
CEAL: A C-Based Language for Self-Adjusting Computation

Matthew A. Hammer Umut A. Acar ∗ Yan Chen
Toyota Technological Institute at Chicago
{hammer,umut,chenyan}@tti-c.org

Abstract
Self-adjusting computation offers a language-centric approach to
writing programs that can automatically respond to modifications
to their data (e.g., inputs). Except for several domain-specific
implementations, however, all previous implementations of self-
adjusting computation assume mostly functional, higher-order lan-
guages such as Standard ML. Prior to this work, it was not known
if self-adjusting computation can be made to work with low-level,
imperative languages such as C without placing undue burden on
the programmer.

We describe the design and implementation of CEAL: a C-based
language for self-adjusting computation. The language is fully gen-
eral and extends C with a small number of primitives to enable
writing self-adjusting programs in a style similar to conventional
C programs. We present efficient compilation techniques for trans-
lating CEAL programs into C that can be compiled with existing
C compilers using primitives supplied by a run-time library for
self-adjusting computation. We implement the proposed compiler
and evaluate its effectiveness. Our experiments show that CEAL
is effective in practice: compiled self-adjusting programs respond
to small modifications to their data by orders of magnitude faster
than recomputing from scratch while slowing down a from-scratch
run by a moderate constant factor. Compared to previous work, we
measure significant space and time improvements.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Languages, Performance, Algorithms.

Keywords Self-adjusting computation, compilation, control and
data flow, dominators, tail calls, trampolines, performance.

1. Introduction
Researchers have long observed that in many applications, applica-
tion data evolves slowly or incrementally over time, often requiring
only small modifications to the output. This creates the potential for
applications to adapt to changing data significantly faster than re-
computing from scratch. To realize this potential, researchers in the

∗Acar is partially supported by a gift from Intel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

algorithms community develop so called dynamic or kinetic algo-
rithms or data structures that take advantage of the particular prop-
erties of the considered problem to update computations quickly.
Such algorithms have been studied extensively over a range of hun-
dreds of papers (e.g. [13, 17] for surveys). These advances show
that computations can often respond to small modifications to their
data nearly a linear factor faster than recomputing from scratch, in
practice delivering speedups of orders of magnitude. As a frame
of comparison, note that asymptotic improvements in performance
far surpasses the goal of parallelism, where speedups are bound by
the number of available processors. Designing, analyzing, and im-
plementing dynamic/kinetic algorithms, however, can be complex
even for problems that are relatively simple in the conventional set-
ting, e.g., the problem of incremental planar convex hulls, whose
conventional version is straightforward, has been studied over two
decades (e.g., [32, 11]). Due to their complexity, implementing
these algorithms is an error-prone task that is further complicated
by their lack of composability.

Self-adjusting computation (e.g., [4, 3]) offers a language-
centric approach to realizing the potential speedups offered by
incremental modifications. The approach aims to make writing
self-adjusting programs, which can automatically respond to mod-
ifications to their data, nearly as simple as writing conventional
programs that operate on unchanging data, while delivering effi-
cient performance by providing an automatic update mechanism. In
self-adjusting computation, programs are stratified into two com-
ponents: a meta-level mutator and a core. The mutator interacts
with the user or the outside world and interprets and reflects the
modifications in the data to the core. The core, written like a con-
ventional program, takes some input and produces an output. The
core is self-adjusting: it can respond to modifications to its data by
employing a general-purpose, built-in change propagation mech-
anism. The mutator can execute the core with some input from
scratch, which we call a from-scratch or an initial run, modify the
data of the core, including the inputs and other computation data,
and update the core by invoking change propagation. A typical mu-
tator starts by performing a from-scratch run of the program (hence
the name initial run), and then repeatedly modifies the data and
updates the core via change propagation.

At a high level, change propagation updates the computation by
re-executing the parts that are affected by the modifications, while
leaving the unaffected parts intact. Change propagation is guaran-
teed to update the computation correctly: the output obtained via
change propagation is the same as the output of a from-scratch exe-
cution with the modified data. Even in the worst case, change prop-
agation falls back to a from-scratch execution—asymptotically, it is
never slower (in an amortized sense)—but it is often significantly
faster than re-computing from-scratch.

Previous research developed language techniques for self-
adjusting computation and applied it to a number of application
domains (e.g., for a brief overview [3]). The applications show
that from-scratch executions of self-adjusting programs incur a

moderate overhead compared to conventional programs but can
respond to small modifications orders-of-magnitude faster than re-
computing from scratch. The experimental evaluations show that
in some cases self-adjusting programs can be nearly as efficient
as the “hand-designed” and optimized dynamic/kinetic algorithms
(e.g., [6]). Recent results also show that the approach can help
develop efficient solutions to challenging problems such as some
three-dimensional motion simulation problems that have resisted
algorithmic approaches [5].

Existing general-purpose implementations of self-adjusting
computation, however, are all in high-level, mostly functional lan-
guages such as Standard ML (SML) or Haskell [27, 12]. Several
exist in lower-level languages such as C [6] and Java [35] but they
are domain-specific. In Shankar and Bodik’s implementation [35],
which targets invariant-checking applications, core programs must
be purely functional and functions cannot return arbitrary values or
use values returned by other functions in an unrestricted way. Acar
et al’s C implementation [6] targets a domain of tree applications.
Neither approach offers a general-purpose programming model.
The most general implementation is Hammer et al’s C library [21],
whose primary purpose is to support efficient memory manage-
ment for self-adjusting computation. The C library requires core
programs to be written in a style that makes dependencies between
program data and functions explicit, limiting its effectiveness as a
source-level language.

That there is no general-purpose support for self-adjusting
computation in low level, imperative languages such as C is not
accidental: self-adjusting computation critically relies on higher-
order features of high-level languages. To perform updates effi-
ciently, change propagation must be able to re-execute a previously-
executed piece of code in the same state (modulo the modifica-
tions), and skip over parts of the computation that are unaffected by
the modifications. Self-adjusting computation achieves this by rep-
resenting the dependencies between the data and the program code
as a trace that records specific components of the program code
and their run-time environments. Since higher-order languages can
natively represent closed functions, or closures, consisting of a
function and its free variables, they are naturally suitable for im-
plementing traces. Given a modification, change propagation finds
the closures in the trace that depend on the modified data, and re-
executes them to update the computation and the output. Change
propagation utilizes recorded control dependencies between clo-
sures to identify the parts of the computation that need to be purged
and uses memoization to recover the parts that remain the same. To
ensure efficient change propagation, the trace is represented in the
form of a dynamic dependence graph that supports fast random
access to the parts of the computation to be updated.

In this paper, we describe the design, implementation, and eval-
uation of CEAL: a C-based language for self-adjusting compu-
tation. The language extends C with several primitives for self-
adjusting computation (Section 2). Reflecting the structure of self-
adjusting programs, CEAL consists of a meta language for writing
mutators and a core language for writing core programs. The key
linguistic notion in both the meta and the core languages is that
of the modifiable reference or modifiable for short. A modifiable
is a location in memory whose contents may be read and updated.
CEAL offers primitives to create, read (access), and write (update)
modifiables just like conventional pointers. The crucial difference
is that CEAL programs can respond to modifications to modifiables
automatically. Intuitively, modifiables mark the computation data
that can change over time, making it possible to track dependen-
cies selectively. At a high level, CEAL can be viewed as a dialect
of C that replaces conventional pointers with modifiables.

By designing the CEAL language to be close to C, we make it
possible to use familiar C syntax to write self-adjusting programs.

This poses a compilation challenge: compiling CEAL programs to
self-adjusting programs requires identifying the dependence infor-
mation needed for change propagation. To address this challenge,
we describe a two-phase compilation technique (Sections 5 and 6).
The first phase normalizes the CEAL program to make the depen-
dencies between data and parts of the program code explicit. The
second phase translates the normalized CEAL code to C by using
primitives supplied by a run-time-system (RTS) in place of CEAL’s
primitives. This requires creating closures for representing depen-
dencies and efficiently supporting tail calls. We prove that the size
of the compiled C code is no more than a multiplicative factor larger
than the source CEAL program, where the multiplicative factor is
determined by the maximum number of live variables over all pro-
gram points. The time for compilation is bounded by the size of the
compiled C code and the time for live variable analysis. Section 3.2
gives an overview of the compilation phases via an example.

We implement the proposed compilation technique and evaluate
its effectiveness. Our compiler, cealc, provides an implementation
of the two-level compilation strategy and relies on the RTS for sup-
plying the self-adjusting-computation primitives. Our implementa-
tion of the RTS employs the recently-proposed memory manage-
ment techniques [21], and uses asymptotically optimal algorithms
and data structures to support traces and change propagation. For
practical efficiency, the compiler uses intra-procedural compilation
techniques that make it possible to use simpler, practically efficient
algorithms. Our compiler cealc is between a factor of 3–8 slower
and generates binaries that are 2–5 times larger than gcc.

We perform an experimental evaluation by considering a range
of benchmarks, including several primitives on lists (e.g., map, fil-
ter), several sorting algorithms, and computational geometry al-
gorithms for computing convex hulls, the distance between con-
vex objects, and the diameter of a point set. As a more complex
benchmark, we implement a self-adjusting version of the Miller-
Reif tree-contraction algorithm, which is a general-purpose tech-
nique for computing various properties of trees (e.g., [28, 29]).
Our timing measurements show that CEAL programs are about 6–
19 times slower than the corresponding conventional C program
when executed from scratch, but can respond to small changes
to their data orders-of-magnitude faster than recomputing from
scratch. Compared to the state-of-the-art implementation of self-
adjusting computation in SML [27], CEAL uses about 3–5 times
less memory. In terms of run time, CEAL performs significantly
faster than the SML-based implementation. In particular, when the
SML benchmarks are given significantly more memory than they
need, we measure that they are about a factor of 9 slower. More-
over, this slowdown increases (without bound) as memory becomes
more limited. We also compared our implementation to a hand-
optimized implementation of self-adjusting computation for tree
contraction [6]. Our experiments show that we are about 3–4 times
slower.

In this paper, we present a C-based general-purpose language
for self-adjusting computation. Our contributions include the lan-
guage, the compiler, and the experimental evaluation. An extended
version of this paper, including the proofs and more detailed exper-
iments, can be found in the accompanying technical report [22].

2. The CEAL language
We present an overview of the CEAL language, whose core is for-
malized in Section 4. The key notion in CEAL is that of a modifi-
able reference (or modifiable, for short). A modifiable is a location
in memory whose content may be read and updated. From an op-
erational perspective, a modifiable is just like an ordinary pointer
in memory. The major difference is that CEAL programs are sen-
sitive to modifications of the contents of modifiables performed by
the mutator, i.e., if the contents are modified, then the computation

can respond to that change by updating its output automatically via
change propagation.

Reflecting the two-level (core and meta) structure of the model,
the CEAL language consists of two sub-languages: meta and
core. The meta language offers primitives for performing an ini-
tial run, modifying computation data, and performing change
propagation—the mutator is written in the meta language. CEAL’s
core language offers primitives for writing core programs. A CEAL
program consists of a set of functions, divided into core and meta
functions: the core functions (written in the core language), are
marked with the keyword ceal, meta functions (written in the
meta language) use conventional C syntax. We refer to the part of a
program consisting of the core (meta) functions simply as the core
(meta or mutator).

To provide scalable efficiency and improve usability, CEAL
provides its own memory manager. The memory manager performs
automatic garbage collection of allocations performed in the core
(via CEAL’s allocator) but not in the mutator. The language does
not require the programmer to use the provided memory manager,
the programmer can manage memory explicitly if so desired.

The Core Language. The core language extends C with modi-
fiables, which are objects that consist of word-sized values (their
contents) and supports the following primitive operations, which
essentially allow the programmer to treat modifiables like ordinary
pointers in memory.

modref t* modref(): creates a(n) (empty) modifiable
void write(modref t *m, void *p): writes p into m
void* read(modref t *m): returns the contents of m

In addition to operations on modifiables, CEAL provides the
alloc primitive for memory allocation. For correctness of change
propagation, core functions must modify the heap only through
modifiables, i.e., memory accessed within the core, excluding mod-
ifiables and local variables, must be write-once. Also by defini-
tion, core functions return ceal (nothing). Since modifiables can
be written arbitrarily, these restrictions cause no loss of generality
or undue burden on the programmer.

The Meta Language. The meta language also provides primitives
for operating on modifiables; modref allocates and returns a mod-
ifiable, and the following primitives can be used to access and up-
date modifiables:

void* deref(modref t *m): returns the contents of m.
void modify(modref t *m, void *p): modifies the con-

tents of the modifiable m to contain p.

As in the core, the alloc primitive can be used to allocate memory.
The memory allocated at the meta level, however, needs to be
explicitly freed. The CEAL language provides the kill primitive
for this purpose.

In addition to these, the meta language offers primitives for
starting a self-adjusting computation, run core, and updating it via
change propagation, propagate. The run core primitive takes a
pointer to a core function f and the arguments a, and runs f with
a. The propagate primitive updates the core computation created
by run core to match the modifications performed by the mutator
via modify.1 Except for modifiables, the mutator may not modify
memory accessed by the core program. The meta language makes
no other restrictions: it is a strict superset of C.

1 The actual language offers a richer set of operations for creating multiple
self-adjusting cores simultaneously. Since the meta language is not our
focus here we restrict ourselves to this simpler interface.

typedef enum { NODE, LEAF} kind t;

typedef struct {
kind t kind;
enum { PLUS, MINUS } op;
modref t *left, *right;
} node t;

typedef struct {
kind t kind;
int num;
} leaf t;

Figure 1. Data type definitions for expression trees.

1 ceal eval (modref t *root, modref t *res) {
2 node t *t = read (root);
3 if (t->kind == LEAF) {
4 write (res,(void*)((leaf t*) t)->num);
5 } else {
6 modref t *m a = modref ();
7 modref t *m b = modref ();
8 eval (t->left, m a);
9 eval (t->right, m b);
10 int a = (int) read (m a);
11 int b = (int) read (m b);
12 if (t->op == PLUS) {
13 write (res, (void*)(a + b));
14 } else {
15 write (res, (void*)(a - b));
16 }
17 }
18 return;
19 }

Figure 2. The eval function written in CEAL (core).

exp = "(3d +c 4e)−b (1g −f 2h) +a (5j −i 6k)";
tree = buildTree (exp);
result = modref ();
run core (eval, tree, result);
subtree = buildTree ("6m +l 7n");
t = find ("k",subtree);
modify (t,subtree);
propagate ();

Figure 3. The mutator written in CEAL (meta).

3. Example and Overview
We give an example CEAL program and give an overview of the
compilation process (Sections 5 and 6) via this example.

3.1 An Example: Expression Trees
We present an example CEAL program for evaluating and updat-
ing expression trees. Figure 1 shows the data type definitions for
expressions trees. A tree consists of leaves and nodes each repre-
sented as a record with a kind field indicating their type. A node
additionally has an operation field, and left & right children placed
in modifiables. A leaf holds an integer as data. For illustrative pur-
poses, we only consider plus and minus operations. 2 This represen-
tation differs from the conventional one only in that the children are
stored in modifiables instead of pointers. By storing the children in
modifiables, we enable the mutator to modify the expression and
update the result by performing change propagation.

Figure 2 shows the code for eval function written in core
CEAL. The function takes as arguments the root of a tree (in a
modifiable) and a result modifiable where it writes the result of
evaluating the tree. It starts by reading the root. If the root is
a leaf, then its value is written into the result modifiable. If the

2 In their most general form, expression trees can be used to compute a
range of properties of trees and graphs. We discuss such a general model in
our experimental evaluation.

+

3 4 1 2

5 6+ -

--

a
b

c

d e

f

g h

i

j k

+

3 4 1 2

5+ -

--

a
b

c

d e

f

g h

i

j
6 7

+ l

m n

Figure 4. Example expression trees.

root is an internal node, then it creates two result modifiables
(m a and m b) and evaluates the left and the right subexpressions.
The function then reads the resulting values of the subexpressions,
combines them with the operation specified by the root, and writes
the value into the result. This approach to evaluating a tree is
standard: replacing modifiables with pointers, reads with pointer
dereference, and writes with assignment yields the conventional
approach to evaluating trees. Unlike the conventional program, the
CEAL program can respond to updates quickly.

Figure 3 shows the pseudo-code for a simple mutator example
illustrated in Figure 4. The mutator starts by creating an expres-
sion tree from an expression where each subexpression is labeled
with a unique key, which becomes the label of each node in the ex-
pression tree. It then creates a result modifiable and evaluates the
tree with eval, which writes the value 7 into the result. The muta-
tor then modifies the expression by substituting the subexpression
(6m +l 7n) in place of the modifiable holding the leaf k and up-
dates the computation via change propagation. Change propagation
updates the result to 0, the new value of the expression. By repre-
senting the data and control dependences in the computation accu-
rately, change propagation updates the computation in time propor-
tional to the length of the path from k (changed leaf) to the root,
instead of the total number of nodes as would be conventionally
required. We evaluate a variation of this program (which uses float-
ing point numbers in place of integers) in Section 8 and show that
change propagation updates these trees efficiently.

3.2 Overview of Compilation
Our compilation technique translates CEAL programs into C pro-
grams that rely on a run-time-system RTS (Section 6.1) to provide
self-adjusting-computation primitives. Compilation treats the mu-
tator and the core separately. To compile the mutator, we simply
replace meta-CEAL calls with the corresponding RTS calls—no
major code restructuring is needed. In this paper, we therefore do
not discuss compilation of the meta language in detail.

Compiling core CEAL programs is more challenging. At a high
level, the primary difficulty is determining the code dependence
for the modifiable being read, i.e., the piece of code that depends
on the modifiable. More specifically, when we translate a read
of modifiable to an RTS call, we need to supply a closure that
encapsulates all the code that uses the value of the modifiable
being read. Since CEAL treats references just like conventional
pointers, it does not make explicit what that closure should be.
In the context of functional languages such as SML, Ley-Wild et
al used a continuation-passing-style transformation to solve this
problem [27]. The idea is to use the continuation of the read as
a conservative approximation of the code dependence. Supporting
continuations in stack-based languages such as C is expensive and
cumbersome. Another approach is to use the source function that
contains the read as an approximation to the code dependence.
This not only slows down change propagation by executing code
unnecessarily but also can cause code to be executed multiple
times, e.g., when a function (caller) reads a modified value from
a callee, the caller has to be executed, causing the callee to be
executed again.

To address this problem, we use a technique that we call normal-
ization (Section 5). Normalization restructures the program such

1 ceal eval (modref t *root, modref t *res) {
2 node t *t = read (root);

tail read r (t,res);
19 }

a ceal read r (node t *t, modref t *res) {
3 if (t->kind == LEAF) {
4 write (res,(void*)((leaf t*) t)->num);

tail eval final ();
5 } else {
6 modref t *m a = modref ();
7 modref t *m b = modref ();
8 eval (t->left, m a);
9 eval (t->right, m b);
10 int a = (int) read (m a);

tail read a (res,a,m b);
17 }
}

b ceal read a (modref t *res, int a, modref t *m b) {
11 int b = (int) read (m b);

tail read b (res,a,b);
}

c ceal read b (modref t *res, int a, int b) {
12 if (t->op == PLUS) {
13 write (res, (void*)(a + b));

tail eval final ();
14 } else {
15 write (res, (void*)(a - b));

tail eval final ();
16 }
}

d ceal eval final () {
18 return;
}

Figure 5. The normalized expression-tree evaluator.

that each read operation is followed by a tail call to a function that
marks the start of the code that depends on the modifiable being
read. The dynamic scope of the function tail call ends at the same
point as that of the function that the read is contained in. To nor-
malize a CEAL program, we first construct a specialized rooted
control-flow graph that treats certain nodes—function nodes and
nodes that immediately follow read operations—as entry nodes by
connecting them to the root. The algorithm then computes the dom-
inator tree for this graph to identify what we call units, and turns
them into functions, making the necessary transformations for these
functions to be tail-called. We prove that normalization runs effi-
ciently and does not increase the program by more than a factor of
two (in terms of its graph nodes).

As an example, Figure 5 shows the code for the normalized
expression evaluator. The numbered lines are taken directly from
the original program in Figure 2. The highlighted lines correspond
to the new function nodes and the tail calls to these functions.
Normalization creates the new functions, read r, read a, read b
and tail-calls them after the reads lines 2, 10, and 11 respectively.
Intuitively, these functions mark the start of the code that depend
on the root, and the result of the left and the right subtrees (m a
and m b respectively). The normalization algorithm creates a trivial
function, eval final for the return statement to ensure that the
read a and read b branch out of the conditional—otherwise the
correspondence to the source program may be lost.3

We finalize compilation by translating the normalized program
into C. To this end, we present a basic translation that creates clo-
sures as required by the RTS and employs trampolines4 to sup-
port tail calls without growing the stack (Section 6.2). This basic

3 In practice we eliminate such trivial calls by inlining the return.
4 A trampoline is a dispatch loop that iteratively runs a sequence of closures.

Types τ ::= int | modref t | τ∗
Values v ::= ` | n
Prim. op’s o ::= ⊕ | 	 | . . .
Expressions e ::= v | o(x) | x[y]
Commands c ::= nop | x := e | x[y] := e

| x := modref() | x := read y | write x y
| x := alloc y f z | call f (x)

Jumps j ::= goto l | tail f (x)
Basic Blocks b ::= {l : done} | {l : cond x j1 j2} | {l : c ; j}
Fun. Defs F ::= f (τ1 x) {τ2 y; b}
Programs P ::= F

Figure 6. The syntax of CL.

translation is theoretically satisfactory but it is practically expen-
sive, both because it requires run-time type information and be-
cause trampolining requires creating a closure for each tail call. We
therefore present two major refinements that apply trampolining
selectively and that monomorphize the code by statically generat-
ing type-specialized instances of certain functions to eliminate the
need for run-time type information (Section 6.3). It is this refined
translation that we implement (Section 7).

We note that the quality of the self-adjusting program generated
by our compilation strategy depends on the source code. In partic-
ular, if the programmer does not perform the reads close to where
the values being read are used, then the generated code may not
be effective. In many cases, it is easy to detect and statically elimi-
nate such poor code by moving reads appropriately—our compiler
performs a few such optimizations. Since such optimizations are
orthogonal to our compilation strategy (they can be applied inde-
pendently), we do not discuss them further in this paper.

4. The Core Language
We formalize core-CEAL as a simplified variant of C called CL
(Core Language) and describe how CL programs are executed.

4.1 Abstract Syntax
Figure 6 shows the abstract syntax for CL. The meta variables x
and y (and variants) range over an unspecified set of variables
and the meta variables ` (and variants) range over a separate,
unspecified set of (memory) locations. For simplicity, we only
include integer, modifiable and pointers types; the meta variable
τ (and variants) range over these types. The type system of CL
mirrors that of C, and thus, it offers no strong typing guarantees.
Since the typing rules are standard we do not discuss them here.

The language distinguishes between values, expressions, com-
mands, jumps, and basic blocks. A value v is either a memory
location ` or an integer n. Expressions include values, primitive
operations (e.g. plus, minus) applied to a sequence of variables,
and array dereferences x[y]. Commands include no-op, assignment
into a local variable or memory location, modifiable creation, read
from a modifiable, write into a modifiable, memory allocation, and
function calls. Jumps include goto jumps and tail jumps. Programs
consist of a set of functions defined by a name f , a sequence
of formal arguments τ1 x, local variable declarations τ2 y and a
body of basic blocks. Each basic block, labeled uniquely, takes
one of three forms: a done block, {l : done}, a conditional block,
{l : cond x j1 j2}, and a command-and-jump block, {l : c ; j}.
When referring to command-and-jump blocks, we sometimes use
the type of the command, e.g., a read block, a write block, regard-
less of the jump. Symmetrically, we sometimes use the type of the
jump, e.g., a goto block, a tail-call block, regardless of the com-
mand. Note that since there are no return instructions, a function
cannot return a value (since they can write to modifiables arbitrar-
ily, this causes no loss of generality).

4.2 Execution (Operational Semantics)
Execution of a CL program begins when the mutator uses run core
to invoke one of its functions (e.g, as in Figure 3). Most of the op-
erational (dynamic) semantics of CL should be clear to the reader
if s/he is familiar with C or similar languages. The interesting
aspects include tail jumps, operations on modifiables and mem-
ory allocation. A tail jump executes like a conventional function
call, except that it never returns. The modref command allocates
a modifiable and returns its location. Given a modifiable location,
the read command retrieves its contents, and the write command
destructively updates its contents with a new value. A done block,
{k : done}, completes execution of the current function and re-
turns. A conditional block, {k : cond x j1 j2}, checks the value
of local variable x and performs jump j1 if the condition is true
(non-zero) and jump j2 otherwise. A command block, {l : c ; j},
executes the command c followed by jump j. The alloc command
allocates an array at some location ` with a specified size in bytes
(y) and uses the provided function f to initialize it by calling f with
` and the additional arguments (z). After initialization, it returns `.
By requiring this stylized interface for allocation, CL makes it eas-
ier to check and conform to the correct-usage restrictions (defined
below) by localizing initialization effects (the side effects used to
initialize the array) to the provided initialization function.

To accurately track data-dependencies during execution, we re-
quire, but do not enforce that the programs conform to the follow-
ing correct-usage restrictions: 1) each array is side-effected only
during the initialization step and 2) that the initialization step does
not read or write modifiables.

4.3 From CEAL to CL

We can translate CEAL programs into CL by 1) replacing sequences
of statements with corresponding command blocks connected via
goto jumps, 2) replacing so-called “structured control-flow” (e.g.,
if, do, while, etc.) with corresponding (conditional) blocks and
goto jumps, and 3) replacing return with done.

5. Normalizing CL Programs
We say that a program is in normal form if and only if every read
command is in a tail-jump block, i.e., followed immediately by a
tail jump. In this section, we describe an algorithm for normaliza-
tion that represents programs with control flow graphs and uses
dominator trees to restructure them. Section 5.4 illustrates the tech-
niques described in this section applied to our running example.

5.1 Program Graphs
We represent CL programs with a particular form of rooted control
flow graphs, which we shortly refer to as a program graph or simply
as a graph when it is clear from the context.

The graph for a program P consists of nodes and edges, where
each node represents a function definition, a (basic) block, or a
distinguished root node (Section 5.4 shows an example). We tag
each non-root node with the label of the block or the name of
the function that it represents. Additionally, we tag each node
representing a block with the code for that block and each node
representing a function, called a function node, with the prototype
(name and arguments) of the function and the declaration of local
variables. As a matter of notational convenience, we name the
nodes with the label of the corresponding basic block or the name
of the function, e.g., ul or uf .

The edges of the graph represent control transfers. For each
goto jump belonging to a block {k : c ; goto l}, we have an edge
from node uk to node ul tagged with goto l. For each function
node uf whose first block is ul, we have an edge from uf to ul la-
beled with goto l. For each tail-jump block {k : c ; tail f(x)},

we have an edge from uk to uf tagged with tail f(x). If a
node uk represents a call-instruction belonging to a block {k :
call f(x) ; j}, then we insert an edge from uk to uf and tag it
with call f(x). For each conditional block {k : cond x j1 j2}
where j1 and j2 are the jumps, we insert edges from k to targets of
j1 and j2, tagged with true and false, respectively.

We call a node a read-entry node if it is the target of an edge
whose source is a read node. More specifically, consider the nodes
uk belonging to a block of the form {k : x := read y ; j} and ul

which is the target of the edge representing the jump j; the node ul

is a read entry. We call a node an entry node if it is a read-entry or
a function node. For each entry node ul, we insert an edge from the
root to ul into the graph.

There is a (efficiently) computable isomorphism between a pro-
gram and its graph that enables us to treat programs and graphs as a
single object. In particular, by changing the graph of a program, our
normalization algorithm effectively restructures the program itself.

Property 1 (Programs and Graphs)
The program graph of a CL program with n blocks can be con-
structed in expectedO(n) time. Conversely, given a program graph
with m nodes, we can construct its program in O(m) time.

5.2 Dominator Trees and Units
Let G = (V,E) be a rooted program graph with root node ur .
Let uk, ul ∈ V be two nodes of G. We say that uk dominates
ul if every path from ur to ul in G passes through uk. By def-
inition, every node dominates itself. We say that uk is an imme-
diate dominator of ul if uk 6= ul and uk is a dominator of ul

such that every other dominator of ul also dominates uk. It is
easy to show that each node except for the root has a unique im-
mediate dominator (e.g., [26]). The immediate-dominator relation
defines a tree, called a dominator tree T = (V,EI) where by
EI = {(uk, ul) | uk is an immediate dominator of ul}.

Let T be a dominator tree of a rooted program graph G =
(V,E) with root ur . Note that the root of G and T are both the
same. Let ul be a child of ur in T . We define the unit of ul as the
vertex set consisting of ul and all the descendants of ul in T ; we
call ul the defining node of the unit. Normalization is made possible
by an interesting property of units and cross-unit edges.

Lemma 2 (Cross-Unit Edges)
Let G = (V,E) be a rooted program graph and T be its dominator
tree. Let Uk and Um be two distinct units of T defined by vertices
uk and um respectively . Let ul ∈ Uk and un ∈ Um be any two
vertices from Uk and Um. If (ul, un) ∈ E, i.e., a cross-unit edge
in the graph, then un = um.

Proof: Let ur be the root of both T and G. For a contradiction,
suppose that (ul, un) ∈ E and un 6= um. Since (ul, un) ∈ E
there exists a path p = ur ; uk ; ul → un in G. Since um is a
dominator of un, this means that um is in p, and since um 6= un it
must be the case that either uk proceeds um in p or vice versa. We
consider the two cases separately and show that they each lead to a
contradiction.

• If uk proceeds um in p then p = ur ; uk ; um ; ul → un.
But this means that ul can be reached from ur without going
through uk (since ur → um ∈ G). This contradicts the
assumption that uk dominates ul.
• If um proceeds uk in p then p = ur ; um ; uk ; ul → un.

But this means that un can be reached from ur without going
through um (since ur → uk ∈ G). This contradicts the
assumption that um dominates un. �

1 NORMALIZE (P) =
2 Let G = (V,E) be the graph of P rooted at ur
3 Let T be the dominator tree of G (rooted at ur)

4 G′ = (V ′, E′), where V ′ = V and E′ = ∅
5 for each unit U of T do
6 ul ← defining node of U
7 if ul is a function node then
8 (* ul is not critical *)
9 EU ← {(ul, u) ∈ E | (u ∈ U)}
10 else
11 (* ul is critical *)
12 pick a fresh function f, i.e., f 6∈ funs(P)
13 let x be the live variables at l in P
14 let y be the free variables in U
15 z = y \ x
16 V ′ ← V ′ ∪ {uf}
17 tag(uf) = f(x){z}
18 EU ← {(ur, uf), (uf , ul)} ∪
19 {(u1, u2) ∈ E | u1, u2 ∈ U ∧ u2 6= ul}
20 for each critical edge (uk, ul) ∈ E do
21 if uk 6∈ U then
22 (* cross-unit edge *)
23 EU ← EU ∪ {(uk, uf)}
24 tag((u, uf)) = tail f(x)
25 else
26 (* intra-unit edge *)
27 if uk is a read node then
28 EU ← EU ∪ {(uk, uf)}
29 tag((u, uf)) = tail f(x)
30 else
31 EU ← EU ∪ {(uk, ul)}
32 E′ ← E′ ∪ EU

Figure 7. Pseudo-code for the normalization algorithm.

5.3 An Algorithm for Normalization
Figure 7 gives the pseudo-code for our normalization algorithm,
NORMALIZE. At a high level, the algorithm restructures the original
program by creating a function from each unit and by changing
control transfers into these units to tail jumps as necessary.

Given a programP , we start by computing the graphG ofP and
the dominator tree T of G. Let ur be the root of the dominator tree
and the graph. The algorithm computes the normalized program
graph G′ = (V ′, E′) by starting with a vertex set equal to that of
the graph V ′ = V and an empty edge set E′ = ∅. It proceeds by
considering each unit U of T .

Let U be a unit of T and let the node ul of T be the defining
node of the unit. If ul is a not a function node, then we call it
and all the edges that target it critical. We consider two cases to
construct a set of edges EU that we insert into G′ for U . If ul is
not critical, then EU consists of all the edges whose target is in
U . If ul is critical, then we define a function for it by giving it a
fresh function name f and computing the set of live variables x at
block l in P , and free variables y in all the blocks represented by
U . The set x becomes the formal arguments to the function f and
the set z of variables defined as the remaining free variables, i.e.,
y \ x, become the locals. We then insert a new node uf into the
normalized graph and insert the edges (ur, uf) and (uf , ul) into
EU as well as all the edges internal to U that do not target ul. This
creates the new function f(x) with locals z whose body is defined
by the basic blocks of the unit U . Next, we consider critical edges
of the form (uk, ul). If the edge is a cross-unit edge, i.e., uk 6∈ U ,
then we replace it with an edge into uf by inserting (uk, uf) into
EU and tagging the edge with a tail jump to the defined function
f representing U . If the critical edge is an intra-unit edge, i.e.,
uk ∈ U , then we have two cases to consider: If uk is a read
node, then we insert (uk, uf) into EU and tag it with a tail jump to
function f with the appropriate arguments, effectively redirecting
the edge to uf . If uk is not a read node, then we insert the edge
into EU , effectively leaving it intact. Although the algorithm only

2

1

6
4

3

7

15

8

11

9

12

13

0

18

10

tree
nontree

Figure 9. The dominator
tree for the graph in Figure 8.

2

1

64

3

7

15

8

11

9

12

13

0

18

10

b c da

Figure 10. Normalized version
of the graph in Figure 8.

redirects critical edges Lemma 2 shows this is sufficient: all other
edges in the graph are contained within a single unit and hence do
not need to be redirected.

5.4 Example
Figure 8 shows the rooted graph for the expression-tree evaluator
shown in Figure 2 after translating it into CL (Section 4.3). The
nodes are labeled with the line numbers that they correspond to;
goto edges and control-branches are represented as straight edges,
and (tail) calls are represented with curved edges. For example,
node 0 is the root of the graph; node 1 is the entry node for the
function eval; node 3 is the conditional on line 3; the nodes 8 and
9 are the recursive calls to eval. The nodes 3, 11, 12 are read-entry
nodes.

2

1

64

3

7

15

8

10

9

12

11

13

0

18

Figure 8.

Figure 9 shows the dominator tree for the
graph (Figure 8). For illustrative purposes the
edges of the graph that are not tree edges are
shown as dotted edges.5 The units are defined
by the vertices 1, 3, 11, 12, 18. The cross-
unit edges, which are non-tree edges, are (2,3),
(4,18), (10,11), (11,12), (13,18), (15,18). Note
that as implied by Lemma 2, all these edges tar-
get the defining nodes of the units.

Figure 10 shows the rooted program graph
for the normalized program created by algo-
rithm NORMALIZE. By inspection of Figures 9
and 2, we see that the critical nodes are 3, 11,
12, 18, because they define units but they are
not function nodes. The algorithm creates the
fresh nodes a, b, c, and d for these units and redi-
rects all the cross-unit edges into the new func-
tion nodes and tagged with tail jumps (tags not
shown). In this example, we have no intra-unit
critical edges. Figure 5 shows the code for the
normalized graph (described in Section 3.2).

5.5 Properties of Normalization
We state and prove some properties about the normalization algo-
rithm and the (normal) programs it produces. The normalization al-
gorithm uses a live variable analysis to determine the formal and ac-
tual arguments for each fresh function (see line 13 in Figure 7). We
let TL(P) denote the time required for live variable analysis of a
CL program P . The output of this analysis for program P is a func-
tion live(·), where live(l) is the set variables which are live at (the
start of) block l ∈ P . We let ML(P) denote the maximum number
of live variables for any block in program P , i.e., maxl∈P |live(l)|.
We assume that each variable, function name, and block label re-

5 Note that the dominator tree can have edges that are not in the graph.

quire one word to represent. The following theorems relate the size
of a CL program before and after normalization (Theorem 3) and
bound the time required to perform normalization (Theorem 4).

Theorem 3 (Size of Output Program)
If CL program P has n blocks and P ′ = NORMALIZE(P), then P ′

also has n blocks and at most n additional function definitions.
Furthermore if it takes m words to represent P , then it takes
O(m+ n ·ML(P)) words to represent P ′.

Proof: Observe that the normalization algorithm creates no new
blocks—just new function nodes. Furthermore, since at most one
function is created for each critical node, which is a block, the
algorithm creates at most one new function for each block of P .
Thus, the first bound follows.

For the second bound, note that since we create at most one
new function for each block, we can name each function using
the block label followed by a marker (stored in a word), thus re-
quiring no more than 2n words. Since each fresh function has at
most ML(P) arguments, representing each function signature re-
quires O(ML(P)) additional words (note that we create no new
variable names). Similarly, each call to a new function requires
O(ML(P)) words to represent. Since the number of new functions
and new calls is bounded by n, the total number of additional words
needed for the new function signatures and the new function calls
is bounded by O(m+ n ·ML(P)). �

Theorem 4 (Time for Normalization)
If CL program P has n blocks then running NORMALIZE(P) takes
O(n+ n ·ML(P) + TL(P)) time.

Proof: Computing the dominator tree takes linear time [19]. By
definition, computing the set of live variables for each node takes
TL(P) time. We show that the remaining work can be done in
O(n + n · ML(P)) time. To process each unit, we check if its
defining node is a function node. If so, we copy each incoming
edge from the original program. If not, we create a fresh function
node, copy non-critical edges, and process each incoming critical
edge. Since each node has a constant out degree (at most two),
the total number of edges considered per node is constant. Since
each defining node has at most ML(P) live variables, it takes
O(ML(P)) time to create a fresh function. Replacing a critical
edge with a tail jump edge requires creating a function call with at
mostML(P) arguments, requiringO(ML(P)) time. Thus, it takes
O(n+ n ·ML(P)) time to process all the units. �

6. Translation to C
The translation phase translates normalized CL code into C code
that relies on a run-time system providing self-adjusting com-
putation primitives. To support tail jumps in C without growing
the stack we adapt a well-known technique called trampolining
(e.g., [24, 36]). At a high level, a trampoline is a loop that runs
a sequence of closures that, when executed, either return another
closure or NULL, which causes the trampoline to terminate.

6.1 The Run-Time System
Figure 11 shows the interface to the run-time system (RTS). The
RTS provides functions for creating and running closures. The
closure make function creates a closure given a function and a
complete set of matching arguments. The closure run function
sets up a trampoline for running the given closure (and the clo-
sures it returns, if any) iteratively. The RTS provides functions
for creating, reading, and writing modifiables (modref t). The

typedef struct {. . .} closure t;
closure t* closure make(closure t* (*f)(τ x), τ x);
void closure run(closure t* c);

typedef struct {. . .} modref t;
void modref init(modref t *m);
void modref write(modref t *m, void *v);
closure t* modref read(modref t *m, closure t *c);

void* allocate(size t n, closure t *c);

Figure 11. The interface for the run-time system.

Expressions:
[[e]] = e

Commands:
[[nop]] = ;

[[x := e]] = x := [[e]];

[[x[y] := e]] = x[y] := [[e]];

[[call f(x)]] = closure run(f(x));

[[x := alloc y f z]] = closure t *c;
c := closure make(f,NULL::z);
x := allocate(y,c);

[[x := modref()]] = [[x := alloc (sizeof(modref t))
modref init 〈〉]]

[[write x y]] = modref write(x, y);

Jumps:
[[goto l]] = goto l;

[[tail f(x)]] = return (closure make(f,x));

Basic Blocks:
[[{l : done}]] = {l: return NULL;}

[[{l : cond x j1 j2}]] = {l: if (x) {[[j1]]} else {[[j2]]}}
[[{l : c ; j}]] = {l: [[c]]; [[j]]}

[[{l : x := read y ; = {l: closure t *c;
tail f(x, z)}]] c := closure make(f,NULL::z);

return (modref read(y,c));}
Functions:

[[f (τx x) {τy y ; b}]] = closure t* f(τx x){τy y; [[b]]}

Figure 12. Translation of CL into C.

modref init function initializes memory for a modifiable; to-
gether with allocate this function can be used to allocate modifi-
ables. The modref write function updates the contents of a mod-
ifiable with the given value. The modref read function reads a
modifiable, substitutes its contents as the first argument of the given
closure, and returns the updated closure. The allocate function
allocates a memory block with the specified size (in bytes), runs
the given closure after substituting the address of the block for the
first argument, and returns the address of the block. The closure
acts as the initializer for the allocated memory.

6.2 The Basic Translation
Figure 12 illustrates the rules for translating normalized CL pro-
grams into C. For clarity, we deviate from C syntax slightly by
using := to denote the C assignment operator.

The most interesting cases concern function calls, tail jumps,
and modifiables. To support trampolining, we translate functions to
return closures. A function call is translated into a direct call whose
return value (a closure) is passed to a trampoline, closure run.
A tail jump simply creates a corresponding closure and returns
it to the active trampoline. Since each tail jump takes place in
the context of a function, there is always an active trampoline.
The translation of alloc first creates a closure from the given
initialization function and arguments prepended with NULL, which

acts as a place-holder for the allocated location. It then supplies this
closure and the specified size to allocate.

We translate modref as a special case of allocation by supplying
the size of a modifiable and using modref init as the initialization
function. Translation of write commands is straightforward. We
translate a command-and-jump block by separately translating the
command and the jump. We translate reads to create a closure for
the tail jump following the read command and call modref read
with the closure & the modifiable being read. As with tail jumps,
the translated code returns the resulting closure to the active tram-
poline. When creating the closure, we assume, without loss of gen-
erality, that the result of the read appears as the first argument to
the tail jump and use NULL as a placeholder for the value read.
Note that, since translation is applied after normalization, all read
commands are followed by a tail jump, as we assume here.

6.3 Refinements for Performance
One disadvantage of the basic translation described above is that
it creates closures to support tail jumps; this is known to be slow
(e.g., [24]). To address this problem, we trampoline only the tail
jumps that follow reads, which we call read trampolining, by re-
fining the translation as follows: [[tail f (x)]] = return f(x).
This refinement treats all tail calls other than those that follow a
read as conventional function calls. Since the translation of a read
already creates a closure, this eliminates the need to create extra
closures. Since in practice self-adjusting programs perform reads
periodically (popping the stack frames down to the active trampo-
line), we observe that the stack grows only temporarily.

Another disadvantage is that the translated code uses the RTS
function closure make with different function and argument
types, i.e., polymorphically. Implementing this requires run-time
type information. To address this problem, we apply monomor-
phisation [37] to generate a set of closure make functions for
each distinctly-typed use in the translated program. Our use of
monomorphisation is similar to that of the MLton compiler, which
uses it for compiling SML, where polymorphism is abundant [1].

6.4 Bounds for Translation and Compilation
By inspecting Figure 12, we see that the basic translation requires
traversing the program once. Since the translation is purely syn-
tactic and in each case it expands code by a constant factor, it
takes linear time in the size of the normalized program. As for
the refinements, note that read trampolining does not affect the
bound since it only performs a simple syntactic code replacement.
Monomorphisation requires generating specialized instances of the
closure make function. Each instance with k arguments can be
represented with O(k) words and can be generated in O(k) time.
Since k is bounded by the number of arguments of the tail jump
(or alloc command) being translated, monomorphisation requires
linear time in the size of the normalized code. Thus, we conclude
that we can translate a normalized program in linear time while
generating C code whose size is within a constant factor of the nor-
malized program. Putting together this bound and the bounds from
normalization (Theorems 3 and 4), we can bound the time for com-
pilation and the size of the compiled programs.

Theorem 5 (Compilation)
Let P be a CL program with n blocks that requires m words to
represent. Let ML(P) be the maximum number of live variables
over all blocks of P and let TL(P) be the time for live-variable
analysis. It takes O(n+n ·ML(P) + TL(P)) time to compile the
program into C. The generatedC code requiresO(m+n·ML(P))
words to represent.

7. Implementation
The implementation of our compiler, cealc, consists of a front-
end and a runtime library. The front-end transforms CEAL code
into C code. We use an off-the-shelf compiler (gcc) to compile the
translated code and link it with the runtime library.

Our front-end uses an intra-procedural variant of our normal-
ization algorithm that processes each core function independently
from the rest of the program, rather than processing the core pro-
gram as a whole (as presented in Section 5). This works because
inter-procedural edges (i.e., tail jump and call edges) in a rooted
graph don’t impact its dominator tree—the immediate dominator
of each function node is always the root. Hence, the subgraph
for each function can be independently analyzed and transformed.
Since each function’s subgraph is often small compared to the to-
tal program size, we use a simple, iterative algorithm for comput-
ing dominators [30, 14] that is efficient on smaller graphs, rather
than an asymptotically optimal algorithm with larger constant fac-
tors [19]. During normalization, we create new functions by com-
puting their formal arguments as the live variables that flow into
their entry nodes in the original program graph. We use a stan-
dard (iterative) liveness analysis for this step, run on a per-function
basis (e.g., [30, 7]). Since control flow can be arbitrary (i.e., non-
reducible) and the number of local variables can only be bounded
by the number of nodes in the function’s subgraph, n, this iterative
algorithm has O(n3) worst case time for pathological cases. How-
ever, since n is often small compared to the total program size and
since functions are usually not pathological, we observe that this
approach works sufficiently well in practice.

Our front-end is implemented as an extension to CIL (C Inter-
mediate Language), a library of tools used to parse, analyze and
transform C code [31]. We provide the CEAL core and mutator
primitives as ordinary C function prototypes. We implement the
ceal keyword as a typedef for void. Since these syntactic ex-
tensions are each embedded within the syntax of C, we define them
with a conventional C header file and do not modify CIL’s C parser.
To perform normalization, we identify the core functions (which
are marked by the ceal return type) and apply the intra-procedural
variant of the normalization algorithm. The translation from CL to
C directly follows the discussions in Section 6. We translate muta-
tor primitives using simple (local) code substitution.

Our runtime library provides an implementation of the interface
discussed in Section 6. The implementation is built on previous
work which focused on efficiently supporting automatic memory
management for self-adjusting programs. We extend the previous
implementation with support for tail jumps via trampolining, and
support for imperative (multiple-write) modifiable references [4].

Our front-end extends CIL with about 5,000 lines of additional
Objective Caml (OCaml) code, and our runtime library consists of
about 5,000 lines of C code. Our implementation is available online
at http://ttic.uchicago.edu/~ceal.

8. Experimental Results
We present an empirical evaluation of our implementation.

8.1 Experimental Setup and Measurements
We run our experiments on a 2Ghz Intel Xeon machine with 32
gigabytes of memory running Linux (kernel version 2.6). All our
programs are sequential (no parallelism). We use gcc version 4.2.3
with “-O3” to compile the translated C code. All reported times are
wall-clock times measured in milliseconds or seconds, averaged
over five independent runs.

For each benchmark, we consider a self-adjusting and a con-
ventional version. Both versions are derived from a single CEAL
program. We generate the conventional version by replacing mod-

ifiable references with conventional references, represented as a
word-sized location in memory that can be read and written. Unlike
modifiable references, the operations on conventional references
are not traced and thus conventional programs are not normalized.
The resulting conventional versions are essentially the same as the
static C code that a programmer would write for that benchmark.

For each self-adjusting benchmark we measure the time re-
quired for propagating a small modification by using a special test
mutator. Invoked after an initial run of the self-adjusting version,
the test mutator performs two modifications for each element of the
input: it deletes the element and performs change propagation, it in-
serts the element back and performs change propagation. We report
the average time for a modification as the total running time of the
test mutator divided by the number of updates performed (usually
two times the input size).

For each benchmark we measure the from-scratch running time
of the conventional and the self-adjusting versions; we define the
overhead as the ratio of the latter to the former. The overhead mea-
sures the slowdown caused by the dependence tracking techniques
employed by self-adjusting computation. We measure the speedup
for a benchmark as the ratio of the from-scratch running time of
the conventional version divided by the average modification time
computed by running the test mutator.

8.2 Benchmark Suite
Our benchmarks include list primitives, and more sophisticated
algorithms for computational geometry and tree computations.

List Primitives. Our list benchmarks include the list primitives
filter, map, and reverse, minimum, and sum, which we expect
to be self-explanatory, and the sorting algorithms quicksort and
mergesort. Our map benchmark maps each number x of the in-
put list to f(x) = bx/3c + bx/7c + bx/9c in the output list. Our
filter benchmark filters out an input element x if and only if f(x)
is odd. Our reverse benchmark reverses the input list. The list re-
ductions minimum and sum find the minimum and the maximum
elements in the given lists. We generate lists of n (uniformly) ran-
dom integers as input for the list primitives. For sorting algorithms,
we generate lists of n (uniformly) random, 32-character strings.

Computational Geometry. Our computational-geometry bench-
marks are quickhull, diameter, and distance; quickhull
computes the convex-hull of a point set using the classic algorithm
with the same name; diameter computes the diameter (the max-
imum distance between any two points) of a point set; distance
computes the minimum distance between two sets of points. The
implementations of diameter and distance use quickhull as
a subroutine. For quickhull and distance, input points are
drawn from a uniform distribution over the unit square in R2. For
distance, two non-overlapping unit squares in R2 are used, and
from each square we draw half the input points.

Tree-based Computations. The exptrees benchmark is a varia-
tion of our simple running example, and it uses floating-point num-
bers in place of integers. We generate random, balanced expression
trees as input and perform modifications by changing their leaves.
The tcon benchmark is an implementation of the tree-contraction
technique by Miller and Reif [28]. This this a technique rather than
a single benchmark because it can be customized to compute vari-
ous properties of trees, e.g., [28, 29, 6]. For our experiments, we
generate binary input trees randomly and perform a generalized
contraction with no application-specific data or information. We
measure the average time for an insertion/deletion of edge by iter-
ating over all the edges as with other applications.

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

4M3M2M1M0

T
im

e
(s

)

Input Size

CEAL (from-scratch)
C (from-scratch).

 0

 0.05

 0.1

 0.15

 0.2

4M3M2M1M0

T
im

e
(m

s)

Input Size

CEAL (propagate)

0.0 x 100
1.0 x 104
2.0 x 104
3.0 x 104
4.0 x 104
5.0 x 104
6.0 x 104
7.0 x 104
8.0 x 104
9.0 x 104
1.0 x 105

4M3M2M1M0

Input Size

CEAL (Speedup)

Figure 13. Experimental results for tcon (self-adjusting tree-contraction).

From-Scratch Propagation
Application n Cnv. Self. O.H. Ave. Update Speedup Max Live
filter 10.0M 0.5 7.4 14.2 2.1× 10−6 2.4× 105 3017.2M
map 10.0M 0.7 11.9 17.2 1.6× 10−6 4.2× 105 3494.6M

reverse 10.0M 0.6 11.9 18.8 1.6× 10−6 3.9× 105 3494.6M
minimum 10.0M 0.8 10.9 13.8 4.8× 10−6 1.6× 105 3819.4M

sum 10.0M 0.8 10.9 13.9 7.0× 10−5 1.1× 104 3819.8M
quicksort 1.0M 3.5 22.4 6.4 2.4× 10−4 1.4× 104 8956.7M
quickhull 1.0M 1.1 12.3 11.5 2.3× 10−4 4.6× 103 6622.9M
diameter 1.0M 1.0 12.1 12.0 1.2× 10−4 8.3× 103 6426.9M
exptrees 10.0M 1.0 7.2 7.2 1.4× 10−6 7.1× 105 4821.1M
mergesort 1.0M 6.1 37.6 6.1 1.2× 10−4 5.1× 104 15876.3M
distance 1.0M 1.0 11.0 11.0 1.3× 10−3 7.5× 102 5043.6M
rctree-opt 1.0M 2.6 20.6 7.9 1.0× 10−4 2.5× 104 5843.7M

Table 1. Summary of measurements with CEAL; all times in seconds and space in bytes.

From-Scratch (Self.) Propagation Time Propagation Max Live

Application n CEAL SaSML SaSML
CEAL

CEAL SaSML SaSML
CEAL

CEAL SaSML SaSML
CEAL

filter 1.0M 0.7 6.9 9.3 1.4× 10−6 8.7× 10−6 6.2 306.5M 1333.5M 4.4
map 1.0M 0.8 7.8 9.3 1.6× 10−6 1.1× 10−5 7.1 344.7M 1519.1M 4.4

reverse 1.0M 0.8 6.7 8.0 1.6× 10−6 9.2× 10−6 5.8 344.7M 1446.7M 4.2
minimum 1.0M 1.1 5.1 4.6 3.4× 10−6 3.0× 10−5 8.8 388.4M 1113.8M 2.9

sum 1.0M 1.1 5.1 4.6 4.8× 10−5 1.7× 10−4 3.5 388.5M 1132.4M 2.9
quicksort 100.0K 1.6 43.8 26.9 1.6× 10−4 2.6× 10−3 15.6 775.4M 3719.9M 4.8
quickhull 100.0K 1.0 5.1 5.1 1.0× 10−4 3.3× 10−4 3.3 657.9M 737.7M 1.1
diameter 100.0K 0.9 5.2 5.8 8.6× 10−5 3.7× 10−4 4.3 609.0M 899.5M 1.5

Table 2. Times and space for CEAL versus SaSML for a common set of benchmarks.

8.3 Results
For brevity, we illustrate detailed results for one of our benchmarks,
tree contraction (tcon), and summarize the others. Figure 13 shows
the results with tcon. The leftmost figure compares times for a
from-scratch run of the conventional and self-adjusting versions;
the middle graph shows the time for an average update; and the
rightmost graph shows the speedup. The results show that self-
adjusting version is slower by a constant factor (of about 8) than the
conventional version. Change propagation time increases slowly
(logarithmically) with the input size. This linear-time gap between
recomputing from scratch and change propagation yields speedups
that exceed four orders of magnitude even for moderately sized
inputs. We also compare our implementation to that of an hand-
optimized implementation, which is between 3–4 times faster. We
interpret this is as a very encouraging results for the effectiveness
of our compiler, which does not perform significant optimizations.
The accompanying technical report gives more details on this com-
parison [22].

Table 1 summarizes our results for CEAL benchmarks at fixed
input sizes of 1 million (written “1.0M”) and 10 million (writ-
ten “10.0M”). From left to right, for each benchmark, we report the
input size considered, the time for conventional and self-adjusting
runs, the overhead, the average time for an update, the speedup, and
the maximum live memory required for running the experiments
(both from-scratch and test mutator runs). The individual graphs
for these benchmarks resemble that of the tree contraction (Fig-
ure 13). For the benchmarks run with input size 10M, the average
overhead is 14.2 and the average speedup is 1.4 × 105; for those
run with input size 1M, the average overhead is 9.2 and the average
speedup is 3.6×104. We note that for all benchmarks the speedups
are scalable and continue to increase with larger input sizes.

8.4 Comparison to SaSML

To measure the effectiveness of the CEAL approach to previously
proposed approaches, we compare our implementation to SaSML,
the state-of-art implementation of self-adjusting computation in
SML [27]. Table 2 shows the running times for the common bench-

15

30

45

60

75

1K 50K 100K 150K 200K

S
lo

w
do

w
n

Input Size

2G
4G
8G

Figure 14. SaSML slowdown compared to CEAL for quicksort.

marks, taken on the same computer as the CEAL measurements,
with inputs generated in the same way. For both CEAL and SaSML
we report the from-scratch run time, the average update time and
the maximum live memory required for the experiment. A column
labeled SaSML

CEAL
follows each pair of CEAL and SaSML measure-

ments and it reports the ratio of the latter to the former. Since the
SaSML benchmarks do not scale well to the input sizes considered
in Table 1, we make this comparison at smaller input sizes—1 mil-
lion and 100 thousand (written “100.0K”).

Comparing the CEAL and SaSML figures shows that CEAL is
about 5–27 times faster for from-scratch runs (about 9 times faster
on average) and 3–16 times faster for change propagation (about 7
times faster on average). In addition, CEAL consumes up to 5 times
less space (about 3 times less space on average).

An important problem with the SaSML implementation is that
it relies on traditional tracing garbage collectors (i.e., the collec-
tors used by most SML runtime systems, including the runtime
used by SaSML) which previous work has shown to be inherently
incompatible with self-adjusting computation, preventing it from
scaling to larger inputs [21]. Indeed, we observe that, while our
implementation scales to larger inputs, SaSML benchmarks don’t.
To illustrate this, we limit the heap size and measure the change-
propagation slowdown computed as the time for a small modifica-
tion (measured by the test mutator) with SaSML divided by that
with CEAL for the quicksort benchmark (Figure 14). Each line
ends roughly when the heap size is insufficient to hold the live
memory required for that input size. As the figure shows, the slow-
down is not constant and increases super linearly with the input size
to quickly exceed an order of magnitude (can be as high as 75).

8.5 Performance of the Compiler
We evaluate the performance of our compiler, cealc, using test
programs from our benchmark suite. Each of the programs we
consider consists of a core, which includes all the core-CEAL code
needed to run the benchmark, and a corresponding test mutator
for testing this core. We also consider a test driver program which
consists of all the test mutators (one for each benchmark) and their
corresponding core components.

We compile each program with cealc and record both the com-
pilation time and the size of the output binary. For comparison pur-
poses, we also compile each program directly with gcc (i.e., with-
out cealc) by treating CEAL primitives as ordinary functions with
external definitions. Table 3 shows the results of the comparison.
As can be seen, cealc is 3–8 times slower than gcc and creates
binaries that are 2–5 times larger.

In practice, we observe that the size of core functions can
be bounded by a moderate constant. Thus the maximum number
of live variables, which is an intra-procedural property, is also
bounded by a constant. Based on Theorem 5, we therefore expect
the compiled binaries to be no more than a constant factor larger
than the source programs. Our experiments show that this constant
to be between 2 and 5 for the considered programs.

Theorem 5 implies that the compilation time can bounded by the
size of the program plus the time for live-variable analysis. Since

cealc gcc
Program Lines Time Size Time Size
Expression trees 422 0.84 74K 0.34 58K
List primitives 553 1.87 109K 0.49 61K
Mergesort 621 2.25 123K 0.54 62K
Quicksort 622 2.22 123K 0.54 62K
Quickhull 988 3.81 176K 0.72 66K
Tree contraction 1918 8.16 338K 1.03 76K
Test Driver 4229 13.69 493K 2.61 110K

Table 3. Compilation times (in seconds) and binary sizes (in bytes)
for some CEAL programs. All compiled with -O0.

 0
 2
 4
 6
 8

 10
 12
 14

 0 100 200 300 400 500

T
im

e
fo

r
ce

al
c

(s
ec

)

Output size (kilobytes)

cealc time

Figure 15. Time for cealc versus size of binary output.

our implementation performs live variables analysis and constructs
dominator trees on a per-function basis (Section 7), and since
the sizes of core functions are typically bounded by a moderate
constant, these require linear time in the size of the program. We
therefore expect to see the compilation times to be linear in the
size of the generated code. Indeed Figure 15 shows that the cealc
compilation times increase nearly linearly with size of the compiled
binaries.

9. Related Work
We discuss the most closely related work in the rest of the paper.
In this section, we mention some other work that is related more
peripherally.

Incremental and Self-Adjusting Computation. The problem
of developing techniques to enable computations respond to in-
cremental changes to their output have been studied since the
early 80’s. We refer the reader to the survey by Ramalingam and
Reps [34] and a recent paper [27] for a more detailed set of ref-
erences. Effective early approaches to incremental computation
either use dependence graphs [16] or memoization (e.g., [33, 2]).
Self-adjusting computation generalizes dependence graphs tech-
niques by introducing dynamic dependence graphs, which enables
a change propagation algorithm update the structure of the com-
putation based on data modifications, and combining them with a
form of computation memoization that permits imperative updates
to memory [3].

Dominators. The dominator relation has common use in com-
pilers that perform program analysis and optimization (e.g., [7,
15, 18]). There are a number of asymptotically efficient algo-
rithms for computing dominators (e.g., [26, 19]). In practice simple
but asymptotically inefficient algorithms also perform reasonably
well [14]. Our implementation uses the simple algorithm described
in many compiler books, e.g., [30].

Tail Calls. We use a selective trampolining to support tail calls
efficiently (Section 6). Several other proposals to supporting tail
calls in C exists (e.g., [36, 23, 9, 20]). Peyton Jones summarizes

some of these techniques [24] and discusses the tradeoffs. The
primary advantage of trampolining is that it is fully portable; the
disadvantage is its cost, which our compiler reduces by piggy-
backing closure creation with those of the reads.

10. Discussions
We discuss some limitations of our approach and propose future
research directions.

Syntax and Types for Modifiables. The modifiable primitives
read and write assume that the type of a modifiable’s contents
is void*. As a result, their uses sometimes require explicit type
coercions (e.g., as in Figure 2). Furthermore, the primitives have
a function-like syntax, rather than the familiar C-like syntax for
dereferencing (reading) and assignment (writing).

It may be possible to support more conventional C syntax and
avoid type coercions by generalizing the notion of a modifiable ref-
erence to that of a “modifiable field”. In this approach, the program-
mer would annotate the fields of structs that are subject to change
across core updates with a new keyword (e.g., mod) that indicates
that the field is modifiable. Accessing (reading) and assigning to
(writing) these fields would use the same syntax as conventional C
structs, which would make the use of modifiable primitives im-
plicit. Just as conventional fields carry type information, each mod-
ifiable field would also carry a type that could be used to ensure that
its uses are well-typed. This approach would generalize modifiable
references since they could be easily encoded as struct with a
single modifiable field.

Automatic Minimization of Read Bodies. Conceptually, each
read operation in CEAL has an implicit “read body” which consists
of the code that uses the read value. Our normalization algorithm
approximates each read body conservatively by assuming that it
extends to the end of the function containing the associated read
operation. In general, however, a read value may be used in only a
small portion of the body found by normalization. In these cases it’s
often advantageous (though not always necessary) to refactor the
core program so that each read body identified by normalization
is minimal, i.e., it contains no code that is independent from the
read value. In the proposed approach the programmer can perform
this refactoring by hand, but we expect that a compiler mechanism
could handle some cases for refactoring automatically by employ-
ing further data- and control-flow analysis.

Support for Return Values. Currently, core functions in CEAL
cannot return values as functions can in C, but instead use destina-
tion-passing style (DPS) to communicate results through modifi-
ables. In DPS, the caller provides one or more destinations (mod-
ifiables) to the callee who writes these destinations with its results
before returning control to the caller; to access the results, the caller
reads the value of each destination (e.g., in Figure 2). By restrict-
ing core programs to DPS, we ensure that the caller/callee data-
dependencies can be correctly tracked via modifiable references
and their associated operations.

Although DPS simplifies tracking data dependencies in CEAL,
it also forces the programmer to essentially perform a DPS con-
version by hand. Moreover, the DPS restriction can be viewed as
overly conservative: if the return value of a core function is not af-
fected by changes to modifiables then the use of this value need
not be tracked via modifiable references, i.e., it can be returned di-
rectly to the caller. We expect that future work on CEAL can add
support conventional C-style return values by adding an automatic
DPS conversion to the CEAL compiler that acts selectively: when
a return value is subject to change across modifiable updates the
compiler should automatically DPS convert this function (and its

call sites), otherwise, the function can return a value as usual, with-
out any special treatment.

Optimizations. Although the proposed approach is faster and re-
quires less memory than previous approaches, we expect that future
optimizations will offer additional time and space savings.

As an example, it may be possible to reduce the overhead of
tracing the core primitives (e.g., read) when they are used in
consecutive sequences (e.g., Figure 2 contains a pair of consecutive
reads). The compiler could detect such uses and allow the runtime
to trace them as a group rather than individually, thereby reducing
their individual costs. In particular, since consecutive reads usually
store similar closures in the trace (i.e., closures with one or more
common values), tracing such reads using a single closure would
offer a significant time and space savings.

In addition to reducing the tracing overhead, future work can
explore more efficient ways of supporting tail calls in normalized
programs. The proposed approach uses trampolines since they are
simple to implement in a portal manner. However, each “bounce”
on a trampoline requires at least a function-return (passing control
to the trampoline) and an indirect call (to the function contained in
the trampolined closure). By contrast, a “real” tail call is little more
than an unconditional jump [36, 24].

Intermediate Representation. Our core language CL can be
thought of as a simplified source language for self-adjusting com-
putation. As we show, this language is sufficient to implement and
reason about the proposed compilation techniques. However, we
expect that both implementing and reasoning about future anal-
yses, transformations and optimizations (e.g., those proposed in
this section) will be simplified by translating into an intermediate
language that is either based on static single assignment (SSA)
form [15], or a suitable alternative [10]. Furthermore, since SSA
form shares a close relationship to functional programming [8, 25],
we expect that using it as an intermediate language for CEAL will
allow future work on CEAL to be more directly applicable to the
self-adjusting languages that extend existing functional languages
(e.g., SaSML [27]).

11. Conclusion
We describe a C-based language for writing self-adjusting pro-
grams in a style similar to conventional C programs, present com-
pilation strategies for the language, and describe & evaluate our im-
plementation. This is the first result in making self-adjusting com-
putation work in its full generality with a (low-level) language that
does not support higher-order features or offer automatic memory
management. Our experiments show that the proposed approach is
efficient in practice and significantly improves performance over
previous approaches.

Acknowledgements
We thank Matthew Fluet for many helpful discussions and sugges-
tions, and the anonymous reviewers for their valuable feedback.

References
[1] MLton. http://mlton.org/.

[2] Martı́n Abadi, Butler W. Lampson, and Jean-Jacques Lévy. Analysis
and Caching of Dependencies. In Proceedings of the International
Conference on Functional Programming, pages 83–91, 1996.

[3] Umut A. Acar. Self-adjusting computation (an overview). In
Proceedings of ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-Based Program Manipulation, 2009.

[4] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative self-
adjusting computation. In Proceedings of the 25th Annual ACM
Symposium on Principles of Programming Languages, 2008.

[5] Umut A. Acar, Guy E. Blelloch, Kanat Tangwongsan, and Duru
Türkoğlu. Robust Kinetic Convex Hulls in 3D. In Proceedings of the
16th Annual European Symposium on Algorithms, September 2008.

[6] Umut A. Acar, Guy E. Blelloch, and Jorge L. Vittes. An experimental
analysis of change propagation in dynamic trees. In Workshop on
Algorithm Engineering and Experimentation, 2005.

[7] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
principles, techniques, and tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[8] Andrew W. Appel. SSA is functional programming. SIGPLAN Not.,
33(4):17–20, 1998.

[9] Henry G. Baker. Cons should not cons its arguments, part II: Cheney
on the MTA. SIGPLAN Not., 30(9):17–20, 1995.

[10] J. A. Bergstra, T. B. Dinesh, and J. Heering. A complete transfor-
mational toolkit for compilers. ACM Transactions on Programming
Languages and Systems, 19:639–684, 1996.

[11] Gerth Stolting Brodal and Riko Jacob. Dynamic planar convex hull.
In Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science, pages 617–626, 2002.

[12] Magnus Carlsson. Monads for Incremental Computing. In
Proceedings of the 7th ACM SIGPLAN International Conference
on Functional programming, pages 26–35. ACM Press, 2002.

[13] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in computational
geometry. Proceedings of the IEEE, 80(9):1412–1434, 1992.

[14] Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. A simple,
fast dominance algorithm.

[15] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490, 1991.

[16] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incremental
Evaluation of Attribute Grammars with Application to Syntax-directed
Editors. In Proceedings of the 8th Annual ACM Symposium on
Principles of Programming Languages, pages 105–116, 1981.

[17] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph
algorithms. In Mikhail J. Atallah, editor, Algorithms and Theory of
Computation Handbook, chapter 8. CRC Press, 1999.

[18] Matthew Fluet and Stephen Weeks. Contification using dominators.
In Proceedings of the International Conference on Functional
Programming, pages 2–13, 2001.

[19] Loukas Georgiadis and Robert E. Tarjan. Finding dominators
revisited: extended abstract. In Proceedings of the fifteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 869–878, 2004.

[20] Jr. Guy L. Steele. Rabbit: A compiler for scheme. Technical report,
Cambridge, MA, USA, 1978.

[21] Matthew A. Hammer and Umut A. Acar. Memory management
for self-adjusting computation. In ISMM ’08: Proceedings of the
7th international symposium on Memory management, pages 51–60,
2008.

[22] Matthew A. Hammer, Umut A. Acar, and Yan Chen. CEAL: A
C-based language for self-adjusting computation. Technical Report
TTIC-TR-2009-2, Toyota Technological Institute, 2009.

[23] Simon L Peyton Jones. Implementing lazy functional languages
on stock hardware: The spineless tagless g-machine. Journal of
Functional Programming, 2:127–202, 1992.

[24] Simon Peyton Jones. C- -: A portable assembly language. In
Proceedings of the 1997 Workshop on Implementing Functional
Languages. Springer Verlag, 1998.

[25] Richard A. Kelsey. A correspondence between continuation passing
style and static single assignment form. In Papers from the 1995 ACM
SIGPLAN workshop on Intermediate representations, pages 13–22,
New York, NY, USA, 1995. ACM.

[26] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm
for finding dominators in a flowgraph. ACM Transactions on
Programming Languages and Systems, 1(1):121–141, 1979.

[27] Ruy Ley-Wild, Matthew Fluet, and Umut A. Acar. Compiling
self-adjusting programs with continuations. In Proceedings of the
International Conference on Functional Programming, 2008.

[28] Gary L. Miller and John H. Reif. Parallel tree contraction, part I:
Fundamentals. Advances in Computing Research, 5:47–72, 1989.

[29] Gary L. Miller and John H. Reif. Parallel tree contraction, part 2:
Further applications. SIAM Journal on Computing, 20(6):1128–1147,
1991.

[30] Steven S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[31] George C. Necula, Scott Mcpeak, S. P. Rahul, and Westley Weimer.
Cil: Intermediate language and tools for analysis and transformation
of C programs. In In International Conference on Compiler
Construction, pages 213–228, 2002.

[32] Mark H. Overmars and Jan van Leeuwen. Maintenance of config-
urations in the plane. Journal of Computer and System Sciences,
23:166–204, 1981.

[33] William Pugh and Tim Teitelbaum. Incremental computation via
function caching. In Proceedings of the 16th Annual ACM Symposium
on Principles of Programming Languages, pages 315–328, 1989.

[34] G. Ramalingam and T. Reps. A Categorized Bibliography on
Incremental Computation. In Proceedings of the 20th Annual ACM
Symposium on Principles of Programming Languages, pages 502–
510, 1993.

[35] Ajeet Shankar and Rastislav Bodik. DITTO: Automatic Incremental-
ization of Data Structure Invariant Checks (in Java). In Proceedings
of the ACM SIGPLAN 2007 Conference on Programming language
Design and Implementation, 2007.

[36] David Tarditi, Peter Lee, and Anurag Acharya. No assembly
required: compiling standard ML to C. ACM Letters on Programming
Languages and Systems, 1(2):161–177, 1992.

[37] Andrew Tolmach and Dino P. Oliva. From ML to Ada: Strongly-typed
language interoperability via source translation. Journal of Functional
Programming, 8(4):367–412, 1998.

