
Self-Adjusting Stack Machines

Matthew A. Hammer
Georg Neis Yan Chen Umut A. Acar

Max Planck Institute for Software Systems

OOPSLA 2011 — October 27, 2011

Portland, Oregon, USA

Static Computation Versus Dynamic Computation

Static Computation:

Fixed Input Compute Fixed Output

Dynamic Computation:

Changing Input Compute Changing Output

Read
Changes

Update
Write

Updates

Matthew A. Hammer Self-Adjusting Stack Machines 2

Dynamic Data is Everywhere

Software systems often consume/produce dynamic data

Scientific
Simulation

Reactive Systems
Analysis of

Internet data

Matthew A. Hammer Self-Adjusting Stack Machines 3

Tractability Requires Dynamic Computations

Changing Input Compute Changing Output

Static Case
(Re-evaluation “from scratch”)

compute 1 sec
of changes 1 million

Total time 11.6 days

Dynamic Case
(Uses update mechanism)

compute 10 sec
update 1× 10−3 sec

of changes 1 million
Total time 16.7 minutes

Speedup 1000x

Matthew A. Hammer Self-Adjusting Stack Machines 4

Tractability Requires Dynamic Computations

Changing Input Compute Changing Output

Read
Changes

Update
Write

Updates

Static Case
(Re-evaluation “from scratch”)

compute 1 sec
of changes 1 million

Total time 11.6 days

Dynamic Case
(Uses update mechanism)

compute 10 sec
update 1× 10−3 sec

of changes 1 million
Total time 16.7 minutes

Speedup 1000x

Matthew A. Hammer Self-Adjusting Stack Machines 4

Dynamic Computations can be Hand-Crafted

As an input sequence changes, maintain a sorted output.

1,7,3,6,5,2,4

Changing Input

compute 1,2,3,4,5,6,7

Changing Output

1,7,3,6/,5,2,4Remove 6 update 1,2,3,4,5,6/,7

1,7,3,6,5,2/,4
Reinsert 6,
Remove 2

update 1,2/,3,4,5,6,7

A binary search tree would suffice here (e.g., a splay tree)
What about more exotic/complex computations?

Matthew A. Hammer Self-Adjusting Stack Machines 5

How to Program Dynamic Computations?

Can this programming be systematic?
What are the right abstractions?

1. How to describe dynamic computations?
I Usability: Are these descriptions easy to write?
I Generality: How much can they describe?

2. How to implement these descriptions?
I Efficiency: Are updates faster than re-evaluation?
I Consistency: Do updates provide the correct result?

Matthew A. Hammer Self-Adjusting Stack Machines 6

In Self-Adjusting Computation,
Ordinary programs describe dynamic computations.

Self-Adjusting Program

C Source Compiler C Target + Run-time

The self-adjusting program:

1. Computes initial output from initial input

2. Automatically updates output when input changes

Matthew A. Hammer Self-Adjusting Stack Machines 7

Self-Adjusting Programs

Input Read Compute Write Output

Read
Changes

Trace
Write

Updates

Update

I Self-adjusting program maintains dynamic
dependencies in an execution trace.

I Key Idea: Reusing traces efficient update

Matthew A. Hammer Self-Adjusting Stack Machines 8

Challenges

Existing work targets functional languages:

I Library support for SML and Haskell

I DeltaML extends MLton SML compiler

Our work targets low-level languages (e.g., C)

I stack-based

I imperative

I no strong type system

I no automatic memory management

Matthew A. Hammer Self-Adjusting Stack Machines 9

Challenges Low-Level Self-Adj. Computation

Efficient update complex resource interactions:

I execution trace, call stack, memory manager

Input Read Compute Write Output

Read
Changes

Trace
Write

Updates

Update

Matthew A. Hammer Self-Adjusting Stack Machines 10

Challenges Low-Level Self-Adj. Computation

Efficient update complex resource interactions:

I execution trace, call stack, memory manager

Input Read Compute Write Output

Read
Changes

Trace
Write

Updates

Update

Matthew A. Hammer Self-Adjusting Stack Machines 10

Challenges Low-Level Self-Adj. Computation

Efficient update complex resource interactions:

I execution trace, call stack, memory manager

code
revaluation

(
make new trace,
search old trace

)

found change found match

change
propagation(
repair + edit
old trace

)
Matthew A. Hammer Self-Adjusting Stack Machines 10

Example: Dynamic Expression Trees

Objective: As tree changes, maintain its valuation

+

−

+

3 4

0

−

5 6

((3 + 4) − 0) + (5 − 6) = 6

+

−

+

3 4

0

+

−

5 6

5

((3+4)−0)+((5−6)+5) = 11

Consistency: Output is correct valuation
Efficiency: Update time is O(#affected intermediate results)

Matthew A. Hammer Self-Adjusting Stack Machines 11

Example: Dynamic Expression Trees

Objective: As tree changes, maintain its valuation

+

−

+

3 4

0

−

5 6

((3 + 4) − 0) + (5 − 6) = 6

+

−

+

3 4

0

+

−

5 6

5

((3+4)−0)+((5−6)+5) = 11

Consistency: Output is correct valuation
Efficiency: Update time is O(#affected intermediate results)

Matthew A. Hammer Self-Adjusting Stack Machines 11

Expression Tree Evaluation in C

1 typedef struct node s* node t;
2 struct node s {
3 enum { LEAF, BINOP } tag;
4 union { int leaf;
5 struct { enum { PLUS, MINUS } op;
6 node t left, right;
7 } binop;
8 } u; }

1 int eval (node t root) {
2 if (root->tag == LEAF)
3 return root->u.leaf;
4 else {
5 int l = eval (root->u.binop.left);
6 int r = eval (root->u.binop.right);

7 if (root->u.binop.op == PLUS) return (l + r);
8 else return (l - r);
9 } }

Matthew A. Hammer Self-Adjusting Stack Machines 12

The Stack “Shapes” the Computation

int eval (node t root) {
if (root->tag == LEAF)

return root->u.leaf;
else {

int l = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (l + r);
else return (l - r);

} }

Stack usage breaks computation into three parts:

I Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

I Part B: Evaluate the right child

I Part C: Apply BINOP to intermediate results; return

Matthew A. Hammer Self-Adjusting Stack Machines 13

The Stack “Shapes” the Computation

int eval (node t root) {
if (root->tag == LEAF)

return root->u.leaf;
else {

int l = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (l + r);
else return (l - r);

} }

Stack usage breaks computation into three parts:

I Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

I Part B: Evaluate the right child

I Part C: Apply BINOP to intermediate results; return

Matthew A. Hammer Self-Adjusting Stack Machines 13

The Stack “Shapes” the Computation

int eval (node t root) {
if (root->tag == LEAF)

return root->u.leaf;
else {

int l = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (l + r);
else return (l - r);

} }

Stack usage breaks computation into three parts:

I Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

I Part B: Evaluate the right child

I Part C: Apply BINOP to intermediate results; return

Matthew A. Hammer Self-Adjusting Stack Machines 13

The Stack “Shapes” the Computation

int eval (node t root) {
if (root->tag == LEAF)

return root->u.leaf;
else {

int l = eval (root->u.binop.left);
int r = eval (root->u.binop.right);

if (root->u.binop.op == PLUS) return (l + r);
else return (l - r);

} }

Stack usage breaks computation into three parts:

I Part A: Return value if LEAF
Otherwise, evaluate BINOP, starting with left child

I Part B: Evaluate the right child

I Part C: Apply BINOP to intermediate results; return

Matthew A. Hammer Self-Adjusting Stack Machines 13

Dynamic Execution Traces

Input Tree
+

−

+

3 4

0

−

5 6

Execution Trace

A+ B+ C+

A− B− C− A− B− C−

A+ B+ C+ A0 A5 A6

A3 A4

Matthew A. Hammer Self-Adjusting Stack Machines 14

How to Update the Output?

Original Input
+

−

+

3 4

0

−

5 6

Changed Input
+

−

+

3 4

0

+

−

5 6

5

Goals:

I Consistency: Respect the (static) program’s meaning

I Efficiency: Reuse original computation when possible

Idea: Transform the first trace into second trace

Matthew A. Hammer Self-Adjusting Stack Machines 15

How to Update the Output?

Original Input
+

−

+

3 4

0

−

5 6

Changed Input
+

−

+

3 4

0

+

−

5 6

5

Goals:

I Consistency: Respect the (static) program’s meaning

I Efficiency: Reuse original computation when possible

Idea: Transform the first trace into second trace

Matthew A. Hammer Self-Adjusting Stack Machines 15

+

−

+

3 4

0

+

−

5 6

5

Unaffected/Reuse

Affected/Re-eval

New Evaluation

Unaffected/Reuse

Affected/Re-eval

A+ B+ C+

A− B− C− A+ B+ C+

A+ B+ C+ A0 A− B− C− A5

A3 A4 A5 A6

Matthew A. Hammer Self-Adjusting Stack Machines 16

Before Update

A+ B+ C+

A− B− C− A− B− C−

A+ B+ C+ A0 A5 A6

A3 A4

After Update

A+ B+ C+

A− B− C− A+ B+ C+

A+ B+ C+ A0 A− B− C− A5

A3 A4 A5 A6

Matthew A. Hammer Self-Adjusting Stack Machines 17

How to Program Dynamic Computations?

1. How to describe dynamic computations?

X Usability: Are these descriptions easy to write?
X Generality: How much can they describe?

2. How to implement this description?

? Correctness: Do updates provide the correct result?
? Efficiency: Are updates faster than re-evaluation?

Matthew A. Hammer Self-Adjusting Stack Machines 18

Overview of Formal Semantics

I IL: Intermediate language for C-like programs

I IL has instructions for:

I Mutable memory: alloc, read, write
I Managing local state via a stack: push, pop
I Saving/restoring local state: memo, update

I Transition semantics: two abstract stack machines:

I Reference machine: defines “normal” semantics
I Tracing machine: defines self-adjusting semantics

Can compute an output and a trace
Can update output/trace when memory changes
Automatically marks garbage in memory

I We prove that these stack machines are consistent

Matthew A. Hammer Self-Adjusting Stack Machines 19

Overview of Formal Semantics

I IL: Intermediate language for C-like programs

I IL has instructions for:

I Mutable memory: alloc, read, write
I Managing local state via a stack: push, pop
I Saving/restoring local state: memo, update

I Transition semantics: two abstract stack machines:

I Reference machine: defines “normal” semantics
I Tracing machine: defines self-adjusting semantics

Can compute an output and a trace
Can update output/trace when memory changes
Automatically marks garbage in memory

I We prove that these stack machines are consistent

Matthew A. Hammer Self-Adjusting Stack Machines 19

Consistency theorem, Part 1: No Reuse

Trace

Input Tracing Machine Run (P) Output

q q
Input Reference Machine Run (P) Output

Tracing machine is consistent with reference machine
(when tracing machine runs “from-scratch”, with no reuse)

Matthew A. Hammer Self-Adjusting Stack Machines 20

Consistency theorem, Part 2: Reuse vs No Reuse

Trace0

Input Tracing Machine Run (P) Trace

Output

q q
Input Tracing Machine Run (P) Trace

Output

Tracing machine is consistent with from-scratch runs
(When it reuses some existing trace Trace0)

Matthew A. Hammer Self-Adjusting Stack Machines 21

Consistency theorem: Main result

Trace0 Trace

Input Tracing Machine Run (P) Output

q q
Input Reference Machine Run (P) Output

Main result uses Part 1 and Part 2 together:

Tracing machine is consistent with reference machine

Matthew A. Hammer Self-Adjusting Stack Machines 22

How to Program Dynamic Computations?

1. How to describe dynamic computations?

X Usability: Are these descriptions easy to write?
X Generality: How much can they describe?

2. How to implement this description?

X Correctness: Do updates provide the correct result?
? Efficiency: Are updates faster than re-evaluation?

Matthew A. Hammer Self-Adjusting Stack Machines 23

Overview of Our Implementation

CEAL Compiler

C

Translate

IL

Transform

IL

Translate

C + RT

I Compiler: produces C targets from C-like source code

I Run-time: maintains traces, performs efficient updates

Matthew A. Hammer Self-Adjusting Stack Machines 24

Dynamic Expression Trees: From-Scratch Time

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 250K 500K 750K

T
im

e
(s

)

Input Size

Exptrees From-Scratch

Self-Adj
Static

Matthew A. Hammer Self-Adjusting Stack Machines 25

Dynamic Expression Trees: Ave Update Time

0.011
0.012
0.013
0.014
0.015
0.016
0.017
0.018
0.019
0.020
0.021
0.022

250K 500K 750K

T
im

e
(m

s)

Input Size

Exptrees Ave Update

Self-Adj

Matthew A. Hammer Self-Adjusting Stack Machines 26

Dynamic Expression Trees: Speed up

0.0 x 100

5.0 x 103

1.0 x 104

1.5 x 104

2.0 x 104

2.5 x 104

0 250K 500K 750K

S
pe

ed
up

Input Size

Exptrees Speedup

Self-Adj

Matthew A. Hammer Self-Adjusting Stack Machines 27

Summary of Empirical Results

Benchmark N Initial Overhead Speed-up
(Compute / Static) (Static / Update)

exptrees 106 8.5 1.4× 104

map 106 18.4 3.0× 104

reverse 106 18.4 3.8× 104

filter 106 10.7 4.9× 104

sum 106 9.6 1.5× 103

minimum 106 7.7 1.4× 104

quicksort 105 8.2 6.9× 102

mergesort 105 7.2 7.8× 102

quickhull 105 3.7 2.2× 103

diameter 105 3.4 1.8× 103

distance 105 3.4 7.9× 102

Matthew A. Hammer Self-Adjusting Stack Machines 28

Our Contributions

A consistent self-adjusting semantics for low-level programs

Our abstract machine semantics

I Describes trace editing & memory management
 implementation of run-time system

I But requires programs with a particular structure
 implementation of compiler transformations

Our intermediate language is low-level, yet abstract

I orthogonal annotations for self-adjusting behavior

I no type system needed

 implementation of C front end

Matthew A. Hammer Self-Adjusting Stack Machines 29

Our Contributions

A consistent self-adjusting semantics for low-level programs

Our abstract machine semantics

I Describes trace editing & memory management
 implementation of run-time system

I But requires programs with a particular structure
 implementation of compiler transformations

Our intermediate language is low-level, yet abstract

I orthogonal annotations for self-adjusting behavior

I no type system needed

 implementation of C front end

Matthew A. Hammer Self-Adjusting Stack Machines 29

Our Contributions

A consistent self-adjusting semantics for low-level programs

Our abstract machine semantics

I Describes trace editing & memory management
 implementation of run-time system

I But requires programs with a particular structure
 implementation of compiler transformations

Our intermediate language is low-level, yet abstract

I orthogonal annotations for self-adjusting behavior

I no type system needed

 implementation of C front end

Matthew A. Hammer Self-Adjusting Stack Machines 29

Thank You! Questions?

Self-adjusting computation is a language-based technique
to derive dynamic programs from static programs.

Summary of contributions:

I A self-adjusting semantics for low-level programs.
This semantics defines self-adjusting stack machines.

I A compiler and run-time that implement the semantics.

I A front end that embeds much of C.

Matthew A. Hammer Self-Adjusting Stack Machines 30

