.h. and defn. of substitution

[φ]Γ, x : ∀~α[D]. τ ′′ ⊢ e2 : [φ]τ →֒
C
eC2

′′

·;‖Γ‖φ, x : Π~α[D]. [φ]τ ′′ ⊢S eS2 : ‖τ‖φ By i.h. and defn. of‖−‖φ
·;‖Γ‖φ, x : Π~α[D]. [φ]τ ′′ ⊢C eC2 : ‖τ‖�C

φ
′′

Let eS0 be let x = select {~δi ⇒ ei}i in eS2, and let eC0 be let x = select {~δi ⇒ ei}i in eC2 .

Z [φ]Γ ⊢ e : [φ]τ →֒
S
eS0 By (LetV)

Z [φ]Γ ⊢ e : [φ]τ →֒
C
eC0 By (LetV)

·;‖Γ‖φ ⊢S en : ‖[~δi/~α]τ
′′‖φ By extending Γ

·;‖Γ‖φ ⊢S select {~δi ⇒ ei}i : Π~α[D]. [φ]τ ′′ By (TSelect)

·;‖Γ‖φ, x : Π~α[D].‖τ ′′‖φ ⊢S eS2 : ‖τ‖φ Above

Z ·;‖Γ‖φ ⊢S eS0 : ‖τ‖φ By (TLet)

Z ·;‖Γ‖φ ⊢C eC0 : ‖τ‖�C

φ Analogous to above

• Case
C; Γ ⊢S x1 :

τf
︷ ︸︸ ︷

(τ1 →
ε′

τ)δ C; Γ ⊢S x2 : τ1 C
 ε′ = ε C
 δ ✁ τ

C; Γ ⊢ε apply(x1, x2)
︸ ︷︷ ︸

e

: τ
(SApp)

We distinguish four subcases “S-S”, “C-S”, “C-C”, “S-C” according to [φ]ε′ and [φ]δ respectively.

Subcase “S-S” for [φ]ε′ = S, [φ]δ = S.
Part (1):

C; Γ ⊢S x2 : τ1 Subderivation

[φ]Γ ⊢ x2 : [φ]τ1 →֒
S
x2 By i.h.

·;‖Γ‖φ ⊢S x2 : ‖τ1‖φ
′′

C; Γ ⊢S x1 : (τ1 →
ε′

τ)δ Subderivation

7 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.1

[φ]Γ ⊢ x1 : [φ]τf →֒
S
x1 By i.h.

·;‖Γ‖φ ⊢S x1 : ‖(τ1 →
ε′

τ)δ‖φ
′′

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
[φ]ε′

[φ]τ)[φ]δ‖ By def. of‖−‖φ and def. of substitution

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
S

[φ]τ)S‖ Subcase S-S assumption

·;‖Γ‖φ ⊢S x1 : ‖τ1‖φ →
S

‖τ‖φ By def. of‖−‖

Let eS = applyS(x1, x2).

Z [φ]Γ ⊢ e : [φ]τ →֒
S

applyS(x1, x2) By (App)

Z ·;‖Γ‖φ ⊢S applyS(x1, x2) : ‖τ‖φ By (TApp)

Part (2):
(a) Suppose [φ]τ O.S.
Z [φ]Γ ⊢ e : [φ]τ →֒

C
let r = eS in write(r) By (Write)

·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

·;‖Γ‖φ, r : ‖τ‖φ ⊢C write(r) : ‖τ‖φ By (TWrite)

·;‖Γ‖φ ⊢C let r = eS in write(r) : ‖τ‖φ By (TLet)

[φ]τ O.S. Subcase (a) assumption

Z ·;‖Γ‖φ ⊢C let r = eS in write(r) : ‖τ‖�C

φ By Lemma A.1

(b) Suppose [φ]τ O.C.
Z [φ]Γ ⊢ e : [φ]τ →֒

C
let r = eS in read r as r′ in write(r′) By (ReadWrite)

·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖φ By (TPVar)

[φ]τ O.C. Subcase (b) assumption

·;‖Γ‖φ, r : ‖τ‖φ ⊢S r : ‖τ‖
�C

φ mod By Lemma A.1

·;‖Γ‖φ, r : ‖τ‖φ, r
′ : ‖τ‖�C

φ ⊢S r
′ : ‖τ‖�C

φ By (TPVar)

·;‖Γ‖φ, r : ‖τ‖φ, r
′ : ‖τ‖�C

φ ⊢C write(r′) : ‖τ‖�C

φ By (TWrite)

·;‖Γ‖φ, r : ‖τ‖φ ⊢S read r as r′ in write(r′) : ‖τ‖�C

φ By (TRead)

Z ·;‖Γ‖φ ⊢C let r = eS in read r as r′ in write(r′) : ‖τ‖�C

φ By (TLet)

Subcase “C-S” where [φ]ε′ = C and [φ]δ = S.
Part (2):

[φ]Γ ⊢ x1 : [φ]τf →֒
S
x1 From subcase S-S above

[φ]Γ ⊢ x2 : [φ]τ1 →֒
S
x2 From subcase S-S above

Let eC = applyC(x1, x2).

Z [φ]Γ ⊢ e : [φ]τ →֒
C

applyC(x1, x2) By (App)

·;‖Γ‖φ ⊢S x1 : ‖(τ1 →
ε′

τ)δ‖�C

φ By i.h.

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
[φ]ε′

[φ]τ)[φ]δ‖�C By def. of‖−‖�C

φ

·;‖Γ‖φ ⊢S x1 : ‖([φ]τ1 →
C

[φ]τ)S‖�C By subcase C-S assumption

·;‖Γ‖φ ⊢S x1 : ‖[φ]τ1‖ →
C

‖[φ]τ‖�C By def. of‖−‖�C

·;‖Γ‖φ ⊢S x1 : ‖τ1‖φ →
C

‖τ‖�C

φ By def. of‖−‖φ and‖−‖�C

φ

·;‖Γ‖φ ⊢S x2 : ‖τ1‖φ From subcase S-S above

Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By (TApp)
Part (1):

[φ]τ O.C. By [φ]ε′ = C and barring (τ ′1 →
C
τ ′2)

δ where τ ′2 O.S.

[φ]Γ ⊢ e : [φ]τ →֒
C
eC Above

Z [φ]Γ ⊢ e : [φ]τ →֒
S

mod eC By (Mod)

·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ Above

·;‖Γ‖φ ⊢S mod eC : ‖τ‖�C

φ mod By (TMod)

[φ]τ O.C. Above

Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By Lemma A.1

Subcase “C-C” where [φ]ε′ = C and [φ]δ = C:
Part (2):

8 2020/8/16

Proof of Theorem 6.1 Appendix to Chen et al., ICFP 2011

(Γ, x′ : (τ1 →
ε′

τ)S)(x′) = ∀~α[true]. (τ1 →
ε′

τ)S By defn. of Γ

C
 ∃~α.true By defn. of

C; Γ, x′ : (τ1 →
ε′

τ)S ⊢S x
′ : (τ1 →

ε′
τ)S By (SVar)

[φ]Γ, x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ x′ : ([φ]τ1 →
C

[φ]τ)S →֒
S
x′ By (Var)

[φ]Γ, x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ x2 : [φ]τ1 →֒
S
x2 By extending Γ

[φ]Γ, x′ : ([φ]τ1 →
C

[φ]τ)S ⊢ apply(x′, x2) : [φ]τ →֒
C

applyC(x′, x2) By (App)

[φ]Γ, x′ :
∣
∣([φ]τ1 →

C
[φ]τ)C

∣
∣S ⊢ apply(x′, x2)

︸ ︷︷ ︸
e

: [φ]τ →֒
C

applyC(x′, x2) By defn. of substitution and
∣
∣−

∣
∣S

[φ]Γ ⊢ e❀ (x1 ≫ x′ : ([φ]τ1 →
C

[φ]τ)C ⊢ apply(x′, x2)) By (LApply)

([φ]τ1 →
C

[φ]τ)C O.C. By defn. of O.C.

C; Γ ⊢S x1 : τf Subderivation

[φ]Γ ⊢ x1 : ([φ]τ1 →
C

[φ]τ)C →֒
S
x1 By i.h.

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
C

‖τ‖�C

φ) mod ′′

Z [φ]Γ ⊢ e : [φ]τ →֒
C

read x1 as x′ in applyC(x′, x2) By (Read)

Let eC be read x1 as x′ in applyC(x′, x2)

·;‖Γ‖φ, x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢S x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ By (TPVar)

·;‖Γ‖φ, x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢S x2 : ‖τ1‖φ By extending Γ

·;‖Γ‖φ, x
′ : ‖τ1‖φ →

C
‖τ‖�C

φ ⊢C applyC(x′, x2) : ‖τ‖
�C

φ By (TApp)

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
C

‖τ‖�C

φ) mod Above

Z ·;‖Γ‖φ ⊢C read x1 as x′ in applyC(x′, x2) : ‖τ‖
�C

φ By (TRead) (**)

Part (1):
C
 δ ✁ τ Premise

[φ]τ O.C. By [φ]δ = C

[φ]Γ ⊢ e : [φ]τ →֒
C
eC Above

Z [φ]Γ ⊢ e : [φ]τ →֒
S

mod eC By (Mod)

·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ Above (**)

Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By reasoning in subcase C-S for Part (1); note that [φ]τ O.C.

Subcase “S-C” where [φ]ε′ = S and [φ]δ = C:
Part (2):

[φ]Γ, x′ : ([φ]τ1 →
S

[φ]τ)S ⊢ apply(x′, x2) : [φ]τ →֒
C
eC0 Above and substitute x1 with x′

[φ]Γ, x′ :
∣
∣[φ]τf

∣
∣S ⊢ [x′/x1]e : [φ]τ →֒

C
eC0 By defn. of

∣
∣−

∣
∣S and substitution

[φ]Γ ⊢ x1 : ([φ]τ1 →
S

[φ]τ)C →֒
S
x1 By i.h.

Z [φ]Γ ⊢ e : [φ]τ →֒
C

read x1 as x′ in eC0 By (Read)

Let eC = read x1 as x′ in eC0 .

·;‖Γ‖φ ⊢C eC0 : ‖τ‖�C

φ Above and substitute x1 with x′

·;‖Γ‖φ, x
′ : ‖τ1‖φ →

S
‖τ‖�C

φ ⊢C eC0 : ‖τ‖�C

φ By extending Γ

·;‖Γ‖φ ⊢S x1 : (‖τ1‖φ →
S

‖τ‖�C

φ) mod By i.h.

Z ·;‖Γ‖φ ⊢C read x1 as x′ in eC0 : ‖τ‖�C

φ By (TRead)

Part (1): Similar to Part (1) of the subcase for C/C.

• Case

C; Γ ⊢S x1 : int
δ1

C; Γ ⊢S x2 : int
δ2

C
 δ1 = δ2 ⊢ ⊕ : int × int → int

C; Γ ⊢ε ⊕(x1, x2) : int
δ1

(SPrim)

If [φ]δ1 = [φ]δ2 = S then:

9 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.1

C; Γ ⊢S x1 : intδ1 Subderivation

[φ]Γ ⊢ x1 : intδ1 →֒
S
x1 By i.h.

·;‖Γ‖φ ⊢S x1 : ‖intδ1‖φ
′′

·;‖Γ‖φ ⊢S x1 : int By [φ]δ1 = S and def. of‖−‖

[φ]Γ ⊢ x2 : intδ2 →֒
S
x2 Similar to above

·;‖Γ‖φ ⊢S x2 : int Similar to above

[φ]Γ ⊢ e : intS →֒
S

⊕(x1, x2) By (Prim)

Z [φ]Γ ⊢ e : [φ](intδ1) →֒
S

⊕(x1, x2) By [φ]δ1 = S

Let eS = ⊕(x1, x2).
⊢ ⊕ : int → int Premise

·;‖Γ‖φ ⊢S ⊕(x1, x2) : int By (TPrim)

Z ·;‖Γ‖φ ⊢S ⊕(x1, x2) : ‖intδ1‖φ By [φ]δ1 = S and def. of‖−‖
Part (2): Similar to (SPair); note that τ O.S. holds.

If [ψ]δ1 = [ψ]δ2 = C then:
Part (2):

[φ]Γ, y1 : intS, y2 : intS ⊢ ⊕(y1, y2) : intC →֒
S

⊕(y1, y2) By (Var), (Var), (Prim)

[φ]Γ, y1 : intS, y2 : intS ⊢ ⊕(y1, y2) : intC →֒
C

let r = ⊕(y1, y2) in write(r) By (Write)

[φ]Γ, y1 : intS ⊢ ⊕(y1, y2) : intC →֒
C

read x2 as y2 in let r = ⊕(y1, y2) in write(r) By (LPrimop2) then (Read)

Z [φ]Γ ⊢ ⊕(y1, y2) : intC →֒
C

read x1 as y1 in read x2 as y2 in
let r = ⊕(y1, y2) in write(r)

By (LPrimop1) then (Read)

·;‖Γ‖φ, y1 : int, y2 : int, r : int ⊢C write(r) : int By (TVar) then (TWrite)

·;‖Γ‖φ, y1 : int, y2 : int ⊢S ⊕(y1, y2) : int By (TVar) and (TVar), then (TPrim)

·;‖Γ‖φ, y1 : int, y2 : int ⊢C (let r = ⊕(y1, y2) in write(r)) : int By (TLet)

·;‖Γ‖φ, y1 : int ⊢C (read x2 as y2 in let r = . . . in write(r)) : int By (TRead)

·;‖Γ‖φ ⊢C

read x1 as y1 in read x2 as y2 in
let r = ⊕(y1, y2) in write(r)

: int By (TRead)

Z ·;‖Γ‖φ ⊢C

read x1 as y1 in read x2 as y2 in
let r = ⊕(y1, y2) in write(r)

: ‖intδ1‖�C

φ By def. of‖−‖�C and [φ]δ1 = C

Part (1): As the immediately preceding Part (2), but then using rule (Mod).

• Case
C; Γ ⊢S x : (τ1 + τ2)

δ
C; Γ, x1 : τ1 ⊢ε e1 : τ
C; Γ, x2 : τ2 ⊢ε e2 : τ C
 δ ≤ ε C
 δ ✁ τ

C; Γ ⊢ε case x of {x1 ⇒ e1 , x2 ⇒ e2}
︸ ︷︷ ︸

e

: τ
(SCase)

(a) Suppose [φ]δ = S.

C; Γ ⊢S x : (τ1 + τ2)
δ

Subderivation

[φ]Γ ⊢ x : ([φ]τ1 + [φ]τ2)
S →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖τ1‖φ +‖τ2‖φ
′′

C; Γ, x1 : τ1 ⊢ε e1 : τ Subderivation

[φ]Γ, x1 : [φ]τ1 ⊢ e1 : [φ]τ →֒
S
eS1 By i.h.

·;‖Γ‖φ, x1 : ‖τ1‖φ ⊢S eS1 : ‖τ‖φ
′′

[φ]Γ, x1 : [φ]τ1 ⊢ e1 : [φ]τ →֒
C
eC1

′′

·;‖Γ‖φ, x1 : ‖τ1‖φ ⊢C eC1 : ‖τ‖�C

φ
′′

C; Γ, x2 : τ2 ⊢ε e2 : τ Subderivation

[φ]Γ, x2 : [φ]τ2 ⊢ e2 : [φ]τ →֒
S
eS2 By i.h.

·;‖Γ‖φ, x2 : ‖τ2‖φ ⊢S eS2 : ‖τ‖φ
′′

[φ]Γ, x2 : [φ]τ2 ⊢ e2 : [φ]τ →֒
C
eC2

′′

·;‖Γ‖φ, x2 : ‖τ2‖φ ⊢C eC2 : ‖τ‖�C

φ
′′

(1)Z [φ]Γ ⊢ e : [φ]τ →֒
S

case x of {x1 ⇒ eS1 , x2 ⇒ eS2} By (Case)

(1)Z ·;‖Γ‖φ ⊢S case x of {x1 ⇒ eS1 , x2 ⇒ eS2} : ‖τ‖φ By (TCase)

(2)Z [φ]Γ ⊢ e : [φ]τ →֒
C

case x of {x1 ⇒ eC1 , x2 ⇒ eC2} By (Case)

(2)Z ·;‖Γ‖φ ⊢C case x of {x1 ⇒ eC1 , x2 ⇒ eC2} : ‖τ‖�C

φ By (TCase)

(b) Suppose [φ]δ = C.

10 2020/8/16

Proof of Theorem 6.1 Appendix to Chen et al., ICFP 2011

[φ]Γ, x′ : ([φ]τ1 + [φ]τ2)
S ⊢ [x′/x]e : [φ]τ →֒

C
eC0 Above but with x′ in place of the first x

·;‖Γ‖φ, x
′ : ‖τ1‖φ +‖τ2‖φ ⊢C eC0 : ‖τ‖�C

φ
′′

[φ]Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2}
❀ (x≫ x′ : ([φ]τ1 + [φ]τ2)

C ⊢ case x′ of {x1 ⇒ e1 , x2 ⇒ e2})
By (LCase)

([φ]τ1 + [φ]τ2)
C
O.C. By defn. of O.C.

[φ]Γ ⊢ x : ([φ]τ1 + [φ]τ2)
C →֒

S
x By i.h.

·;‖Γ‖φ ⊢S x : ‖(τ1 + τ2)
C‖φ

′′

·;‖Γ‖φ ⊢S x : (‖τ1‖φ +‖τ2‖φ) mod By def. of‖−‖φ
(2)Z [φ]Γ ⊢ e : [φ]τ →֒

C
read x as x′ in eC0 By (Read)

Let eC = read x as x′ in eC0 .

(2)Z ·;‖Γ‖φ ⊢C eC : ‖τ‖�C

φ By (TRead)

C
 δ ✁ τ Premise

[φ]τ O.C. By [φ]δ = C and defn. of O.C.
(1)Z [φ]Γ ⊢ e : [φ]τ →֒

S
mod eC By (Mod)

·;‖Γ‖φ ⊢S mod eC : ‖τ‖�C

φ mod By (TMod)

‖τ‖�C

φ mod = ‖τ‖φ By Lemma A.1

(1)Z ·;‖Γ‖φ ⊢S mod eC : ‖τ‖φ By above equation

B. Translation Soundness (Observational Equivalence)

As described in the main paper, we define a relation # on source and target expressions. This relation essentially ignores mod and write, and
substitutes out in read and let expressions. We also relate substitutions, and define a store substitution that replaces locations ℓ with mods of
locations’ contents.

Lemma B.1 (Source Results Are Closed). If e is closed and e ⇓ v, then v is closed.

Proof. By induction on the derivation of e ⇓ v. All cases are straightforward.

Lemma B.2 (Stores Are Monotonic). If ρ1 ⊢ e ⇓ (ρ2 ⊢ w′) then there exists ρ′ such that ρ2 = ρ1, ρ
′.

Proof. By induction on the given derivation. All cases are straightforward.

Lemma B.3 (Values Are Ineffective). For all ρ and w such that ρ ⊢ w ⇓ (ρ′ ⊢ v′), it is the case that ρ = ρ′ and w = v′.

Proof. By induction on the given derivation.

Lemma B.4. For all v, the judgment v ⇓ v is derivable.

Proof. By structural induction on v.

Lemma 6.3 (Relation of Translation).
If Γ ⊢ e : τ →֒

ε e′ and · ⊢ s : Γ and · ⊢ s : ‖Γ‖ and s : Γ # s : ‖Γ‖

then [s]e : τ # [s]e′ : τ ′ where τ ′ = ‖τ‖ if ε = S and τ ′ = ‖τ‖�C if ε = C.

Proof. By induction on the derivation of Γ ⊢ e : τ →֒
ε e′.

• Case (LetE): e = (let x = e1 in e2) and e′ = (let x = eS in e′2).

Let τ ′1 = ‖τ1‖ and τ ′ = ‖τ‖.
To show that [s]e and [s]e′ are related, we need to show [s]e1 : τ1 # [s]eS : τ ′1 and for all v # w, it is the case that
[v/x][s]e2 : τ # [w/x][s]e′2 : τ ′. The first part is straightforward. For the second part, suppose we have some v : τ1 # w : τ ′1.

Let s′ = s, v/x and s′ = s, w/x.

s′ : (Γ, x : τ1) # s′ : (‖Γ‖, x : τ ′1) s : Γ # s : ‖Γ‖ and v : τ1 # w : τ ′1
Γ, x : τ1 ⊢ e2 : τ →֒

ε e′2 Subd.

[s′]e2 : τ # [s′]e′2 : τ ′ By i.h.

[s, v/x]e2 : τ # [s, w/x]e′2 : τ ′ By def. of s′ and s′

(Inside)Z [v/x][s]e2 : τ # [w/x][s]e′2 : τ ′ x not free in s, s, v

Popping out of the quantifier, we have (let x = [s]e1 in [s]e2) : τ # (let x = [s]eS in [s]e′2) : τ
′, from which e : τ # e′ : τ ′ follows by

the definition of substitution (moving the [s] and [s] outward).

11 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Lemma 6.3

• Case (Int): e = n and e′ = n.

It follows from the definition of # that n : intδ # n : int, which is the same as [s]n : intδ # [s]n : int, which was to be shown.

• Case (Var):

Γ ⊢ x : [~δ/~α]τ0 →֒
S
x[~α = ~δ] Given

· ⊢ [s]x : ∀~α[D]. τ0 From · ⊢ s : Γ
· ⊢ [s]x : Π~α[D]. τ0 From · ⊢ s : ‖Γ‖

[s]x : Π~α[D]. τ0 # [s]x : Π~α[D]. τ0 From s : Γ # s′ : ‖Γ‖

[s]x : [~δ/~α]τ0 # ([s]x)[~α = ~δ] : ‖[~δ/~α]τ0‖ By def. of #

[s]x : [~δ/~α]τ0
︸ ︷︷ ︸

τ

[s](x[~α = ~δ]) : ‖[~δ/~α]τ0‖
︸ ︷︷ ︸

‖τ‖

By def. of subst.

• Case (Pair):

Γ ⊢ (v1, v2) :

τ
︷ ︸︸ ︷

(τ1 × τ2)
S →֒

S
(v′1, v

′

2) Given

Γ ⊢ v1 : τ1 →֒
S
v′1 Subd.

[s]v1 : τ1 # [s]v′1 : ‖τ1‖ By i.h.

Γ ⊢ v2 : τ2 →֒
S
v′2 Subd.

[s]v1 : τ2 # [s]v′2 : ‖τ2‖ By i.h.

([s]v1, [s]v2) : (τ1 × τ2)
S
([s]v′1, [s]v

′

2) : (‖τ1‖×‖τ2‖)
S

By def. of #

Z [s](v1, v2) : (τ1 × τ2)
S
[s](v′1, v

′

2) : ‖(τ1 × τ2)
S‖ By def. of subst. and‖−‖

• Case (Fun):

Γ ⊢ fun f(x) = e : (τ1 →
ε τ2)

S →֒
S

funε f(x) = eε is given. Suppose v : τ1 # w : ‖τ1‖.

Let s′ = s, v/x, (fun f(x) = e)/f . Let s′ = s, w/x, (funε f(x) = eε)/f .

We show the case for ε = C. The case for ε = S is similar, using‖−‖ instead of‖−‖�C.

Γ, x : τ1, f : (τ1 →
C
τ2)

S ⊢ e : τ2 →֒
C
eε Subd.

[s′]e : τ2 # [s′]eε : ‖τ2‖
�C By i.h.

[s, v/x, . . . /f]e : τ2 # [s, w/x, · · · /f]eε : ‖τ2‖
�C By def. of s′ and s′

[. . . /f][v/x][s]e : τ2 # [· · · /f][w/x][s]eε : ‖τ2‖
�C By def. of subst.

By definition of # for fun, we have fun f(x) = e) : (τ1 →
C
τ2)

S

︸ ︷︷ ︸
τ

(funC f(x) = eε) : ‖τ1‖ →
C

‖τ2‖
�C

︸ ︷︷ ︸

‖τ‖

.

• Case (Sum):
Γ ⊢ inl v : (τ1 + τ2)

S →֒
S

inl v′ Given

Γ ⊢ v : τ1 →֒
S
v′ Subd.

[s]v : τ1 # [s]v′ : ‖τ1‖ By i.h.

inl ([s]v) : (τ1 + τ2)
S
inl ([s]v′) : ‖τ1‖+‖τ2‖ By def. of

Z inl ([s]v) : (τ1 + τ2)
S
inl ([s]v′) : ‖(τ1 + τ2)

S‖ By def. of‖−‖

• Case (Fst):
Γ ⊢ fst x : τ →֒

S
fst x Given

Γ ⊢ x : (τ × τ2)
δ →֒

S
x Subd.

[s]x : (τ × τ2)
δ
[s]x : ‖(τ × τ2)

δ‖ By i.h.

[s]x : (τ × τ2)
δ
[s]x : ‖τ‖×‖τ2‖ By def. of‖−‖

fst [s]x : τ # fst [s]x : ‖τ‖ By def. of #

Z [s](fst x) : τ # [s](fst x) : ‖τ‖ By def. of subst.

• Case (Prim):
Γ ⊢ ⊕(x1, x2) : τ →֒

S
⊕(x1, x2) Given

Γ ⊢ x1 : τ1 →֒
S
x1 Subd.

[s]x1 : τ1 # [s]x1 : ‖τ1‖ By i.h.

[s]x2 : τ2 # [s]x2 : ‖τ2‖ By similar reasoning for x2

⊕([s]x1, [s]x2) : τ #⊕([s]x1, [s]x2) : ‖τ‖ By def. of #

Z [s](⊕(x1, x2)) : τ # [s](⊕(x1, x2)) : ‖τ‖ By def. of subst.

12 2020/8/16

Proof of Lemma 6.3 Appendix to Chen et al., ICFP 2011

• Case (App): e = applyε(x1, x2).

Let‖−‖ε be‖−‖when ε = S, and‖−‖�C when ε = C.
Γ ⊢ apply(x1, x2) : τ2 →֒

ε applyε(x1, x2) Given

Γ ⊢ x1 : (τ1 →
ε τ2)

S →֒
S
x1 Subd.

[s]x1 : (τ1 →
ε τ2)

S
[s]x1 : ‖(τ1 →

ε τ2)
S‖ By i.h.

[s]x1 : (τ1 →
ε τ2)

S
[s]x1 : ‖τ1‖ →

ε ‖τ2‖
ε By def. of‖−‖

Γ ⊢ x2 : τ1 →֒
S
x2 Subd.

[s]x2 : τ1 # [s]x2 : ‖τ1‖ By i.h.

apply([s]x1, [s]x2) : τ2 # applyε([s]x1, [s]x2) : ‖τ2‖
ε By def. of #

Z [s]apply(x1, x2) : τ2 # [s](applyε(x1, x2)) : ‖τ2‖
ε By def. of subst.

• Case (Case):

Γ ⊢ case x of {x1 ⇒ e1 , x2 ⇒ e2} : τ →֒
ε case x of {x1 ⇒ e′1 , x2 ⇒ e′2} Given

Γ ⊢ x : (τ1 + τ2)
S →֒

S
x Subd.

x : (τ1 + τ2)
S
x : τ ′1 + τ ′2 By i.h. and def. of‖−‖

For k ∈ {1, 2}:

For all v : τk # w : τ ′k:

Let s′ = s, v/xk and s′ = s, w/xk.
Γ, xk : τk ⊢ ek : τ →֒

ε e′k Subd.

[s′]ek : τ # [s′]e′k : τ ′ By i.h.

[s, v/xk]ek : τ # [s, w/xk]e
′

k : τ ′ By def. of s′ and s′

[v/xk][s]ek : τ # [w/xk][s]e
′

k : τ ′ By def. of subst. (xk fresh)

Therefore case x of {x1 ⇒ [s]e1 , x2 ⇒ [s]e2} : τ # case x of {x1 ⇒ [s]e′1 , x2 ⇒ [s]e′2} : τ ′.
The result follows by pushing [s] and [s] to the outside.

• Case (Mod):

Γ ⊢ e : τ →֒
S
eC mod Given

Γ ⊢ e : τ →֒
C
eC Subd.

[s]e : τ # [s]eC : ‖τ‖�C By i.h.

[s]e : τ #mod [s]eC : ‖τ‖�C mod By def. of #

[s]e : τ # [s](mod eC) : ‖τ‖�C mod By def. of subst.

τ O.C. Premise

‖τ‖�C mod = ‖τ‖ By Lemma A.1

Z [s]e : τ # [s](mod eC) : ‖τ‖ By preceding equation

• Case (Lift):

Γ ⊢ e : τ →֒
S
eC mod Given

Γ ⊢ e :
∣
∣τ
∣
∣S →֒

C
eC Subd.

[s]e : τ # [s]eC : ‖
∣
∣τ
∣
∣S‖�C By i.h.

‖
∣
∣τ
∣
∣S‖�C = ‖τ‖�C By def. of‖−‖�C

[s]e : τ # [s]eC : ‖τ‖�C By preceding equation

[s]e : τ #mod [s]eC : ‖τ‖�C mod By def. of #

[s]e : τ # [s](mod eC) : ‖τ‖�C mod By def. of subst.

τ O.C. By def. of
∣
∣−

∣
∣S

‖τ‖�C mod = ‖τ‖ By Lemma A.1

Z [s]e : τ # [s](mod eC) : ‖τ‖ By preceding equation

• Case (LetV):

Γ ⊢ let x = v1 in e2 : τ →֒
ε let . . . Given

For all δi:

Γ ⊢ v : [~δi/~α]τ0 →֒
S
e′i Subd.

[s]v : [~δi/~α]τ0 # [s]e′i : ‖[~δi/~α]τ0‖ By i.h.

13 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Lemma 6.3

The definition of # gives v : ∀~α[D]. τ0 # (select {~δi ⇒ e′i}i) : Π~α[D]. τ0.
For all v0, w0 such that v0 : ∀~α[D]. τ0 # w0 : Π~α[D]. τ0:

(begin)
Γ, x : ∀~α[D]. τ0 ⊢ e2 : τ →֒

ε e′2 Subd.

[s, v0/x]e2 : τ # [s, w0/x]e
′

2 : τ ′ By i.h.

[v0/x][s]e2 : τ # [w0/x][s]e
′

2 : τ ′ By def. of subst.
(end)

By the definition of # and the definition of substitution, this gives [s](let x = v in e2) : τ # [s](let x = select {~δi ⇒ e′i}i in e′2) : τ
′.

• Case (Read):

We have a subderivation of Γ ⊢ e❀ (x≫ x′ : τ0 ⊢ e′). By inversion on the rules for such judgments, either

(LApply) e = apply(x, x2), or

(LCase) e = case x of {x1 ⇒ eL , x2 ⇒ eR}, or

(LPrimop1) e = ⊕(x, x2) and e′ = ⊕(x′, x2), or

(LPrimop2) e = ⊕(x1, x) and e′ = ⊕(x1, x
′).

Assume the first case; the others are similar.

Given: Γ ⊢ e : τ →֒
C

read x as x′ in eC.

Let τ1 =
∣
∣τ0

∣
∣S and τ ′1 be such that‖τ0‖= τ ′1 mod (it must be the case that τ0 has this form because τ0 O.C.).

Suppose v : τ1 # w : τ ′1.

Γ ⊢ x : τ0 →֒
S
x Subd.

[s]x : τ0 # [s]x : ‖τ0‖ By i.h.

Γ, x′ :
∣
∣τ0

∣
∣S ⊢ e′ : τ →֒

C
eC Subd.

[s, v/x′]e′ : τ # [s, w/x′]eC : τ ′ By i.h.

[s, v/x′](apply(x′, x2)) : τ # [s, w/x′]eC : τ ′ By inversion (LApply)

[v/x′][s](apply(x′, x2)) : τ # [w/x′][s]eC : τ ′ By def. of subst.

Therefore, by the definition of # when the target expression is a read, we have

[x/x′]([s]apply(x′, x2)) : τ # read [s]x as x′ in [s]eC : τ ′

By def. of subst., [s][x/x′](apply(x′, x2)) : τ # [s](read x as x′ in eC) : τ ′.
By def. of subst., [s] (apply(x, x2))

︸ ︷︷ ︸
e

: τ # [s] (read x as x′ in eC)
︸ ︷︷ ︸

e′

: τ ′, which was to be shown.

• Case (Write):

Γ ⊢ e : τ →֒
C

let r = eS in write(r) Given

Γ ⊢ e : τ →֒
S
eS Subd.

[s]e : τ # [s]eS : τ ′ By i.h.

Suppose v : τ # w : τ ′.
[v/r]r : τ #w : τ ′ By def. of subst.

[v/r][s]r : τ #w : τ ′ By def. of subst. (r fresh)

[v/r][s]r : τ #write(w) : τ ′ By def. of #

[v/r][s]r : τ #write([w/r]r) : τ ′ By def. of subst.

[v/r][s]r : τ # [w/r][s](write(r)) : τ ′ By def. of subst.

By definition of #, we have [e/r][s]r : τ # let r = [s]eS in [s](write(r)) : τ ′.
By def. of subst., [s]e : τ # [s](let r = eS in write(r)) : τ ′, which was to be shown.

• Case (ReadWrite):
Using techniques from the (Write) and (Read) cases.

Lemma B.5. If e : τ # e′ : τ ′ then e and e′ are closed. (In particular, e′ has no free location variables ℓ.)

Proof. Follows from the definition of #.

Lemma B.6. If e : τ # [ρ1]e
′ : τ ′ and ρ2 extends ρ1 then e : τ # [ρ2]e

′ : τ ′.

Proof. By Lemma B.5, [ρ1]e
′ is closed, so FV (e′) ⊆ dom(ρ1). If ρ2 extends ρ1 then it agrees on all locations in ρ1. Therefore

[ρ2]e
′ = [ρ1]e

′, so replacing equals with equals gives the result.

14 2020/8/16

Appendix to Chen et al., ICFP 2011

Lemma B.7. If [v1/x]e2 ⇓ v and e1 ⇓ v1 then [e1/x]e2 ⇓ v.

Proof. By induction on the given derivation.

Theorem 6.4 (Generalized Translation Soundness).
If e : σ # [ρ]e′ : σ′ and D :: ρ ⊢ e′ ⇓ (ρ′ ⊢ w)
then D′ :: e ⇓ v where v : σ # [ρ′]w : σ′.

Proof. By induction on the derivation of ρ ⊢ e′ ⇓ (ρ′ ⊢ w).

• Case (TEvApply): e′ = applyε(e′1, e
′

2)

ρ ⊢ applyε(e′1, e
′

2) ⇓ (ρ′ ⊢ w) Given

ρ ⊢ e′1 ⇓ (ρ1 ⊢ funε f(x) = eε) By inversion (TEvApply)

ρ1 ⊢ e′2 ⇓ (ρ2 ⊢ w2)
′′

D3 :: ρ2 ⊢ [funε f(x) = eε/f][w2/x]e
ε ⇓ (ρ′ ⊢ w) ′′

e = apply(e1, e2) and e1 : (τ1 →
ε τ2)

δ
[ρ]e′1 : τ ′1 →

ε τ ′2 Def. of #

e1 : (τ1 →
ε τ2)

δ
[ρ2]e

′

1 : τ ′1 →
ε τ ′2 By Lemma B.6

e1 ⇓ v1 and v1 : (τ1 →
ε τ2)

δ
([ρ1](funε f(x) = eε)) : τ ′1 →

ε τ ′2 By i.h. (subd.)

v1 : (τ1 →
ε τ2)

δ
([ρ2](funε f(x) = eε)) : τ ′1 →

ε τ ′2 By Lemma B.6

e2 : τ1 # [ρ]e′2 : τ ′1 Def. of #

e2 : τ1 # [ρ2]e
′

2 : τ ′1 By Lemma B.6

e2 ⇓ v2 and v2 : τ1 # [ρ2]w2 : τ ′1 By i.h. (subd.)

v1 : (τ1 →
ε τ2)

δ
([ρ2](funε f(x) = eε)) : τ ′1 →

ε τ ′2 Above

v1 = (fun f(x) = e0) By def. of #

[(fun f(x) = e0)/f][v2/x]e0 : τ # [(funε f(x) = eε)/f][w2/x][ρ2]e
ε : τ ′ By def. of # (“for all. . . ”)

D3 :: ρ2 ⊢ [(funε f(x) = eε)/f][w2/x]e
ε ⇓ (ρ′ ⊢ w) Above

Z [(fun f(x) = e0)/f][v2/x]e0 ⇓ v and v : τ # [ρ′]w : τ ′ By i.h. (subd.)

Z apply(e1, e2) ⇓ v By (SEvApply)

• Case (TEvMachineValue):

ρ ⊢ e′ ⇓ (ρ ⊢ e′) Given

Z e : τ # [ρ]e′ : τ ′ Given

e is some value v By def. of source values, machine values, and #

v ⇓ v By (SEvValue)

Z e ⇓ v e = v

• Case (TEvPair):

ρ ⊢

e′

︷ ︸︸ ︷

(e′1, e
′

2) ⇓ (ρ′ ⊢

w
︷ ︸︸ ︷

(w1, w2)) Given

e : τ # (e′1, e
′

2) : τ
′ Given

(e1, e2) : (τ1 × τ2)
δ
(e′1, e

′

2) : τ
′

1 × τ ′2 By def. of #

e1 : τ1 # e′1 : τ ′1
′′

e2 : τ2 # e′2 : τ ′2
′′

ρ ⊢ e′1 ⇓ (ρ1 ⊢ v′1) Subd.

e1 ⇓ v1 and v1 : τ1 # [ρ1]v
′

1 : τ ′1 By i.h.

ρ1 ⊢ e′1 ⇓ (ρ′ ⊢ v′2) Subd.

e2 ⇓ v2 and v2 : τ2 # [ρ′]v′1 : τ ′1 By i.h.

Z (e1, e2) ⇓ (v1, v2) By (SEvPair)

e1 ⇓ v1 and v1 : τ1 # [ρ1]v
′

1 : τ ′1 Above

e1 ⇓ v1 and v1 : τ1 # [ρ′]v′1 : τ ′1 By Lemma B.2 then Lemma B.6

(v1, v2) : (τ1 × τ2)
δ
([ρ′]v′1, [ρ

′]v′2) : τ
′

1 × τ ′2 By def. of #

Z (v1, v2) : τ # [ρ′](v′1, v
′

2) : τ
′ By def. of subst. and τ = . . . and τ ′ = . . .

15 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.4

• Case (TEvSum):

ρ ⊢ inl e′0 ⇓ (ρ′ ⊢

w
︷ ︸︸ ︷

inl w0) Given

inl e0 : τ # [ρ](inl e′0) : τ
′ Given

inl e0 : (τ1 + τ2)
δ
inl ([ρ]e′0) : τ

′

1 + τ ′2 By def. of subst.

e0 : τ1 # [ρ]e′0 : τ ′1 By def. of #

ρ ⊢ e′0 ⇓ (ρ′ ⊢ w0) Subd.

e0 ⇓ v0 By i.h.

v0 : τ1 # [ρ′]w0 : τ ′1
′′

Z inl e0 ⇓

v
︷ ︸︸ ︷

inl v0 By (SEvSum)

inl v0 : (τ1 + τ2)
δ
inl ([ρ′]w0) : τ

′

1 + τ ′2 By def. of #

Z inl v0 : τ # [ρ′](inl w0)
︸ ︷︷ ︸

w

: τ ′ By def. of subst. and τ = . . . and τ ′ = . . .

• Case (TEvPrimop):

ρ ⊢ ⊕(e′1, e
′

2) ⇓ (ρ′ ⊢ w) Given

e : τ # [ρ](⊕(e′1, e
′

2)) : τ
′ Given

e : τ #⊕([ρ]e′1, [ρ]e
′

2) : τ
′ By def. of subst.

e = ⊕(e1, e2) and ek : τk # e′k : τ ′k (for all k ∈ {1, 2}) By def. of #

ρ ⊢ e′k ⇓ (ρk ⊢ wk) (for all k ∈ {1, 2}) Subd.

ek ⇓ vk and vk : τk # wk : τ ′k (for all k ∈ {1, 2}) By i.h.

vk = wk (for all k ∈ {1, 2}) By def. of # at integer type

⊕(w1, w2) = w Premise

⊕(v1, v2) = w v1 = w1 and v2 = w2

Z ⊕(e1, e2) ⇓ w and w = v By (SEvPrimop)

w : τ #w : τ ′ By def. of # at integer type

Z w : τ # [ρ′]w : τ ′ By def. of store subst.

• Case (TEvFst):

ρ ⊢ fst e′0 ⇓ (ρ′ ⊢ w) Given

(fst e0) : τ # [ρ](fst e′0) : τ
′ Given

(fst e0) : τ # fst ([ρ]e′0) : τ
′ By def. of subst.

e0 : τ # [ρ]e′0 : τ ′ By def. of #

ρ ⊢ e′0 ⇓ (ρ′ ⊢ (w,w2)) Subd.

e0 ⇓ vpair By i.h.

vpair : τpair # [ρ′](w,w2) : τ
′ × τ ′2

′′ and def. of #

(v, v2) : (τ × τ2)
δ
[ρ′](w,w2) : τ

′ × τ ′2 By def. of #

(v, v2) : (τ × τ2)
δ
([ρ′]w, [ρ′]w2) : τ

′ × τ ′2 By def. of subst.

Z v : τ # [ρ′]w : τ ′ By def. of #

Z fst e0 ⇓ v By (SEvFst)

• Case (TEvLet):

ρ ⊢ let x = e′1 in e′2 ⇓ (ρ′ ⊢ w) Given

ρ ⊢ e′1 ⇓ (ρ1 ⊢ w1) Subd.

e1 ⇓ v1 and v1 : τ1 # [ρ1]w1 : τ ′1 By i.h.

e : τ # [ρ]let x = e′1 in e′2 : τ ′ Given

e : τ # let x = [ρ]e′1 in [ρ]e′2 : τ ′ Def. of substitution

By the definition of # with a target let, either e = (let x = e1 in e2) or e = [e1/x]e2.

In the former case:
e = (let x = e1 in e2) and e1 : τ1 # [ρ]e′1 : τ ′1 By def. of #

[v1/x]e2 : τ # [[ρ1]w1/x][ρ]e
′

2 : τ ′ ′′

ρ1 ⊢ [w1/x]e
′

2 ⇓ (ρ′ ⊢ w) Subd.

Z v : τ # [ρ′]w : τ ′ i.h.

Z e ⇓ v By (SEvLet)

In the latter case, also use Lemma B.7.

16 2020/8/16

Proof of Theorem 6.4 Appendix to Chen et al., ICFP 2011

• Case (TEvCaseLeft):

ρ ⊢ case e′0 of {x1 ⇒ e′1 , x2 ⇒ e′2} ⇓ (ρ′ ⊢ w) Given

case e0 of {x1 ⇒ e1 , x2 ⇒ e2} : τ # [ρ](case e′0 of {x1 ⇒ e′1 , x2 ⇒ e′2}) : τ
′ Given

ρ ⊢ e′0 ⇓ (ρ1 ⊢ inl w1) Subd.

ρ ⊢ e0 ⇓ v and v1 : τ0 # [ρ1](inl w1) : τ
′

0 By i.h.

[v1/x1]e1 : τ # [w1/x1]e
′

1 : τ ′ By def. of #

ρ1 ⊢ [w1/x1]e
′

1 ⇓ (ρ′ ⊢ w) Subd.

Z [v1/x1]e1 ⇓ v and v : τ # w : τ ′ By i.h.

Z case e0 of {x1 ⇒ e1 , x2 ⇒ e2} ⇓ v By (SEvCaseLeft)

• Case (TEvRead):

ρ ⊢ read e′1 as x in e′2 ⇓ (ρ′ ⊢ w) Given

e : τ # [ρ](read e′1 as x in e′2) : τ
′ Given

e = [e1/x]e2 and e1 : τ1 # [ρ]e′1 : τ ′1 By def. of #

for all v : τ1 # w : τ ′1 we have [v/x]e2 : τ # [w/x][ρ]e′2 : τ ′ ′′

ρ ⊢ e′1 ⇓ (ρ1 ⊢ ℓ) Subd.

e1 ⇓ v1 and v1 : τ1 # [ρ1]ℓ : τ
′

1 By i.h.

By definition of store substitution, [ρ1]ℓ must have the form mod w1.

[v1/x]e2 : τ # [w1/x][ρ]e
′

2 : τ ′ Above with v = v1 and w = w1

ρ1 ⊢ [ρ1(ℓ)/x][ρ]e
′

2 ⇓ (ρ′ ⊢ w) Subd.

Z [v1/x]e2 ⇓ v and v : τ # [ρ′]w : τ ′ By i.h.

e1 ⇓ v1 Above

Z [e1/x]e2 ⇓ v By Lemma B.7

• Case (TEvWrite):

D :: ρ ⊢ write(e0) ⇓ (ρ′ ⊢ w) Given

e : τ #write(e0) : τ
′ Given

e : τ # e0 : τ ′ By def. of #

D1 :: ρ ⊢ e0 ⇓ (ρ′ ⊢ w) Subd.

Z D′ :: e ⇓ v By i.h.

Z v : τ # [ρ′]w : τ ′ ′′

• Case (TEvMod):

ρ ⊢ mod eC ⇓ (

ρ′

︷ ︸︸ ︷

(ρ′0, ℓ 7→ w) ⊢ ℓ) Given

ρ ⊢ eC ⇓ (ρ′0 ⊢ w) Subd.

e : τ # [ρ](mod eC) : (τ ′0 mod
︸ ︷︷ ︸

τ ′

) Given

e : τ # [ρ]eC : τ ′0 By def. of #

Z e ⇓ v and v : τ # [ρ′0]w : τ ′0 By i.h.

v : τ # [ρ′0](mod w) : τ ′0 mod By def. of #

v : τ # [ρ′0, ℓ 7→ w]ℓ : τ ′0 mod By def. of store substitution

Z v : τ # [ρ′]ℓ : τ ′ By ρ′ = ρ′0, ℓ 7→ w and τ ′ = τ ′0 mod

• Case (TEvSelectE):

ρ ⊢ (select {. . . , ~δ ⇒ ei, . . . })[~α = ~δ] ⇓ (ρ′ ⊢ w) Given

e : τ # [ρ]((select {. . . , ~δ ⇒ ei, . . . })[~α = ~δ]) : τ ′ Given

e : τ # (select {[ρ] . . . , ~δ ⇒ [ρ]ei, [ρ] . . . })[~α = ~δ] : τ ′ By def. of subst.

τ = [~δ/~α]τ0 and τ ′ = ‖[~δ/~α]τ0‖ By def. of #

e : ∀~α[D]. τ0 # (select {[ρ] . . . , ~δ ⇒ [ρ]ei, [ρ] . . . }) : Π~α[D]. τ0
′′

e : [~δ/~α]τ0
︸ ︷︷ ︸

τ

[ρ]ei : ‖[~δ/~α]τ0‖
︸ ︷︷ ︸

τ ′

By def. of #

ρ ⊢ ei ⇓ (ρ′ ⊢ w) Subd.

Z e ⇓ v By i.h.

Z v# [ρ′]w ′′

17 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem 6.4

Theorem 6.5 (Translation Soundness). If · ⊢ e : τ →֒
ε e′ and · ⊢ e′ ⇓ (ρ′ ⊢ w), then e ⇓ v where v : τ # [ρ′]w : τ ′.

Proof. Let Γ = · and let s and s be empty substitutions. By Lemma 6.3, [s]e : τ # [s]e′ : τ ′. Because s and s are empty, we have
e : τ # e′ : τ ′.

Let ρ = · (the empty store). By Theorem 6.4, e ⇓ v and v : τ # [ρ′]w : τ ′, which was to be shown.

C. Worst-Case Evaluation Time

To extend the result above with a guarantee that the evaluation derivation D is not too large—within a constant factor of the source evaluation
derivation D′—we need several definitions:

Definition C.1. The weight W (D) of a derivation D is the number of rule applications (that is, the number of horizontal lines) in D.

Next, we define the “head cost” of a derivation. This measures the overhead introduced by translation, in the part of the derivation that is
near its conclusion (the root of the derivation tree). To measure the overhead, we count the number of “dirty” rules applied near the root.

Definition C.2. The rules (TEvMachineValue), (TEvPair), (TEvSum), (TEvPrimop), (TEvFst), (TEvCase), and (TEvApply) are clean.
The rule (TEvLet) is clean iff it is applied to a let generated by (LetE) or (LetV), and dirty otherwise.
The rules (TEvWrite), (TEvMod), (TEvRead) and (TEvSelectE) are dirty.

Definition C.3. The head cost HC(D) of a derivation D is the number of dirty rule applications reachable from the root of D without passing
through any clean rule applications.

For a similar purpose, we define the head cost of a term: roughly, it measures the number of “dirty” keywords—operations added by the
translation. Since the translation added them, they do not occur in the source term; they are overhead that can lead to a larger target evaluation
derivation. (Just counting all the “dirty” keywords in the term is too weak: it does not rule out a β-reduction duplicating a particularly dirty
part of the term. By defining the head cost and proving that the translation generates terms that are “deeply k-bounded”, we ensure that no
part of the term is too dirty; consequently, substituting a subterm during evaluation yields terms that are not too dirty.)

The head cost HC(e) of a term e is defined in Figure 20.

HC(x) = 0

HC(x[~α = ~δ]) = 1

HC((select { ~αi = ~δi ⇒ ei}i)[~α = ~δ]) = 1 +maxi(HC(ei))

HC(select { ~αi = ~δi ⇒ ei}i) = 0
HC(n) = 0

HC((e1, e2)) = 0
HC(inl e) = 0

HC(funε f(x) = eε) = 0
HC(⊕(e1, e2)) = 0

HC(fst e) = 0
HC(applyε(e1, e2)) = 0

HC(let x = eS1 in e2) =







0 if the let came from (LetE) or (LetV)

1 + HC(eS1) + HC(e2) if the let came from (Write) or (ReadWrite)
and e2 has the form write(x)
or read x as x′ in write(x′)

undefined otherwise
HC(case e of {x1 ⇒ e1 , x2 ⇒ e2}) = 0

HC(mod eC) = 1 + HC(eC)
HC(write(e)) = 1 + HC(e)

HC(read e1 as y in eC2) =







1 + HC(e1) + HC(eC2) if (for y not free in e3, e4):
eC2 has the form applyǫ(y, e3)

or case y of {x1 ⇒ e3 , x2 ⇒ e4}
or let r = ⊕(e3, y) in write(r)
or read e′2 as y2 in let r = ⊕(y, y2) in write(r)

undefined otherwise

Figure 20. Definition of the “head cost” HC(e) of a target expression e

Definition C.4. A term e is shallowly k-bounded if HC(e) ≤ k.
A term e is deeply k-bounded if every subterm of e (including e itself) is shallowly k-bounded.
Similarly, a derivation D is shallowly k-bounded if HC(D) ≤ k, and deeply k-bounded if all its subderivations are shallowly k-bounded.

Theorem 6.7. If trans (e, ǫ) = e′ then e′ is deeply 6-bounded.

Proof. By lexicographic induction on e and ǫ, with S considered smaller than C.

• If e ∈ {n, x, (v1, v2), fun . . . , inl v} then:

18 2020/8/16

Appendix to Chen et al., ICFP 2011

If ǫ = S then trans uses one of its first 5 cases, and the result follows by induction. (HC(e′) = 0 except for (Var) where HC(e′) = 1
is possible.)

If ǫ = C then, for n/(v1, v2)/fun/inl v, trans uses its last case and applies (Write), adding a let and a write, so HC(e′) = 2.
For x, trans uses either (Write) or (ReadWrite), giving HC(e′) ≤ 2 + 1 or HC(e′) ≤ 3 + 1.

• If e has the form let x = e1 in e2 where x has type τ ′′, the resulting let did not come from (Write) or (ReadWrite) so HC(e′) = 0.
• If e has the form let x = e1 in e2 where x is polymorphic, the resulting let did not come from (Write) or (ReadWrite) so HC(e′) = 0.
• if e has the form ⊕(x1, x2), then: For the stable case, e′ is a ⊕ so HC(e′) = 0. For the changeable case, trans applies (Var), (Var),

(Prim), (Write), (Read) (with (LPrimop2)) and (Read) (with (LPrimop1)), producing

e′ = read x1 as y1 in read x2 as y2 in let r = ⊕(y1, y2) in write(r)

so (assuming HC(x1) and HC(x2) ≤ 1) HC(e′) ≤ 1 + 1 + 1 + 1 + HC(let r = ⊕(y1, y2) in write(r)) = 4 + 1 + 0 + 1 + 0 = 6.
• If e is an apply, then:

Case (S, S, S): Here e′ is an applyS, so HC(e′) = 0.

Case (C, S, C): Here e′ is an applyC, so HC(e′) = 0.

Case (S, S, C): Either (Write) or (ReadWrite), after switching to S mode, meaning one of the (−, −, S) cases—which each generate
a subterm whose HC is 0. For (Write), HC(e′) = 1 + 0 + 1 = 2; for (ReadWrite), HC(e′) = 1 + 0 + (1 + 0 + 1) = 3.
The rules (LApply) and (LCase) guarantee that the read has the correct form for HC(e′) to be defined.

Case (ǫ′, C, C): Applies (Read) after devolving to (ǫ′, S, C) which returns a term with HC(e′) ≤ 3 (zero if ǫ′ = C, and 2 or 3 if
ǫ′ = S). Applying (Read) yields a term with HC(e′) ≤ 1 + HC(x) + 3; since HC(x) ≤ 1 this gives HC(e′) ≤ 5.
Note that HC(e′) is defined for the same reason as in the (S, S, C) subcase.

Case (C, S, S): Devolves to the (C, S, C) case, yielding a subterm with HC of 0; the algorithm then uses (Mod), yielding
HC(e′) = 1 + 0 = 1.

Case (ǫ′, C, S): Devolves to (ǫ′, C, C), with HC ≤ 5, then applies (Mod), yielding HC(e′) ≤ 1 + 5 = 6.

(Note: We do not use the induction hypothesis as we “devolve”; we are merely reasoning by cases.)

• If e = fst x where x : (τ1 × τ2)
δ
, then:

Case (S, S): We use (Fst), yielding HC(e′) = 0.

Case (S, C): If τ1 O.S. then HC(e′) ≤ 2 (Write). If τ1 O.C. then we use (ReadWrite) followed by the (S, S) case which has HC of 0,
yielding HC(e′) ≤ 1 + 0 + 1 + 0 + 1 = 3.

Case (C, C): We use (Read) with (LFst) and go to the (S, C) case with a new variable x′. The HC for the (S, C) case is bounded by 3.
Using (Read) in this case adds at most 2, so HC(e′) ≤ 5.

• If e is a case on a variable x : τ , then:

If τ is outer stable, the proof is straightforward.

If τ is outer changeable, the algorithm applies rule (Read), recursing with x :
∣
∣τ
∣
∣S, which will apply rule (Case). A case has HC of 0,

so (Read) produces e′ where HC(e′) = 1 + 0 + 0 = 1.

Theorem C.5 (Costed Generalized Translation Soundness).
If e : σ # [ρ]e′ : σ′

and D :: ρ ⊢ e′ ⇓ (ρ′ ⊢ w)
and [ρ]e′ is deeply k-bounded
then D′ :: e ⇓ v where v : σ # [ρ′]w : σ′

and [ρ′]w is deeply k-bounded
and for every subderivation D∗ :: ρ∗1 ⊢ e∗ ⇓ (ρ∗2 ⊢ w∗) of D (including D), HC(D∗) ≤ HC(e∗) ≤ k,
and the number of clean rule applications in D equals W (D′).

Proof. The differences from Theorem 6.4 require additional reasoning:

• The 7 cases for the “clean” rules (TEvMachineValue), (TEvPair), (TEvSum), (TEvPrimop), (TEvFst), (TEvCaseLeft), and (TEvApply)
are straightforward: the induction hypothesis shows that the HC condition holds for all proper subderivations of D, and HC(D) = 0 by
definition of HC(D), which is certainly not greater than HC(e∗). Finally, each one of these cases generates a single application of an
SEv* rule, which together with the i.h. satisfies the last condition (that the number of clean rule applications in D equals W (D′).
In (TEvCaseLeft) and (TEvApply), observe that we are substituting machine values; for all machine values w∗ we have HC(w∗) = 0,
and by i.h. the w∗ we substitute are deeply k-bounded, so the result of substitution is deeply k-bounded.
Note that this reasoning holds for (TEvMachineValue) even when w is a select: (TEvMachineValue) is a clean rule so HC(D) = 0.

• (TEvWrite) We have D :: ρ ⊢ write(e′0) ⇓ (ρ′ ⊢ w) with subderivation D0 :: ρ ⊢ e′0 ⇓ By i.h., HC(D0) ≤ HC(e′0). Therefore
HC(D0) + 1 ≤ HC(e′0). By the definitions of HC we have HC(D) = HC(D0) + 1 and HC(write(e′0)) = 1+HC(e′0), so our inequality
becomes HC(D) ≤ HC(write(e′0)), which was to be shown. Lastly, the · · · = W (D′) condition from the i.h. is exactly what we need,
because the D′ is the same and (TEvWrite) is not clean.

• (TEvMod) Similar to the (TEvWrite) case.
• (TEvLet) Here we must distinguish lets generated by the translation rules (Write) and (ReadWrite), which add entirely new lets, from lets

that are generated by (LetE) and (LetV). The latter kind come from the translation rules (LetE) and (LetV); even though (LetV) replaces
the source binding with one that binds a select, it does not add a new let, it merely replaces one.

19 2020/8/16

Appendix to Chen et al., ICFP 2011 Proof of Theorem C.5

If we have the latter kind of let then its HC(−) is 0 in our definition, we consider the rule “clean”, and things go as smoothly as for the 7
unambigously clean rules (in TEvLet, with reasoning analogous to TEvCaseLeft to deal with the substitution).
On the other hand, if we have let x = e1 in e2 resulting from (Write) or (ReadWrite), we rely on the definition of HC(let . . .) to guarantee
the that the bound variable x is used exactly once, justifying the definition’s adding HC(e1) and HC(e2), which would be nonsensical if
x didn’t appear exactly once in e2.

• (TEvRead) For HC(read . . .) to be defined, the variable bound is used exactly once and contributes to the HC of the term accordingly,
justifying the equation HC([ρ1(ℓ)/x

′]eC) = HC(eC) + HC(ρ1(ℓ)).
• (TEvSelectE)

HC(D1) ≤HC(e1) i.h.

(L) 1 + HC(D1) ≤ 1 + HC(e1) +1 each side

(R) 1 + HC(e1) ≤HC((select {. . . })[. . .]) By def. of HC(e1) and property of maxima

1 + HC(D1) ≤HC(e′) By (L), (R), transitivity, e′ = (select {. . . })[. . .]
Z HC(D) ≤HC(e′) By def. of HC(D)

The HC(e∗) ≤ k part of the conclusion is easily shown: in each case, it must be shown for each premise and for the conclusion; the
induction hypothesis shows it for the premises, and since we know that [ρ]e′ is deeply k-bounded, HC(e′) ≤ k (applying [ρ] cannot decrease
head cost).

Showing that the value w is deeply k-bounded is quite easy. For (TEvMachineValue) it follows from the assumption that e′ = w is
bounded. For any rule whose conclusion produces the same w as one of its premises—(TEvLet), (TEvCaseLeft), (TEvApply), (TEvWrite),
(TEvRead), (TEvSelectE)—it is immediate by the i.h. In (TEvPair), w1 and w2 are bounded by i.h., so (w1, w2) is too. The value returned
by (TEvSum) and (TEvFst) is a subterm of a value in a premise, which is by i.h. deeply k-bounded, so the subterm is too. (TEvMod) returns
ℓ where ℓ 7→ w, and w is deeply k-bounded.

Theorem 6.8 (Cost Result). Given D :: ρ ⊢ e′ ⇓ (ρ′ ⊢ w)
where for every subderivation D∗ :: ρ∗1 ⊢ e∗ ⇓ (ρ∗2 ⊢ w∗) of D (including D), HC(D∗) ≤ k,

then the number of dirty rule applications in D is at most k
k+1

W (D).

Proof. By the definition of HC(D), if D is deeply k-bounded, there is no contiguous region of D consisting only of dirty rule applications
that is larger than k; since the only rule with no premises is TEvMachineValue, and TEvMachineValue is clean, at least one of every k + 1

rule applications is clean. W (D) simply counts the total number of rule applications, so D contains at least
W (D)
k+1

clean rule applications, so

no more than k
k+1

W (D) of D’s rule applications are dirty.

Theorem 6.9. If trans (e, ε) = e′ and D :: · ⊢ e′ ⇓ (ρ′ ⊢ w), then D′ :: e ⇓ v where v : τ # [ρ′]w : τ ′ and W (D) ≤ 7W (D′).

Proof. By Theorem 6.7, e′ is deeply 6-bounded.
The algorithm trans merely applies the translation rules, so · ⊢ e : τ →֒

ε e′. We can show e : τ # e′ : τ as in Theorem 6.5. By

Theorem C.5, D′ :: e ⇓ v where v : σ # [ρ′]w : σ′ and D and all its subderivations have HC bounded by k.
By Theorem 6.8, the number of dirty rule applications in D is ≤ k

k+1
W (D).

Since every rule application is either clean or dirty, W (D) ≤ (k + 1)W (D′), where k = 6.

20 2020/8/16

	Introduction
	Overview
	Explicit Self-Adjusting Computation
	Implicit Self-Adjusting Computation

	From Information Flow Types to SAC
	Source Language
	Static Semantics
	Constraints and Type Inference
	Dynamic Semantics

	Target Language
	Dynamic Semantics

	Translation
	Translating Types
	Translating Expressions
	Algorithm
	Properties

	Related Work
	Conclusion
	Translation Type Soundness
	Translation Soundness (Observational Equivalence)
	Worst-Case Evaluation Time

