Implicit Self-Adjusting Computation

for Purely Functional Programs

Yan Chen
Joshua Dunfield Matthew A. Hammer Umut A. Acar

MPI-SWS

September 19, 2011



Incremental /Dynamic Problems

Input: 3,5, 8, 2,10,4,9,1
Output: Max = 10

» Linear scan: O(n)

Implicit Self-Adjusting Computation



Incremental /Dynamic Problems

Input: 3,5, 8, 2,10, 4,9, 1
Output: Max = 10 9

» Linear scan: O(n)

» Priority queue: O(log n)

Implicit Self-Adjusting Computation



Incremental changes are ubiquitous and hard.

Problem Static Incremental /Dynamic

Max [folklore 1950s] [Williams 1964]

O(n) O(log n)
Graph [Strassen 1969] [Thorup 2000]
Connectivity  O(n*?) O (log n(log log n)3)

for edge updates

Planar [Graham 1972] [Brodal et al. 2002]
Convex Hull  O(nlogn) O(log n)
Compilation  Whole-program Separate

Yan Chen Implicit Self-Adjusting Computation 3



Challenge

How can we incrementalize a static algorithm?

Static _Incremental
Algorithms 10+ years of research Algorithms

fun sumOfSquares (x, y) =

let

val x2 = x * X
val y2 =y *x y
in

X2 + y2

end

Yan Chen Implicit Self-Adjusting Computation 4



Challenge

How can we incrementalize a static algorithm?

Static _Incremental
Algorithms 10+ years of research ~ Algorithms
fun sumOfSquares (x, y) = x (1) 3)y
let
val x2 = x * x X2 y2
val y2 =y *x y
in @
X2 + y2 X2 +y2
end

Dependency Graph

Yan Chen Implicit Self-Adjusting Computation 4



Challenge

How can we incrementalize a static algorithm?

Static _Incremental
Algorithms 10+ years of research ~ Algorithms
fun sumOfSquares (x, y) = x (2 3)y
let
val x2 = x * x X2 y2
val y2 =y *x y
in @
X2 + y2 X2 +y2
end

Dependency Graph

Yan Chen Implicit Self-Adjusting Computation 4



Challenge

How can we incrementalize a static algorithm?

Static _Incremental
Algorithms 10+ years of research ~ Algorithms
fun sumOfSquares (x, y) = x (2 3)y
let l
val x2 = x * x 2 (4 y2
val y2 =y *x y
in @
X2 + y2 X2 +y2
end

Dependency Graph

Yan Chen Implicit Self-Adjusting Computation 4



Challenge

How can we incrementalize a static algorithm?

Static _Incremental
Algorithms 10+ years of research Algorithms
fun sumOfSquares (x, y) = x (2 3)y
let l
val x2 = x * x 2 (4 @ 2
X y
val y2 =y * y \,
in 13
X2 + y2 X2 +y2
end

Dependency Graph

Yan Chen Implicit Self-Adjusting Computation 4



Explicit Self-Adjusting Computation

Rewrite program to construct dependency graph

fun sumOfSquares (x:int , y:int) =
let

x (2 @)y val x2 =

l X * X
x> (4 )’2 val y2 =y *x y

\4 in

13
x2-|—y2 X2 + y2

end

Yan Chen Implicit Self-Adjusting Computation 5



Explicit Self-Adjusting Computation

Rewrite program to construct dependency graph

fun sumOfSquares (x:int mod, y:int) =

let
x (2 9 y val x2 = mod (read x as x’ in
l write (x’ * x7))
x> (4 )’2 val y2 =y *x y
\4 in
13 mod (read x2 as x2’ in
X2-|-y2 write (x2’ + y2))

end

Yan Chen Implicit Self-Adjusting Computation 5



Challenges of Explicit Self-Adjusting Computation

» The explicit library is not a natural way of programming.

fun sumOfSquares (x:int mod, y:int) =

let
val x2 = mod (read x as x’ in
write (x’ * x’))
val y2 =y *x y
in

mod (read x2 as x2’ in
write (x2° + y2))
end

Yan Chen Implicit Self-Adjusting Computation 6



Challenges of Explicit Self-Adjusting Computation

» The explicit library is not a natural way of programming.

» Efficiency is highly sensitive to program details.

fun sumOfSquares (x:int mod, y:int) =

let
val x2 = mod (read x as x’ in
write (x’ * x’))
val y2 =y *x y
in

mod (read x2 as x2’ in
write (x2° + y2))
end

Yan Chen Implicit Self-Adjusting Computation 6



Challenges of Explicit Self-Adjusting Computation

» The explicit library is not a natural way of programming.
» Efficiency is highly sensitive to program details.

fun sumOfSquares (x:int mod, y:int) =
let
val x2 = mod (read x as x’ in
write (x7 * x’ +y * y))

in

x2
end

Yan Chen Implicit Self-Adjusting Computation 6



Challenges of Explicit Self-Adjusting Computation

» The explicit library is not a natural way of programming.
» Efficiency is highly sensitive to program details.
» Different requirements lead to different functions.

fun sumOfSquares (x:int, y:int mod) =
let
val x2 = x * X
val res = mod (read y as y’ in
write (x2 + y’ * y?’))
in

res
end

Yan Chen Implicit Self-Adjusting Computation 6



Challenges of Explicit Self-Adjusting Computation

» The explicit library is not a natural way of programming.
» Efficiency is highly sensitive to program details.
» Different requirements lead to different functions.

» Function rewriting can spread to large amounts of code.

fun sumOfSquares (x:int, y:int mod) =
let
val x2 = x * X
val res = mod (read y as y’ in
write (x2 + y’ * y?’))
in

res
end

Yan Chen Implicit Self-Adjusting Computation 6



Bridge the Gap

ML Code Explicit Self-Adjusting Code

fun sumOfSquares (x:int mod, y:int) =

fun sumOfSquares (x, (y) = let
let val x2 = mod (read x as x’ in
val X2 = x * X write (x’ * x’))

val y2 = y * y CH val y2
in ? in

x2 + y2 . mod (read x2 as x2’ in
write (x2° + y2))

y*y

end
end

X Changeable
Y Stable

Yan Chen Implicit Self-Adjusting Computation 7



Our Approach
Implicit Self-Adjusting Computation

ML code Tyne Self-

with level yp — Translation Adjusting
. Inference

annotations Program

» Annotate input types — no code modification required.

v

Automatically infer dependencies from type annotations.

v

Polymorphism enables different versions of code.

v

Type-directed translation produces an efficient
self-adjusting program.

Yan Chen Implicit Self-Adjusting Computation 8



Our Approach
Implicit Self-Adjusting Computation

ML code Tyne Self-

with level yp — Translation Adjusting
. Inference

annotations Program

» Annotate input types — no code modification required.

v

Automatically infer dependencies from type annotations.

v

Polymorphism enables different versions of code.

v

Type-directed translation produces an efficient
self-adjusting program.

Yan Chen Implicit Self-Adjusting Computation 8



Source Language

» Pure A-calculus with level annotations.
» Use level C to mark changeable data.

Levelss ::=8|C |«

Types T o=int’ | (11 x ) | (11 +©)° | (11 = T)°

val sumOfSquares: int™ * int™ -> int™

Yan Chen Implicit Self-Adjusting Computation 9



Source Language

» Pure A-calculus with level annotations.

» Use level C to mark changeable data.

Levelss ::=8|C |«

Types T o=int’ | (11 x ) | (11 +©)° | (11 = T)°

val sumOfSquares: int™ * int™ -> int™

Represents:
val sumOfSquaresSS: int® int® -> int®
val sumOfSquaresSC: int® int® -> int®

int® -> int

val sumOfSquaresCS: int
int® -> int

val sumOfSquaresCC: int

o
¥ % x *

Yan Chen Implicit Self-Adjusting Computation



ML code Tvoe Self-
with level In}ilfgrence —1 Translation Adjusting
annotations Program

Yan Chen Implicit Self-Adjusting Computation 10



Type System

» |dentify affected computation

fun sumOfSquares ('x :int“, (¥ :int®) =

let
val x2 = x * X
val y2 =y *x y
in
X2 + y2

end

Yan Chen Implicit Self-Adjusting Computation 11



Type System

» |dentify affected computation
» Any data that depends on changeable data must be
changeable.

fun sumOfSquares ('x :int“, (¥ :int®) =

let
val x2 = x * x
val y2 =y *x y
in
X2 + y2

end

Yan Chen Implicit Self-Adjusting Computation 11



Type System

» |dentify affected computation

» Any data that depends on changeable data must be
changeable.
» |dentify reusable computation:

fun sumOfSquares ('x :int“, (¥ :int®) =

let
val x2 = X * X
val y2 =y x y
in
X2 + y2

end

Yan Chen Implicit Self-Adjusting Computation 11



Type System

» |dentify affected computation
» Any data that depends on changeable data must be
changeable.
» |dentify reusable computation:
» Non-interference property

fun sumOfSquares (.:intc, y :int®) =
let

val y2 =y x y
in

d

en

Yan Chen Implicit Self-Adjusting Computation 11



Type System

» |dentify affected computation
» Any data that depends on changeable data must be
changeable.
» |dentify reusable computation:
» Non-interference property

fun sumOfSquares (.:intc, y :int®) =
let

val y2 =y x y
in

end

Information flow!

Yan Chen Implicit Self-Adjusting Computation 11



Type Inference for Concrete Levels

Infer types for all subterms

fun sumOfSquares ((x :int®, [y :int®) : int =

let
val x2 :int = x * X
val y2 :int =y * y
val res :int = x2 + y2
in
res

end

Yan Chen Implicit Self-Adjusting Computation



Type Inference for Concrete Levels

Infer types for all subterms

fun sumOfSquares ((x :int®, [y :int®) : int =

let
val x2 :int® = ‘x * x
val y2 :int =y * y
val res :int = x2 + y2
in
res

end

Yan Chen Implicit Self-Adjusting Computation 12



Type Inference for Concrete Levels

Infer types for all subterms

fun sumOfSquares ((x :int®, [y :int®) : int =

let
val x2 :int® = ‘x * x
val y72:int8= y x|y
val res :int = x2 + y2
in
res

end

Yan Chen Implicit Self-Adjusting Computation 12



Type Inference for Concrete Levels

Infer types for all subterms

fun sumOfSquares ((x :int®, [y :int®) : int =

let
val x2 :int’ = x * (x
val y72:int8= y x|y
val res :int’ = x2 + y2
in
res

end

Yan Chen Implicit Self-Adjusting Computation 12



Type Inference for Concrete Levels

Infer types for all subterms

fun sumOfSquares ((x :int®, [y :int®) : int® =
let
val x2 :int’ = x * (x
val y72:int8= y x|y
val res :int’ = x2 + y2
in
res

end

Yan Chen Implicit Self-Adjusting Computation 12



Type Inference for Level Polymorphism

CAD;TFswv:T CIx:VaD].t"F, e:T

Generate fresh level variables Subsumption
~ N —
ANFV(C,T)=10 Cht' < 1"

S
CAJ&DTH, letx=vine :1 (SLetV)

Value Restriction

val sumOfSquares: int™ * int™ -> int™
Loz > o A og >z

» Our typing rules and constraints fall within the HM(X)

framework [Odersky et al. 1999], permitting inference of
principal types via constraint solving.

Yan Chen Implicit Self-Adjusting Computation 13



ML code Tune Self-
with level In}ilfgrence —1 Translation Adjusting
annotations Program

Yan Chen Implicit Self-Adjusting Computation 14



Target Language

» Modal type system

» e has no return value, and can only end with write or
changeable function application.

Types T = Ttmod]|---

Expressions e ::= e°|e’

Stable e® = let x=e% in e°

expressions mod & create

Changeable e“ ::= let x=e® in e
expressions | read x as y in e dereference
|  write(x) store

Yan Chen Implicit Self-Adjusting Computation 15



ML code Tune Self-
with level In}ilfgrence —1 Translation Adjusting
annotations Program

Yan Chen Implicit Self-Adjusting Computation 16



Translation

Source expression  Target expression
/

[" l—e:'t?ef’

Yan Chen Implicit Self-Adjusting Computation 17



Translation

Source expression  Target expression
/

[" l—e:'t?ef’

fun sumOfSquares (x, y) =

fun sumOfSquares (x, (y) = let
let val x2 = mod (read x as x’ in
val x2 = x * X write (x’ * x’) )
val 372 =y *y ? val y2 =y *x y
in in
X2 + y2 read x2 as x2’ in
end write (x2° + y2)
end

Yan Chen Implicit Self-Adjusting Computation 17



Translation

Source expression  Target expression
/

[" l—e:'t?ef’
U U
v w

fun sumOfSquares (x, y) =

fun sumOfSquares (x, (y) = let
let val x2 = mod (read x as x’ in
val x2 = x * X write (x’ * x’) )
val 372 =y *y ? val y2 =y *x y
in in
X2 + y2 read x2 as x2’ in
end write (x2° + y2)
end

Yan Chen Implicit Self-Adjusting Computation 17



Translation

Source expression  Target expression
/

[" l—e:'t?ef’
U iL
v =

Correctness

fun sumOfSquares (x, y) =

fun sumOfSquares (x, (y) = let
let val x2 = mod (read x as x’ in
val x2 = x * X write (x’ * x’) )
val 372 =y *y ? val y2 =y *x y
in in
X2 + y2 read x2 as x2’ in
end write (x2° + y2)
end

Yan Chen Implicit Self-Adjusting Computation 17



Translation Example

Typing Environment T': x2:int®, y2:int®

I"F valres = x2 + y2 in res : int’

Yan Chen Implicit Self-Adjusting Computation 18



Translation Example

Typing Environment T': x2:int®, y2:int®

I"F valres = x2 + y2 in res : int’

val res

Yan Chen Implicit Self-Adjusting Computation 18



Translation Example

Typing Environment T': x2:int®, y2:int®

I"F valres = x2 + y2 in res : int’

read x2 as x2’ in
x2’ + y2

val res

Yan Chen Implicit Self-Adjusting Computation 18



Translation Example

Typing Environment T': x2:int®, y2:int®

I"F valres = x2 + y2 in res : int’

read x2 as x2’ in
write (x2’ + y2)

val res

Yan Chen Implicit Self-Adjusting Computation 18



Translation Example

Typing Environment T': x2:int®, y2:int®, res:int’

I"F valres = x2 + y2 in res : int’

val res = mod (read x2 as x2’ in
write (x2° + y2))

Yan Chen Implicit Self-Adjusting Computation 18



Translation Example

Typing Environment T': x2:int®, y2:int®, res:int’
I"F valres = x2 + y2 in res : int’
val res = mod (read x2 as x2’ in
write (x2° + y2))

res

Yan Chen Implicit Self-Adjusting Computation 18



Translation — Monomorphization

Generate all satisfying instances

Forall §;s.t. & =5:IF D

. o ] ’ : (% / 1 . 1 )
Lx:valDl.t'-e:t e F=ve[si/dlt’ < e
(LetV)

: - i
Fhletx=vine: T < let{x; =¢/}iine

val sumOfSquares: int™ * int™ -> int™
Loz > o Az > o]

int® -> int®
int¢ -> intC
int® -> int®
int® -> intC

val sumOfSquaresSS: int®
val sum0OfSquaresSC: int®
SN val sumOfSquaresCS: int‘
5" val sumOfSquaresCC: int‘

* ¥ ¥ ¥

» Dead-code elimination can remove unused functions.
» The functions that are used would have to be
handwritten in an explicit setting.

Yan Chen Implicit Self-Adjusting Computation



Theoretical Results

Type inference Evaluation
ML e e T > U
in k steps
Type- T .
. ype Observational
Directed .
Soundness Equivalence
Translation
. . Evaluati ‘
Explicit SAC ed e . w

in ©(k) steps l

Yan Chen Implicit Self-Adjusting Computation 20



» Implicit Self-Adjusting Computation

» Automatic dependency tracking based on type
annotation

» Type-directed translation for self-adjusting
computation

» Automatically make ML programs self-adjusting

» Formal proofs of translation soundness and asymptotic
complexity

» Implementation and preliminary results presented at
Workshop on ML

See paper!

Yan Chen Implicit Self-Adjusting Computation 21



