
Knowledge Inference for Optimizing
Secure Multi-party Computation

Aseem Rastogi Piotr Mardziel Michael Hicks Matthew A. Hammer
University of Maryland, College Park

{aseem, piotrm, mwh, hammer}@cs.umd.edu

Abstract
In secure multi-party computation, mutually distrusting par-
ties cooperatively compute functions of their private data; in
the process, they only learn certain results as per the proto-
col (e.g., the final output). The realization of these protocols
uses cryptographic techniques to avoid leaking information
between the parties. A protocol for a secure computation can
sometimes be optimized without changing its security guar-
antee: when the parties can use their private data and the re-
vealed output to infer the values of other data, then this other
data need not be concealed from them via cryptography.

In the context of automatically optimizing secure multi-
party computation, we define two related problems, knowl-
edge inference and constructive knowledge inference. In
both problems, we attempt to automatically discover when
and if intermediate variables in a protocol will (eventually)
be known to the parties involved in the computation. We
formally state the two problems and describe our solutions.
We show that our approach is sound, and further, we charac-
terize its completeness properties. We present a preliminary
experimental evaluation of our approach.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms Algorithms, Security, Verification

Keywords Secure Multi-party Computation;Program Veri-
fication;Information Flow

1. Introduction
Secure multi-party computation (SMC) protocols [5, 11, 23]
enable a number of parties p1, ..., pn to cooperatively com-
pute a function f over their private inputs x1, ..., xn in a way
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that every party directly sees only the output f(x1, ..., xn)
while keeping the variables xi private. Initial implementa-
tions of SMC protocols [6, 18] compute f using a single,
monolithic protocol, which can be very expensive. More re-
cently, researchers have been exploring how program analy-
sis can be used to optimize SMC protocols.

A key observation underlying many optimizations is that
while SMC protocols typically only reveal the final output
to each party, a party may be able to infer the results of in-
termediate computations given the final output, their inputs,
and the function being computed. When such inference is
possible, the inferable intermediate results need not be cryp-
tographically concealed. Revealing inferable results does not
change the knowledge profile of the protocol: If the party
will eventually know the intermediate result (e.g., given the
final output), then revealing it earlier does not change what
is known to whom.1 Beyond preserving a protocol’s knowl-
edge profile, decomposing monolithic protocols into smaller
protocols that explicitly reveal intermediate results can sig-
nificantly improve their performance.

As an example, consider the joint median computation
between two parties Alice and Bob in Figure 1. Let a1 and
a2 be Alice’s inputs and b1 and b2 be Bob’s. We also assume
that these numbers are distinct, with a1 < a2 and b1 < b2.
At the end of the computation, both parties share the joint
median output m.

In the unoptimized version of secure computation for this
example, the whole program is computed as a single secure
computation. However, one can show that, with the knowl-
edge of a1, a2, and m, Alice can always infer the values of
x1 and x2, no matter what Bob’s input values are [3]. Sim-
ilarly, Bob can also infer the values of x1 and x2 from the
knowledge of b1, b2, and m. Therefore, declassifying values
of x1 and x2 explicitly to Alice and Bob during the compu-
tation would not compromise privacy, since they can infer
them anyway, and it turns out that doing so it enables the
following, more efficient SMC protocol:

1 Throughout this paper, we assume the honest-but-curious threat model
(also called semi-honest), where parties always follow a prearranged pro-
tocol to its completion. When parties are acting honestly they do not, for
instance, unexpectedly stop participating halfway through the protocol.



1 ## assume a1 < a2, b1 < b2, distinct(a1, a2, b1, b2)

2 int median(int a1, int a2, int b1, int b2)

3 bool x1, x2; int a3, b3, m;

4

5 x1 = a1 ≤ b1;

6 if x1 then { a3 = a2; } else { a3 = a1; }

7 if x1 then { b3 = b1; } else { b3 = b2; }

8 x2 = a3 ≤ b3;

9 if x2 then { m = a3; } else { m = b3; }

10 return m;

Figure 1. Joint median computation example [15]. a1 and
a2 are Alice’s inputs and b1 and b2 are Bob’s. Both Alice
and Bob can infer x1 and x2 given the final output.

Alice and Bob compute a1 ≤ b1 using secure computa-
tion and share the output x1 (line 5). Alice locally computes
a3 (line 6). Bob locally computes b3 (line 7). Alice and Bob
compute a3 ≤ b3 using secure computation and share the
output x2 (line 8). If x2 is true, Alice sends a3 to Bob as
the final median, else if x2 is false, Bob sends Alice b3 as
the final median (line 9 and 10).

Thus, in the optimized version, only the two comparisons
(line 5 and 8), need to be done securely. Moreover, Alice
and Bob do not learn anything more than they did in the
unoptimized version. For median computation on a joint set
with 64 elements, Kerschbaum [15] shows 30x performance
improvement using this optimization.

Building on and expanding work begun by Kerschbaum,
this paper explores methods for inferring when and if vari-
ables like x1 and x2 in this example can be inferred by SMC
participants, and thus may enable protocol optimizations like
the one above. Specifically, we consider two related prob-
lems: knowledge inference and constructive knowledge in-
ference. Both problems are specified by giving an SMC as
a program that uses multiple parties’ variables (as in Fig-
ure 1). From this program, a solution to the knowledge infer-
ence problem states which parties can learn which additional
variables, if any, from a cooperative run of the unoptimized
protocol. We call a knowledge inference solution construc-
tive if, in addition to correctly asserting that a party p knows
a variable y, the solution also gives an evidence of party p’s
knowledge of y in the form of a program that computes y
from p’s private data and the final output.

Contributions. We make the following contributions:

• Within the context of secure multi-party computation,
we formally define notions of knowledge (of a program
variable y to a party p), and the problems of knowledge
inference and constructive knowledge inference.
• We give a solution to the knowledge inference problem

(Section 3.2). We prove that our solution is sound (The-
orem 5). Additionally, for the language that we consider,
we also show that our solution is complete (Theorem 6).

• We give a solution to the constructive knowledge infer-
ence problem (Section 3.3). We prove that our solution is
sound (Theorem 7), and we characterize conditions under
which it is also complete (Theorems 8 and 9).
• We implement our solutions and evaluate them experi-

mentally (Section 5).

2. Overview
In this section, we present an overview of our knowledge
inference approaches with the help of some examples.

In our setting, party p knows the (deterministic) program
(call it S), his own input set I , and his output O.2 We say
party p can infer the value of local variable y ∈ S if there
exists a function F such that y = F (I,O) in all runs of
S. Another way of putting it is that no matter the values of
p’s inputs or those of other participants of the SMC, p can
always compute y given knowledge of only his inputs and
the final result. Our goal to find all those variables in S that
p can infer. We can do this by either showing merely that
the required function F exists, without saying what it is, or
we can produce F directly, thus constituting a constructive
proof. In this paper we present approaches to both tasks.

2.1 Knowledge inference
To show that an intermediate variable can be expressed as a
function of one party’s inputs and outputs, we can attempt
to prove that given any pair of runs of S that agree on the
valuations of variables in I and O (but may not agree on the
input and output variables of other parties), the valuations of
y on those two runs must also agree. In other words, y can
be determined uniquely from I andO, and thus a function F
exists such that F (I,O) = y. We can construct such a proof
in two steps.

First we use a program analysis to produce a formula
φpost that soundly approximates the final state of the pro-
gram S (that is, the final values of all program variables) for
all possible program runs. So that the meaning of a variable
y mentioned in φpost is unambiguous, we assume that a vari-
able is assigned at most once during a program run.

One program analysis we might use to produce φpost is
symbolic execution [16]. Each feasible program path is char-
acterized by a path condition ϕi, which is a set of predicates
relating the program variables. The path conditions can be
combined to provide a complete description of the program’s
behavior: φpost

def
=

∨
i

ϕi. For the median program of Fig-

ure 1, there are four possible paths, having the path condi-
tions given in FIgure 2.

Consider the first path condition ϕ1. Conceptually, it de-
scribes the program path in which then branch of both con-
ditionals (lines 6 and 9) is taken. The remaining three paths
constitute the other three possible branching combinations.

2 Some SMCs may have different outputs for different parties; in the median
example, there is a single output O = m known to both parties.



ϕ1
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre

ϕ2
def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧
a3 ≥ b3 ∧ x2 = false ∧ m = b3 ∧ φpre

ϕ3
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre

ϕ4
def
=a1 ≥ b1 ∧ x1 = false ∧ a3 = a1 ∧ b3 = b2 ∧
a3 ≥ b3 ∧ x2 = false ∧ m = b3 ∧ φpre

Figure 2. Path conditions for secure median

Note that each path also requires φpre. This formula defines
the publicly-known constraints on all inputs; in the case of
the median program we have φpre

def
= a1 < a2 ∧ b1 <

b2 ∧ a1 6= b1 ∧ a1 6= b2 ∧ a2 6= b1 ∧ a2 6= b2.
The next step is to prove that any two runs of the program

S that agree on variables known to p will also agree on the
value of y. This statement is a 2-safety property [8], and we
can prove it using a technique called self-composition [4].
The idea is to reduce this two-run condition on program S to
a condition on a single run of a self-composed program Sc,
which is the sequential composition of S with itself, with the
second copy of S’s variables renamed, e.g., so that x is re-
named to x′. Given the formula φscpost for this self-composed
program, we can ask whether, under the assumption that the
normal and primed versions of p-visible variables are equal,
that the normal and primed version of y is also equal.

As an example, Figure 3 shows self composition of the
median function of Figure 1. We write median′ for the
function median but with the local variables renamed to
x1′, x2′, .... The self-composed program effectively runs
median twice, on two separate spaces of variables. We can
express the question of knowledge inference as a question
on the relationship between the two copies of the variables.
Namely, Alice can infer x1 if and only if for every feasible
final state of the composed program, when the two copies of
a1, a2, m agree on their values then the copies of x1 agree
on their value. More formally we need to check the validity
of the following formula for any feasible final state.

φscpost ∧ (a1 = a1’ ∧ a2 = a2’ ∧ m = m’)⇒ (x1 = x1’)

Here, the formula φscpost will involve sixteen path condi-
tions (self-composition squares the number of paths). For ex-
ample, among them will be:

ϕsc
1

def
=a1 < b1 ∧ x1 = true ∧ a3 = a2 ∧ b3 = b1 ∧
a3 < b3 ∧ x2 = true ∧ m = a3 ∧ φpre ∧
a1’ < b1’ ∧ x1’ = true ∧ a3’ = a2’ ∧ b3’ = b1’ ∧
a3’ < b3’ ∧ x2’ = true ∧ m’ = a3’ ∧ φ′pre

1 ## a1 < a2, b1 < b2, distinct(a1, a2, b1, b2)

2 int m = median(a1, a2, b1, b2);

3

4 ## a1’< a2’, b1’< b2’, distinct(a1’, a2’, b1’, b2’)

5 int m’ = median’(a1’, a2’, b1’, b2’);

Figure 3. Median computation composed with itself.

The formula ϕsc
1 is actually the conjunction of ϕ1 with

a version of ϕ1 that has all its variables renamed to the
primed versions. We can think of the entire post condition
φscpost = ϕsc

1 ∨ ... ∨ ϕsc
16 as the conjunction of the post

condition φpost with its primed version.
Being a quantifier-free formula in the theory of integer

linear arithmetic, the final formula poses no problem for
an SMT solver such as Z3 [2], which can indeed verify
its validity. Additionally, the same can be said for Alice’s
knowledge of x2 and a3, and Bob’s knowledge of x1, x2
and b3.

The knowledge inference question bears a close resem-
blance to deciding the property of delimited release [21]. We
explore this connection in more detail in Section 4.

2.2 Constructive Knowledge Inference
The technique just described can establish that there exists
some function F such that y = F (I,O), where y is an in-
termediate variable in S, and I and O are variables known
to party p. However, this technique cannot say what F actu-
ally is. To construct F we can leverage ideas from template-
based program verification.

Program verification generally aims at inferring invari-
ants in a program that are strong enough to verify some
assertions of interest. Template-based program verification
[12, 22] requires programmers to specify the structure of
these invariants in the form of a template. The algorithm
then generates verification constraints for the assertions, to
be solved by an SMT solver (e.g. Z3 [2]). A solution to the
constraints yields a valid proof of the correctness of the as-
sertions as well as a solution to the template unknowns. Gul-
wani et. al. [12] present constraint-based verification tech-
niques over the abstraction of linear arithmetic and Srivas-
tava et. al. [22] present these techniques over the abstraction
of predicates.

To infer p’s knowledge of a variable y, our algorithm
tries to infer a formula φ s.t. (a) at the end of the program
y = φ, and (b) φ only mentions the input and output vari-
ables known to p. If we add an assertion y = φ at the end
of the program, and provide a template structure for φ (lim-
ited to formulae over variables known to p) this becomes
a template-driven verification problem where the assertion
and the invariant are the same. A successful verification of
the assertion y = φ establishes p’s knowledge of y, and also
the solution for φ yields a formula for y in terms of input and
output variables of p.



The template structure for this problem is defined as fol-
lows. Suppose y is a boolean variable. Then the template for
φ requires it to be in disjunctive normal form (DNF) such
that there are exactly d disjuncts each consisting of c con-
juncts, with each conjunct drawn from a set of predicates Q.
This set contains predicates over linear expressions involv-
ing I and O. In the median example, for Alice, one choice
of Q is {v1 � v2 | v1, v2 ∈ {a1, a2, m},� ∈ {>,≥, <,≤
,=, 6=}}. For Bob, similar Q would be {v1 � v2 | v1, v2 ∈
{b1, b2, m},� ∈ {>,≥, <,≤,=, 6=}}.

Our algorithm searches for a φ conforming to the pre-
scribed template. For example, if (c = 2, d = 2), then the
search space for φ is all the boolean formulae (q1 ∧ q2) ∨
(q3 ∧ q4), q1, q2, q3, q4 ∈ Q. We denote this search space for
formulae as DNF(c, d,Q). A naive search algorithm would
makeO(|Q|cd) queries to the SMT solver, one for every pos-
sible formula in DNF(c, d,Q). This algorithm is complete in
the sense that if there exists a solution for φ in DNF(c, d,Q)
then the naive search algorithm finds it. Our algorithm, on
the other hand, makes O(|Q|c + |Q|d) queries to the SMT
solver, and still guarantees completeness, provided the exis-
tence of solution in DNF(c, d,Q).

Consider variable x1 from the median example. With
QAlice and QBob as above, and (c = 1, d = 1), we are
able to establish knowledge of x1 for both Alice and Bob
as: x1 = m > a1 for Alice, and x1 = m ≤ b1 for Bob.
Interestingly, (c = 1, d = 1) is insufficient to discover
invariants describing Alice’s and Bob’s knowledge of x2.
With (c = 1, d = 2), we are able to establish Alice’s
knowledge of x2 as x2 = (m = a1 ∨ m = a2). And with
(c = 2, d = 1), we are able to establish Bob’s knowledge
of x2 as x2 = (m 6= b1 ∧ m 6= b2). In general, starting with
(c = 1, d = 1), we can increment (c, d) in steps until either
we find a solution or we leave x as being unknown to p.

We can also infer formulae for integer variables. In this
case we use a different template structure, and leverage ideas
from Gulwani et. al. [12]. We discuss the algorithm further
in the next section.

Constructive knowledge inference problem is closely re-
lated to the problem of inferring output function in required
release [7], a connection we explore more in Section 4.

3. Formal Development
In this section, we formally describe our knowledge infer-
ence algorithm. We first give the language syntax, opera-
tional semantics, and formal definition of knowledge in Sec-
tion 3.1. We then present inference in Section 3.2, and con-
structive inference in Section 3.3.

3.1 Language Syntax
Let parties p1, . . . , pn want to compute a secure computa-
tion S whose syntax is given in Figure 4. The language is
standard aside from the omission of a looping construct; this
makes sense in our setting since most SMC methods for-

Value v ::= n | true | false
Exprn./Formula e, φ ::= v | x | e1 � e2

Binary operator � ∈ {≤,≥, >,<,=, 6=}
∪ {∧,∨,¬,⇒} ∪ {+,−}

Statement S ::= x := e | S1;S2 | skip
| if e then S1 else S2

Figure 4. Syntax.

(E-VAR)

〈σ, x〉 ⇓ σ[x]

(E-VAL)

〈σ, v〉 ⇓ v

(E-BINOP)
〈σ, e1〉 ⇓ v1 〈σ, e2〉 ⇓ v2

〈σ, e1 � e2〉 ⇓ v1 � v2

(E-ASSIGN)
x 6∈ dom(σ) 〈σ, e〉 ⇓ v
〈σ, x := e〉 ⇓ σ[x 7→ v]

(E-SEQ)
〈σ, S1〉 ⇓ σ′ 〈σ′, S2〉 ⇓ σ′′

〈σ, S1;S2〉 ⇓ σ′′

(E-IFTRUE)
〈σ, e〉 ⇓ true 〈σ, S1〉 ⇓ σ′

〈σ, if e then S1 else S2〉 ⇓ σ′

(E-IFFALSE)
〈σ, e〉 ⇓ false 〈σ, S2〉 ⇓ σ′

〈σ, if e then S1 else S2〉 ⇓ σ′

(E-SKIP)

〈σ, skip〉 ⇓ σ

(φ-VALID)
〈σ, φ〉 ⇓ true

σ |= φ

Figure 5. Semantics.

bid dynamic looping (rather, they require a static loop un-
rolling). Our methods support loops as well, but we elide
them nevertheless to keep the formalization simpler. We also
assume, for simplicity, that each program path is in single
assignment form, i.e. in an execution of a program, every
variable is assigned at most once.

The semantics of computations is given in Figure 5. The
judgments have the form 〈σ, S〉 ⇓ σ′, meaning, statement S
executed in state σ results in new state σ′. States σ are maps
from variables x to values v; we write σ[x] to look up x in
σ, and we write σ[x 7→ v] to define a map identical to σ
except that x maps to v. The figure also defines an auxiliary
judgment for expressions having the form 〈σ, e〉 ⇓ v, mean-
ing, expression e evaluated in state σ results in value v. The
rules are standard, with one exception. The rule (E-ASSIGN)
checks that x 6∈ dom(σ) to enforce single assignment form
for the current program path. When an expression is viewed
as a formula φ, we write σ |= φ to mean that in σ the for-
mula φ evaluates to true. We also write predicate to mean a
boolean valued formula.

Let V be a set of variables. We define two states as being
equivalent on a set of variables as follows:

Definition 1 (Equivalence of States). Two states, σ1 and σ2,

are equivalent on a set of variables V , written as σ1
V≡ σ2,

iff ∀x ∈ V , σ1[x] = σ2[x].



ς(skip, φ) = φ
ς(x := e, φ) = φ ∧ (x = e)
ς(S1;S2, φ) = ς(S2, ς(S1, φ))
ς(if e then S1 else S2, φ) = (e ∧ ς(S1, φ)) ∨

(¬e ∧ ς(S2, φ))

Figure 6. Postcondition of a predicate φ w.r.t. statement S.

Let φpre denote the precondition for a secure computation
program S. It represents the assumptions that S makes about
parties’ inputs. In the median example from Figure 1, φpre =
a1 < a2 ∧ b1 < b2 ∧ a1 6= b1 ∧ a1 6= b2 ∧ a2 6=
b1 ∧ a2 6= b2. We are interested in executions 〈σ, S〉 ⇓ σ′
when σ |= φpre.

We now define knowledge of a variable y to a party p
in S, written as K(S, p, y). Informally, y is known to p, if,
whenever two final states of S are equivalent on the set of
input and output variables of p, they are also equivalent on
{y}.

Definition 2. [Knowledge of a Variable] Let S be a secure
computation program with precondition φpre. For a party p
in the computation, let I be the set of input variables of p,
and O be the set of output variables of p. Then, a variable
y in S is known to p, written as K(S, p, y), if for all initial

states σ1, σ2 s.t. σ1 |= φpre, σ2 |= φpre, and σ1
I≡ σ2,

whenever 〈σ1, S〉 ⇓ σ′1 and 〈σ2, S〉 ⇓ σ′2 s.t. σ′1
O≡ σ′2, we

have σ′1
{y}
≡ σ′2.

The definition models the 2-safety property discussed in
the Section 2. It says that the value of y can be uniquely de-
termined from the knowledge of input and output variables
of p, independent of the inputs of other parties in the com-
putation. We now give the formal description of knowledge
inference algorithm.

3.2 Knowledge Inference
The problem of knowledge inference is as follows. For a
secure computation program S, we want to know whether
a party p knows a program variable y according to Defi-
nition 2. We present our knowledge inference algorithm in
Figure 8, but before that we give some auxiliary definitions.

Definition 3 (Validity of a Predicate). A predicate φ is valid
at the end of a program S with precondition φpre, if ∀σ s.t.
σ |= φpre, 〈σ, S〉 ⇓ σ′, we have σ′ |= φ.

We define the postcondition of a predicate φ w.r.t. state-
ment S, written as ς(S, φ), in Figure 6. The following theo-
rem states the properties of ς(S, φ).

Theorem 4. [Soundness and Completeness of Postcondi-
tion] For a program S with precondition φpre, ς(S, φpre)
is valid at the end of program S (Soundness). Moreover,

(T-VAR1)
x ∈ θ

〈θ, x〉 〈θ, θ[x]〉

(T-VAR2)
x 6∈ dom(θ) x′ is fresh
〈θ, x〉 〈θ[x 7→ x′], x′〉

(T-BINOP)
〈θ, φ1〉 〈θ′, φ′1〉 〈θ′, φ2〉 〈θ′′, φ′2〉

〈θ, φ1 � φ2〉 〈θ′′, φ′1 � φ′2〉

(T-VAL)

〈θ, v〉 〈θ, v〉

Figure 7. Variable renaming translation for a predicate.

1 InferKnowledge(S, φpre)

2 for each party p

3 let I be the set of p’s input variables.

4 let O be the set of p’s output variables.

5 φpost := ς(S, φpre);

6 〈ε, φpost〉 〈θ, φ′post〉.
7 φk :=

∧
x∈I∪O

(x = θ[x]);

8 for each program variable y

9 φ := (φpost ∧ φ′post ∧ φk)⇒ (y = θ[y]);

10 if(`alg φ)
11 output y is known to p.

12 else

13 output y is not known to p.

Figure 8. Knowledge inference algorithm. φpre is the pre-
condition of S. The algorithm first generates postconditions
for two different runs of S (φpost and φ′post). To establish p’s
knowledge of a program variable y, it then tries to prove, us-
ing alg, that whenever these two runs are equivalent on p’s
input and output variables, they are also equivalent on y.

for any other predicate φ s.t. φ is valid at the end of S,
ς(S, φpre)⇒ φ (Completeness).

Proof. Soundness – Structural induction on S. Complete-
ness – Structural induction on S and using following lemma
for each case. Let σ |= ς(S, φpre). Then, ∃σ′ s.t. σ′ |= φpre,
〈σ′, S〉 ⇓ σ, and dom(σ′) = dom(σ) − Def(S), where
Def(S) is the set of variables defined by S.

The theorem depends on the program paths being in sin-
gle assignment form. Specifically, the postcondition rule for
assignment statement assumes that x does not occur in φ.

We now define a variable renaming translation on predi-
cates. The idea is to replace every variable in the predicate
with a copy of the variable. Let θ be a mapping from vari-
ables to variables. The translation judgment is shown in Fig-
ure 7. We define similar translation judgments for statements
and states and refer to them in the theorem proofs later on,
however we do not show them here for lack of space.

Our algorithm is parameterized by an SMT solver (e.g.
Z3 [2], STP [10]), that we denote as alg. We use alg to
determine whether a given predicate is a tautology (always
true). We write `alg φ as the query to alg for predicate φ.



The knowledge inference algorithm is shown in Figure 8.
It takes as input the secure computation program S and its
precondition φpre. For each party p and program variable y,
it outputs whether p knows y or not.

The algorithm first computes the postcondition of φpre
w.r.t. S (φpost). It then performs variable translation on φpost
to generate φ′post. Essentially φpost and φ′post model two
different runs of the program. φk then asserts that ∀x ∈
I ∪ O, x has same value across these two runs. Under these
assumptions, if a program variable y also has same value
across these two runs, the variable y is known to p.

The soundness theorem of our algorithm is as follows:

Theorem 5 (Soundness of Knowledge Inference). Let S be
a secure computation program with the precondition φpre. If
InferKnowledge(S, φpre) outputs variable y is known to
party p, then K(S, p, y).

Proof. We want to prove that for two states σ and σ′ s.t.

σ
I∪O≡ σ′, σ[y] = σ[y′] (see Definition 2). If we translate

σ according to θ to yield σ′ (dom(σ) ∩ dom(σ′) = ε),
then we can see that σ ∪ σ′ |= φpost, σ ∪ σ′ |= φ′post
(soundness of postcondition), and σ∪σ′ |= φk (using above
equivalence). Thus, it follows from line 9 in Figure 8 that
σ ∪ σ′ |= (y = θ[y]).

Moreover, we can also state a completeness theorem.

Theorem 6 (Completeness of Knowledge Inference). Let S
be a secure computation program with precondition φpre.
For a program variable y and party p, if K(S, p, y), then
InferKnowledge(S, φpre) outputs variable y is known to
party p.

Proof. For a program S, let S′ be the translation of S. Then,
we can see that φpost∧φ′post∧φk = ς(S;S′, φpre∧φ′pre∧φk).
By completeness of postcondition, if y = θ[y] is valid at the
end of S;S′, line 9 in Figure 8 must be true.

3.3 Constructive Knowledge Inference
The knowledge inference algorithm from Figure 8 estab-
lishes whether p knows y or not, however it does not give
a formula for y in terms of p’s input and output variables.
In this section, we present constructive knowledge inference
algorithms, that output such a formula.

Constructive knowledge inference for boolean variables.
Define the verification condition of a predicate φ w.r.t.
a statement S with precondition φpre, VC(S, φpre, φ), as
ς(S, φpre) ⇒ φ. Then, if `alg VC(S, φpre, φ), the predicate
φ is valid at the end of S.

Recall that to construct knowledge of variable y for a
party p, we want to infer a formula φ, s.t. at the end of
the program y = φ holds. For boolean variables, the search
space for φ is DNF(c, d,Q), where Q is a set of predicates
constructed from input and output variables of p.

1 ConstructKnowledgeB(S, φpre)

2 for each party p

3 construct the predicate set Q.

4 for each boolean program variable y

5 c = 1; d = 1;

6 do

7 φ := CFormula(y, c, d,Q);

8 increment (c, d) in lockstep.

9 while (φ is failure and c < cmax, d < dmax);

10 if(φ = failure)

11 output y is not known to p.

12 else

13 output y is known to p by φ.

Figure 9. Constructive knowledge inference for boolean
variables. For each party p and each boolean program vari-
able y, starting with (c = 1, d = 1), it calls CFormula (Fig-
ure 10) to construct a formula for y in DNF(c, d,Q) tem-
plate.

The algorithm for boolean variables is shown in Figure 9.
For each party p, it first constructs a predicate setQ. As men-
tioned earlier, this can either be provided as input by the pro-
grammer, or it can be mined from the expressions appearing
in the program. For each boolean program variable y, start-
ing with (c = 1, d = 1) and incrementing (c, d) in lockstep
until (cmax, dmax), it tries to find φ. It uses an auxiliary rou-
tine CFormula, defined in Figure 10.

Figure 10 consists of the subroutine CFormula and
two other subroutines, that it invokes, CFormulaL and
CFormulaR. We divide the problem of constructing φ into
subproblems of constructing φL and φR s.t. (a) φL and φR
consist only of predicates from Q, and (b) at the end of the
program, φL ⇒ y, y ⇒ φR, and φR ⇒ φL hold. Then, we
have φ = φR. CFormulaL constructs φL and CFormulaR

constructs φR.

Construction of φL. To construct φL (CFormulaL in Fig-
ure 10), we perform breadth first search on the lattice of sub-
sets of Q ordered by implication (i.e. M v N,M,N ∈ 2Q,
iff `alg (

∧
q∈M

p) ⇒ (
∧

q′∈N
q′)) with > = {} and ⊥ = Q,

and collect all nodes of the lattice that form a solution to
φL ⇒ y. A node N in the lattice is a solution to φL ⇒ y
if `alg VC(S, φpre, (

∧
q∈N

q) ⇒ y). When we find a node N

that is a solution, we delete the subtree rooted at N from the
lattice, since any node in the subtree is a “weaker” solution
thanN (i.e. for any nodeM in the subtree underN , we have
`alg (

∧
q∈M

q) ⇒ (
∧

q′∈N
q′), and since `alg (

∧
q′∈N

q′) ⇒ y,

we already have `alg (
∧

q∈M
q) ⇒ y). Moreover, we also

prune any subtree rooted at a node (including the node it-
self) whose size is greater than c (since the current search
space is DNF(c, d,Q), we need not consider lattice nodes



1 CFormula(y, c, d,Q) ## construct φ s.t. y ⇔ φ

2 let L be the lattice (2Q,⇒,> = {},⊥ = Q).

3 φL := CFormulaL(y, c,L); φR := CFormulaR(y, d,Q);

4 if(φL = failure || φR = failure)

5 return failure;

6 φ := VC(S, φpre, φR ⇒ φL);

7 if(`alg φ)
8 return φR;

9 else

10 return failure;

11

12 CFormulaR(y, d,Q) ## construct φR s.t. y ⇒ φR

13 N := {}; ## set of tuples that satisfy y ⇒ φR

14 for all (q1, . . . , qd) ∈ (Q×1 Q · · · ×d−1 Q)

15 φ := VC(S, φpre, y ⇒
d∨

i=1

qi);

16 if(`alg φ)
17 N := N ∪ {(q1, . . . , qd)};
18 if(N = {})
19 return failure;

20 else

21 return
∧

(q1,...,qd)∈N
(

d∨
i=1

qi);

1 CFormulaL(y, c,L) ## construct φL s.t. φL ⇒ y

2 N := {}; ## set of lattice nodes that satisfy φL ⇒ y

3 visit lattice L nodes in BFS order,

4 when node N is visited, do

5 if(N = {})
6 φN := true;

7 else

8 let N be {q1, . . . , qn}.

9 φN :=
n∧

i=1

qi;

10 φ := VC(S, φpre, φN ⇒ y);

11 if(`alg φ)
12 N := N ∪ {N};
13 truncate sublattice rooted at N from BFS.

14 else

15 for each child M of N in L
16 if(|M | ≤ c && M is unvisited)

17 add M to BFS worklist.

18 if(N = {})
19 return failure;

20 else

21 return
∨

{q1,...,qn}∈N
(

n∧
i=1

qi);

Figure 10. The routine CFormula constructs a formula for y in DNF(c, d,Q) template. It calls the subroutine CFormulaL to
construct φL s.t. φL ⇒ y, and subroutine CFormulaR to construct φR s.t. y ⇒ φR. Finally, it checks that φR ⇒ φL, and if so,
returns φR as the solution for y.

with more than c elements). LetN be the set of lattice nodes
that are found as solutions. We assign φL =

∨
N∈N

(
∧

q∈N
q).

If N = {}, the algorithm fails to infer p’s knowledge of y
(under input values of c and d). Construction of φL makes
O(|Q|c) queries to the SMT solver.

Construction of φR. To construct φR (CFormulaR in Fig-
ure 10), we consider all possible (q1, . . . , qd) ∈ (Q ×1

Q · · · ×d−1 Q) , and collect all such tuples that form a so-
lution to y ⇒ φR. (q1, . . . , qd) is a solution to y ⇒ φR if

`pre VC(S, φpre, y ⇒
d∨

i=1

qi). Let N be the set of such solu-

tions. Then, we assign φR =
∧

(q1,...,qd)∈N
(

d∨
i=1

qi). IfN = {},

the algorithm fails to infer P ’s knowledge of y (under in-
put values of c and d). Construction of φR makes O(|Q|d)
queries to the SMT solver.

Construction of φ. We now check that φR ⇒ φL is valid
at the end of the program using the formulae for φL and
φR constructed above (CFormula in Figure 10). If it is, y is
known to p using the formula φR, otherwise our algorithm
returns y is not known to p (under input values of c and d).

Constructive knowledge inference for integer variables.
For integer variables in the program S, constructive knowl-
edge inference algorithm is shown in Figure 11. To verify φ

1 ConstructKnowledgeI(S, φpre)

2 for each party p

3 let {xi}i∈1...n be input and output variables of p.

4 for each integer program variable y

5 let ai, i ∈ 1 . . . n be n integer unknowns.

6 φ := −y +
n∑

i=1

aixi ≥ 0 ∧ y +
n∑

i=1

− aixi ≥ 0;

7 verify φ at the end of S.

8 if verification fails

9 output y is not known to p.

10 else

11 output y is known to p by
n∑

i=1

aixi.

Figure 11. Constructive knowledge inference for integer
variables. For each integer variable y, it tries to find a lin-
ear arithmetic formula for y in terms of input and output
variables of p. To verify φ on line 6, it uses the algorithm by
Gulwani et. al. [12].

on line 6, we use the algorithm given by Gulwani et. al. [12].
Their algorithm uses Farka’s lemma to convert φ into SAT
solver constraints, the solution of which returns a solution
for the template unknowns ai s.t. φ holds true at the end of

S, and thus, y =
n∑

i=1

aixi.



We state soundness theorems for constructive knowledge
inference algorithms as follows:

Theorem 7 (Soundness of Constructive Knowledge Infer-
ence). Let S be a secure computation program with pre-
condition φpre. If ConstructKnowledgeB(S, φpre) (Fig-
ure 9) and ConstructKnowledgeI(S, φpre) (Figure 11)
output variable y is known to party p, then K(S, p, y).

Proof. If the algorithms infer y = φ for a party p, then y = φ
is valid at the end of S. Moreover, since only variables in φ
are variables from I ∪O (input and output variables of p), p
knows y by Definition 2.

Moreover, constructive knowledge inference algorithms
are also complete, provided a solution exists in the template
form they consider.

Theorem 8 (Completeness of Constructive Knowledge In-
ference for Boolean Variables). Let S be a secure compu-
tation program. For a party p, let Q be a set of predicates,
where the only variables appearing in each predicate in Q
are input and output variables of p. Let y be a boolean pro-
gram variable in S. If ∃φ s.t. x = φ at the end of S, and
φ is in DNF(c, d,Q) form, for some values of (c, d), then
CFormula(y, c, d,Q) returns a solution (and not failure).

Proof. We give an outline for (c = 2, d = 2), the proof for
general case follows similarly. Let y = φ at the end of S s.t.
φ is in DNF(c, d,Q) form. Then, for some q1, q2, q3, q4 ∈
Q, y = (q1 ∧ q2) ∨ (q3 ∧ q4), equivalently, y = (q1 ∨
q3) ∧ (q1 ∨ q4) ∧ (q2 ∨ q3) ∧ (q2 ∨ q4). Since CFormulaR

considers all elements in Q × Q, it would construct φR =
(q1 ∨ q3) ∧ (q1 ∨ q4) ∧ (q2 ∨ q3) ∧ (q2 ∨ q4) ∧ φ′, for some
φ′ (possibly just true). On the other hand, since CFormulaL
considers all lattice nodes up to size c, it would construct
φL = (q1 ∧ q2) ∨ (q3 ∧ q4) ∨ φ′′ for some φ′′ (possibly
just false). We can see that φR ⇒ φL, and hence CFormula
returns φR.

The following theorem of completeness for integer vari-
ables follows from the completeness of the algorithm by
Gulwani et. al. [12]3.

Theorem 9 (Completeness of Constructive Knowledge In-
ference for Integer Variables). Let S be a secure computa-
tion program. Let y be an integer variable in S. For a party
p, let {xi}i∈1...n be the set of input and output variables of

p. If ∃ai, i ∈ 1 . . . n s.t. y =
n∑

i=1

aixi at the end of S, then

ConstructKnowledgeI(S, φpre) (Figure 11) outputs y is
known to p.

Proof. Follows from the completeness of [12].

3 Similar to the restriction in [12], the theorem holds if checking the invari-
ant y = φ does not require integral reasoning.

4. Discussion
This section considers some aspects of our approach, includ-
ing the relationship of knowledge inference to the property
of delimited release [21], the relationship of constructive
knowledge inference to required release [7], the effect of
using a different program analysis to determine a program’s
final states, the possible use of type-based information flow
analysis for knowledge inference, and finally the application
of knowledge inference to allowing SMC computations with
loops.

Relating knowledge inference to noninterference. As
mentioned in Section 2.1, the knowledge inference prob-
lem bears some resemblance to the problem of proving non-
interference, as evidenced by the similarity of our use of
self-composition with its previous use in proving noninter-
ference [4]. More precisely, knowledge inference is closely
related Sabelfeld and Myers’ delimited release [21] prop-
erty. Next we define delimited release, and then show how a
method for proving a program satisfies delimited release can
be applied to knowledge inference.

In the setting of normal delimited release, we suppose
there exists a security labeling Γ, which maps each program
variable in S to one of two security labels, L (low) and H
(high). We say that memories σ1 and σ2 are low-equivalent,
written σ1 ∼Γ σ2, if σ1(x) = σ2(x) for all variables x
such that Γ(x) = L. We also suppose that the program
S may contain expressions declassify(e), which signal
that e’s security label should be considered L, even if its
contents may otherwise suggest its label should be H . (In
an SMC, we can think of the output as being declassified;
e.g., in Figure 1, we would change line 10 to be return

declassify(m).) We say that S enjoys delimited release
with respect to Γ iff for all memories σ1, σ2, σ

′
1, σ
′
2 such

that if σ1 ∼Γ σ2, and 〈S, σ1〉 ⇓ σ′1 and 〈S, σ2〉 ⇓ σ′2
where 〈σ′1, ei〉 ⇓ v ⇔ 〈σ′2, ei〉 ⇓ v for some v for all
declassification expressions ei ∈ S, then σ′1 ∼Γ σ

′
2. In short,

all pairs of program evaluations that agree on the results of
declassified expressions ei should also agree on other low-
visible outputs. Satisfying this condition means that nothing
is leaked via low outputs beyond what the declassification
expressions already reveal.

We can describe knowledge inference for p in terms of
delimited release. Let Γp map p-visible variables to L and
all remaining variables to H . The set of declassification
expressions is the set of output variables (e.g., m in the
median example). Now, to see whether local variable y can
be inferred by p, we simply label y with L and see whether
S still satisfies delimited release. If so, revealing y to p
provides no additional information.

The self-composition algorithm described in Section 2.1
is basically checking delimited release. For example, con-
sider the condition presented for the median example:

φscpost ∧ (a1 = a1’ ∧ a2 = a2’ ∧ m = m’)⇒ (x1 = x1’)



The φscpost part captures the semantics of the two executions.
The next two equalities are establishing σ1 ∼Γ σ2, since
they require Alice’s two input variables to be equal. The third
equality establishes the equality of the declassified output
variable m. The final equality x1 = x1’ establishes that
σ′1 ∼Γ σ

′
2 (where the other low-security variables are known

to be equal by virtue of them appearing to the left of the
implication, and the program respecting single-assignment
semantics).

Constructive knowledge inference is related to required
release [7]. In this setting, a program S satisfies required
release of an input expression e to user p using output ex-
pression F if p can evaluate F (i.e. F only uses variables
visible to p) and F evaluates to the same value as e, i.e. for
all final states σ of S, 〈σ, e〉 ⇓ v ⇔ 〈|σ|p, F 〉 ⇓ v where
|σ|p denotes the state visible to p. The problem of construc-
tive knowledge inference then is to infer the function F for
a party p and program variable y such that the program S
satisfies required release of y to party p using F .

Alternatives to ς(S, φ). The role of ς(S, φ) (Figure 6) is
to provide a sound approximation of final states of execut-
ing the program S starting from an initial state that satisfies
φ. We can use other program analyses to get such an ap-
proximation. In Section 2.1 we used symbolic execution for
this purpose; for our language (Figure 4), which lacks loops,
symbolic execution generates equivalent formula as ς .

While ς(S, φ) as defined in Figure 6 provides a com-
plete approximation of final program states (Theorem 4), for
large programs the formula can become prohibitively large.
In such cases, we can always trade completeness of the ap-
proximation, and use abstract interpretation [9] to provide
a sound approximation. With such analyses, our knowledge
inference algorithms are still sound, in that if they output y
is known to p then K(S, p, y), but they lose completeness.

Applying information flow analysis. In the limit, we can
use a grossly over-approximating language-based informa-
tion flow analysis [20] for knowledge inference. Following
the formulation relating knowledge inference to delimited
release given above, we can label each of party p’s input
variables as L and all other input variables as H , restricting
valid flows in the program as L v H as usual, while explic-
itly declassifying the final output when it is returned. Then
we can do type inference [19, 24] to determine whether any
unlabeled, local variables can safely be given label L, and if
so then we know these can be determined solely from knowl-
edge of p’s inputs.

Such a type-based analysis is less precise than the seman-
tic analysis we have given to this point. It cannot, for exam-
ple, infer the knowledge of x1 and x2 in the median example.
As soon as it sees x1 = a1 ≤ b1 (Figure 1, line 5) it assumes
that there is information flow from both a1 and b1 to x1, and
hence, neither Alice nor Bob can determine x1 alone.

However, it is far less expensive than a semantic analysis,
and there are some useful examples where such an analysis is

1 ## variables with suffix A are Alice’s inputs,

2 ## with suffix B are Bob’s. yd is known to both.

3 int lot_size(int fvA, int cA, int hvA,

4 int fbB, int hbB, int yd)

5 int a, b, c, d, e, f, g, h, i;

6

7 a = 2 * yd;

8 b = a * fvA;

9 c = yd / cA;

10 d = c * hvA;

11

12 e = 2 * yd;

13 f = e * fbB;

14

15 g = f + b;

16 h = hbB + d;

17 i = g / h;

18

19 return sqrt(i); ## integer square root

Figure 12. Joint economic lot size example from [15]

enough to establish knowledge facts. Consider the joint eco-
nomic lot size computation example from Kerschbaum [15],
shown in Figure 12. The program computes an order quan-
tity (or lot size) between a buyer (Bob) and vendor (Alice).
The buyer’s private inputs include the holding cost per item
(hbB) and the fixed ordering costs per order (fbB). The ven-
dor’s private inputs include the holding cost per item (hvA),
the fixed setup costs per order (fvA), and the capacity (cA).
Both parties know the yearly demand of the buyer (yd). For
vendor Alice, if we label yd, fvA, cA, hvA as L, fbB,
hbB as H , and do type inference in an information flow type
system, it can infer that a, b, c, d can have label L and
are thus known to Alice. Similarly, it can infer that e, f

are known to Bob. Using these knowledge facts, the SMC
protocol can be optimized to compute lines 7-10 locally on
Alice’s host, and lines 12-13 locally on Bob’s host, leaving
only lines 15-17, and 19 to be computed securely.

Adding loops to the programs. SMC programs do not
admit loop constructs because in many cases the execution
of a loop, specifically the number of times it iterates, can
potentially reveal information about parties’ input values
beyond what is revealed by the output. However, if we can
prove that using their own input and output variables, all
parties in the secure computation can infer the number of
loop iterations, we can allow SMC programs to have loops
in them, without compromising security. For example, for a
loop .. i = 0; while(i < n) { ... ++i;} .. , if n
is already known to all the parties in the computation, they
can infer the number of loop iterations, and hence running
this loop in SMC does not compromise security.



Constructive knowledge inference can be useful in this
situation. In particular, we can use it to infer loop invariants
in terms of known variables for a party, and if we can do so
for all the parties, we can admit the loop in SMC.

5. Experiments
In this section, we present an experimental evaluation of our
approach. We provide performance measurements for our
algorithms on several example programs.

5.1 Implementation
We present evaluation of three implementations of our al-
gorithms – two for the knowledge inference algorithm from
Figure 8 that handle linear and non-linear arithmetic respec-
tively, and one for the constructive knowledge inference al-
gorithm from Figures 9 and 10.

Convex polyhedra based implementation. We have imple-
mented the knowledge inference algorithm from Figure 8 us-
ing the polyhedra powerset domain as implemented in Parma
Polyhedra Library (PPL, v0.11.2) [1]. This approach repre-
sents the program postcondition, φpost, as a set of convex
polyhedra (each of which is a conjunction of linear inequal-
ities), interpreted over real-valued variables. We use polyhe-
dra in the implementation to avoid reasoning about integers
as much as possible. To verify the validity of φ (line 9 in Fig-
ure 8), we check if the negation of φ has an integer solution.
This corresponds to checking, for every polyhedron/disjunct
ϕ in φpost ∧ φ′post ∧ φk, that the formulae ϕ ∧ (y > y′) and
ϕ∧(y < y′) define convex regions with no real points (quick
check) and no integer points (slower check). If so, φ is valid.
This implementation only handles programs that use linear
arithmetic.

Bitvectors based implementation. Our second implemen-
tation of the algorithm from Figure 8 uses a bitvector rep-
resentation of program variables via the Simple Theorem
Prover [10] (STP, revision 1671). This implementation han-
dles non-linear arithmetic. It represents formulae (postcondi-
tion, φ) using logical and arithmetic expressions over fixed-
width bit vectors. The validity of φ is checked using STP.
In addition, STP allows us to construct formulas that relate
individual bits of the integer variables, which means we can
construct for every 1 ≤ i ≤ x (for bit width x) the formula
φpost ∧ φ′post ∧ φk ⇒ (yi = y′i) where yi designates bit i of
variable y. Checking validity of such formulas lets us con-
clude that parties can potentially infer individual bits, even
if they cannot infer whole variables.

Constructive algorithm for boolean variables. We have
implemented the constructive knowledge inference algo-
rithm for boolean variables (Figure 9 and Figure 10) using
the LLVM compiler infrastructure [17]. We use the Z3 SMT
solver [2] for the validity queries.

5.2 Results
We have conducted the experiments on a Mac Pro with two
2.26 GHz quad-core Xeon processors, 16 GB RAM, and
running OS X v10.8. The results are in Figure 13.

The top chart shows time taken (in log-scale) by our
three implementations, POLY (convex polyhedra based),
BVx (bit-vector based, for x as 8, 16, and 32), and CONS
(constructive algorithm), on several example programs (dis-
cussed later). We evaluated BVx on all programs, whereas
other implementations only on the (linear) median examples.
In all programs, we try to infer all variables for both the par-
ties. Additionally, in the case of BVx, we also try to infer
every intermediate bit.

The bottom chart provides some characteristics of the test
cases that contribute to the running times above: the total
number of variables in the test cases, and for the linear pro-
grams, the number of convex disjuncts in program postcon-
dition (see POLY implementation description).

Median example. We consider the joint median compu-
tation (Figure 1) for 2, 3, 4, and 5 inputs per party (these
versions do not store intermediate integer values a3, b3,
etc. as in Figure 1). Unsurprisingly, the time taken by non-
constructive implementations increases with the number of
inputs. POLY is especially susceptible to the large number
of disjuncts in the program postcondition (due to the large
number of paths), taking around 24 seconds for analyzing
median5, up from as little as 0.044 seconds for analyzing
median2.

For CONS, we consider the set Q for Alice as {m � ai}
and for Bob as {m�bi}, where� ∈ {<,≤, >,≥,=, 6=}, and
ai and bi range over inputs of Alice and Bob respectively.
We used (c = 2, d = 2) for all input sizes. It is able
to infer knowledge of all comparisons for all the median
programs. However, as the number of candidate predicates
(|Q|) increases, the algorithm takes more time. For median
with 4 inputs, for example, |QAlice| = |QBob| = 24, and it
takes ∼41 seconds to infer all the variables for both parties,
as compared to ∼2 seconds in the case of 2 inputs per party
and |QAlice| = |QBob| = 12.

We note that at present, our implementation does not ag-
gressively optimize the use of the SMT solver (like caching
query responses etc.) that can potentially bring down the
inference time since there are lots of redundant validity
queries. Moreover, the CONS implementation computes ς
for every to-be-inferred variable, something that can be op-
timized as well.

Lot size example. The joint computation of economic lot
size in Figure 12 is a non-linear arithmetic example. As de-
scribed in Section 4, information flow analysis infers that Al-
ice knows a, b, c, d and Bob knows e, f. Using BVx,
for x as 8, 16, and 32, we infer the same conclusions. In ad-
dition, various bits of some other variables are inferred. For
example, Alice knows bit 1 of f and g, while Bob knows bit
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Figure 13. Results (Section 5.2).

1 of b and g. These are due to the multiplications by 2 on
lines 9 and 15, resulting in null bits of lowest order. The per-
formance of BVx for this test case naturally decreases as x is
increased. For x as 8, the analysis takes around 2.4 seconds,
while for x as 32, it takes 165 seconds. Note that a signifi-
cant portion of this additional time is spent checking a much
larger number of bits for partial inference (when complete
variables cannot be inferred).

1 ## assume 0 <= a,b < 0x0fff

2 int masked_average (int a, int b)

3 int sum = a + b;

4 int avg = sum / 2;

5 return (avg & 0xfff0);

Figure 14. Masked average

Masked average example. Our final example serves to bet-
ter demonstrate the inference of bits of variables that cannot
be inferred completely. Inference on the scale of bits lets
us determine bit-width requirements of a circuit implement-
ing some computation, as well as determine which bits can
be revealed ahead of time due to the output of the compu-
tation. Consider a masked average function in Figure 14.
The function outputs the high-order bits of the average of
two 16 (or 32) bit inputs, which are assumed to be 12 bits
big. BVx implementations for x as 16 and 32, analyzes this
function in 0.25 and 0.50 seconds respectively.

If we only consider the input assumptions (view the pro-
gram as outputting nothing), then both parties can infer the
null values of sum at bits 14-16 and of avg at bits 13-16 . Ad-
ditionally, since the function returns all but the lower 4 bits
of the average, knowledge inference lets us conclude that
bits 6-13 of sum and bits 5-12 of avg can be inferred given
the output. An optimized circuit for this function would (a)

reduce the size of sum and avg to 13 and 12 bits respectively,
and (b) reveal bits 6-13 of sum after computing it, so that the
final division circuit can be performed with just 5 bits.

6. Related Work
Knowledge inference in SMC. In contrast to SMC compil-
ers that compute a function as a monolithic secure compu-
tation [6, 18], recent research has focused on knowledge in-
ference driven optimized SMC protocols. Huang et. al. [14]
identify this limitation of previous compilers, and present a
framework for implementing optimized, modular SMC pro-
tocols. However, they leave the automatic generation of op-
timized SMC protocols to future work [13].

Kerschbaum [15] solves the knowledge inference prob-
lem using a custom program analysis based on epistemic
modal logic inference rules. He shows that his approach
works on the median example (Figure 1), and the lot size
computation example (Figure 12). Our work can be viewed
as a generalization and improvement of his approach, mak-
ing several advances. First, we formally define the notion
of knowledge in SMC, and the problem of knowledge infer-
ence. Second, we prove our algorithms are sound and (rela-
tively) complete. Moreover, our algorithms are built on top
of SMT solvers, thus leveraging recent advances in SMT
solving techniques. Indeed, we present experimental mea-
surements to characterize the performance of our algorithms
while he does not.

Self-composition and noninterference. Our approach to
(non-constructive) knowledge inference takes advantage of
the connection between the problem and methods for decid-
ing noninterference-like properties using self-composition
[4]. As far as we are aware, we are the first to observe
that knowledge inference can be reduced to the question
of deciding delimited release [21], and we are the first to



show how to decide this property using self-composition [4].
Moreover, in the form of constructive knowledge inference,
we are the first to propose inference algorithms for infer-
ring the output function to decide the problem of required
release [7]. Inferring local variables known to p via infor-
mation flow analysis, as described earlier, is similar to the
splitting algorithm employed by Jif/Split [24], which parti-
tions a program to run on multiple hosts. Jif/Split does not
employ SMCs, but rather relies on trusted third parties, and
employs a simple syntactic algorithm incapable of inferring
deeper relationships, e.g., it would not be able to deduce that
Alice can infer x1 and x2 in the median example.

Template based program verification. Our constructive
knowledge inference algorithms (Figure 11, Figure 10, and
Figure 9) are inspired by template driven program verifica-
tion techniques [12, 22]. However, our algorithms take ad-
vantage of features specific to our problem. Our templates,
instead of having arbitrary structure, have restricted form of
φL ⇒ y ∧ y ⇒ φR. For negative variables (i.e., variables
on the left side of an implication), independent of c and d,
we never have to consider more than one lattice, since we
always have only one template variable on the left of impli-
cation. Second, as mentioned in the inference of φL earlier,
in addition to pruning the subtree of a solution node, we
also prune subtrees whose root node has size greater than c.
Finally, we infer φL independent of φR, i.e. solve φL ⇒ y
separately from y ⇒ φR, which is different from [22], where
negative variables are inferred for every permutation of pos-
itive variables (variables on the right side of an implication).
Again, the simple structure of our templates enables us to do
so.

7. Conclusion
In this paper, we considered the problem of knowledge in-
ference in the context of optimizing secure multi-party com-
putation. We formally defined the notion of knowledge in
SMC, and the problems of knowledge inference and con-
structive knowledge inference. We gave solutions to the
knowledge inference problems and proved that our solu-
tions are sound, and characterized conditions under which
they are complete. Finally, we presented an experimental
evaluation of our solutions.
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