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ABSTRACT

Self-adjusting computation offers a language-centric approach to writing programs that can automatically
respond to modifications to their data (e.g., inputs). Except for several domain-specific implementations,
however, all previous implementations of self-adjusting computation assume mostly functional, higher-order
languages such as Standard ML. Prior to this work, it was not known if self-adjusting computation can
be made to work with low-level, imperative languages such as C without placing undue burden on the
programmer.

We describe the design and implementation of CEAL: a C-based language for self-adjusting computation.
The language is fully general and extends C with a small number of primitives to enable writing self-adjusting
programs in a style similar to conventional C programs. We present efficient compilation techniques for
translating CEAL programs into C that can be compiled with existing C compilers using primitives supplied
by a run-time library for self-adjusting computation. We implement the proposed compiler and evaluate its
effectiveness. Our experiments show that CEAL is effective in practice: compiled self-adjusting programs
respond to small modifications to their data by orders of magnitude faster than recomputing from scratch
while slowing down a from-scratch run by a moderate constant factor. Compared to previous work, we
measure significant space and time improvements.



1 Introduction

Researchers have long observed that in many applications, application data evolves slowly or incrementally
over time, often requiring only small modifications to the output. This creates the potential for applications
to adapt to changing data significantly faster than recomputing from scratch. To realize this potential,
researchers in the algorithms community develop so called dynamic or kinetic algorithms or data structures
that take advantage of the particular properties of the considered problem to update computations quickly.
Such algorithms have been studied extensively over a range of hundreds of papers (e.g. [13, 17] for surveys).
These advances show that computations can often respond to small modifications to their data nearly a linear
factor faster than recomputing from scratch, in practice delivering speedups of orders of magnitude. As a
frame of comparison, note that asymptotic improvements in performance far surpasses the goal of parallelism,
where speedups are bound by the number of available processors. Designing, analyzing, and implementing
dynamic/kinetic algorithms, however, can be complex even for problems that are relatively simple in the
conventional setting, e.g., the problem of incremental planar convex hulls, whose conventional version is
straightforward, has been studied over two decades (e.g., [31, 11]). Due to their complexity, implementing
these algorithms is an error-prone task that is further complicated by their lack of composability.

Self-adjusting computation (e.g., [4, 3]) offers a language-centric approach to realizing the potential
speedups offered by incremental modifications. The approach aims to make writing self-adjusting programs,
which can automatically respond to modifications to their data, nearly as simple as writing conventional
programs that operate on unchanging data, while delivering efficient performance by providing an automatic
update mechanism called change propagation. In self-adjusting computation, programs are stratified into two
components: a meta-level mutator and a core. The mutator interacts with the user or the outside world and
interprets and reflects the modifications in the data to the core. The core, written like a conventional program,
takes some input and produces an output. The core is self-adjusting: it can respond to modifications to its
data by employing a general-purpose, built-in change propagation mechanism. The mutator can execute the
core with some input from scratch, which we call a from-scratch or an initial run, modify the data of the
core, including the inputs and other computation data, and update the core by invoking change propagation.
A typical mutator starts by performing a from-scratch run of the program (hence the name initial run), and
then repeatedly modifies the data and updates the core via change propagation.

At a high level, change propagation updates the computation by re-executing the parts that are affected
by the modifications, while leaving the unaffected parts intact. Change propagation is guaranteed to update
the computation correctly: the output obtained via change propagation is the same as the output of a
from-scratch execution with the modified data. Even in the worst case, change propagation falls back to a
from-scratch execution—asymptotically, it is never slower (in an amortized sense)—but it is often significantly
faster than re-computing from-scratch.

Previous research developed language techniques for self-adjusting computation and applied it to a num-
ber of application domains (e.g., for a brief overview [3]). The applications show that from-scratch executions
of self-adjusting programs incur a moderate overhead compared to conventional programs but can respond
to small modifications orders-of-magnitude faster than recomputing from scratch. The experimental evalua-
tions show that in some cases self-adjusting programs can be nearly as efficient as the “hand-designed” and
optimized dynamic/kinetic algorithms (e.g., [6]). Recent results also show that the approach can help de-
velop efficient solutions to challenging problems such as some three-dimensional motion simulation problems
that have resisted algorithmic approaches [5].

Existing general-purpose implementations of self-adjusting computation, however, are all in high-level,
mostly functional languages such as Standard ML (SML) or Haskell [26, 12]. Several exist in lower-level lan-
guages such as C [6] and Java [34] but they are domain-specific. In Shankar and Bodik’s implementation [34],
which targets invariant-checking applications, core programs must be purely functional and functions cannot
return arbitrary values or use values returned by other functions in an unrestricted way.

Acar et al’s C implementation [6] targets a domain of tree applications. Neither approach offers a
general-purpose programming model. The most general implementation is Hammer et al’s C library [21],
whose primary purpose is to support efficient memory management for self-adjusting computation. The C
library requires core programs to be written in a style that makes dependencies between program data and
functions explicit, limiting its effectiveness as a source-level language.
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That there is no general-purpose support for self-adjusting computation in low level, imperative languages
such as C is not accidental: self-adjusting computation critically relies on higher-order features of high-level
languages. To perform updates efficiently, change propagation must be able to re-execute a previously-
executed piece of code in the same state (modulo the modifications), and skip over parts of the computation
that are unaffected by the modifications. Self-adjusting computation achieves this by representing the depen-
dencies between the data and the program code as a trace that records specific components of the program
code and their run-time environments. Since higher-order languages can natively represent closed functions,
or closures, consisting of a function and its free variables, they are naturally suitable for implementing traces.
Given a modification, change propagation finds the closures in the trace that depend on the modified data,
and re-executes them to update the computation and the output. Change propagation utilizes recorded
control dependencies between closures to identify the parts of the computation that need to be purged and
uses memoization to recover the parts that remain the same. To ensure efficient change propagation, the
trace is represented in the form of a dynamic dependence graph that supports fast random access to the
parts of the computation to be updated.

In this paper, we describe the design, implementation, and evaluation of CEAL: a C-based language for
self-adjusting computation. The language extends C with several primitives for self-adjusting computation
(Section 2). Reflecting the structure of self-adjusting programs, CEAL consists of a meta language for writing
mutators and a core language for writing core programs. The key linguistic notion in both the meta and
the core languages is that of the modifiable reference or modifiable for short. A modifiable is a location in
memory whose contents may be read and updated. CEAL offers primitives to create, read (access), and
write (update) modifiables just like conventional pointers. The crucial difference is that CEAL programs can
respond to modifications to modifiables automatically. Intuitively, modifiables mark the computation data
that can change over time, making it possible to track dependencies selectively. At a high level, CEAL can
be viewed as a dialect of C that replaces conventional pointers with modifiables.

By designing the CEAL language to be close to C, we make it possible to use familiar C syntax to write
self-adjusting programs. This poses a compilation challenge: compiling CEAL programs to self-adjusting
programs requires identifying the dependence information needed for change propagation. To address this
challenge, we describe a two-phase compilation technique (Sections 5 and 6). The first phase normalizes the
CEAL program to make the dependencies between data and parts of the program code explicit. The second
phase translates the normalized CEAL code to C by using primitives supplied by a run-time-system (RTS)
in place of CEAL’s primitives. This requires creating closures for representing dependencies and efficiently
supporting tail calls. We prove that the size of the compiled C code is no more than a multiplicative factor
larger than the source CEAL program, where the multiplicative factor is determined by the maximum number
of live variables over all program points. The time for compilation is bounded by the size of the compiled C
code and the time for live variable analysis. Section 3.2 gives an overview of the compilation phases via an
example.

We implement the proposed compilation technique and evaluate its effectiveness. Our compiler, cealc,
provides an implementation of the two-level compilation strategy and relies on the RTS for supplying the self-
adjusting-computation primitives. Our implementation of the RTS employs the recently-proposed memory
management techniques [21], and uses asymptotically optimal algorithms and data structures to support
traces and change propagation. For practical efficiency, the compiler uses intra-procedural compilation
techniques that make it possible to use simpler, practically efficient algorithms.

We perform an experimental evaluation by considering a range of benchmarks, including several primitives
on lists (e.g., map, filter), several sorting algorithms, and computational geometry algorithms for computing
convex hulls, the distance between convex objects, and the diameter of a point set. As a more complex
benchmark, we implement a self-adjusting version of the Miller-Reif tree-contraction algorithm, which is a
general-purpose technique for computing various properties of trees (e.g., [27, 28]). Our experiments show
that our compiler is between a factor of 3–8 slower and generates binaries that are 2–5 times larger than gcc.
Our timing measurements show that CEAL programs are about 6–19 times slower than the corresponding
conventional C program when executed from scratch, but can respond to small changes to their data orders-
of-magnitude faster than recomputing from scratch. Compared to the state-of-the-art implementation of
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self-adjusting computation in SML [26], CEAL uses about 3–5 times less memory. In terms of run time,
CEAL performs significantly faster than the SML-based implementation. In particular, when the SML
benchmarks are given significantly more memory than they need, we measure that they are about a factor
of 9 slower. Moreover, this slowdown increases (without bound) as memory becomes more limited. We also
compared our implementation to a hand-optimized implementation of self-adjusting computation for tree
contraction [6]. Our experiments show that we are about 3–4 times slower.

In this paper, we present a C-based general-purpose language for self-adjusting computation. Our con-
tributions include the language, the compiler, and the experimental evaluation.

2 The CEAL language

We present an overview of the CEAL language, whose core is formalized in Section 4. The key notion in
CEAL is that of a modifiable reference (or modifiable, for short). A modifiable is a location in memory whose
content may be read and updated. From an operational perspective, a modifiable is just like an ordinary
pointer in memory. The major difference is that CEAL programs are sensitive to modifications of the contents
of modifiables performed by the mutator, i.e., if the contents are modified, then the computation can respond
to that change by updating its output automatically via change propagation.

Reflecting the two-level (core and meta) structure of the model, the CEAL language consists of two
sub-languages: meta and core. The meta language offers primitives for performing an initial run, modifying
computation data, and performing change propagation—the mutator is written in the meta language. CEAL’s
core language offers primitives for writing core programs. A CEAL program consists of a set of functions,
divided into core and meta functions: the core functions (written in the core language), are marked with the
keyword ceal, meta functions (written in the meta language) use conventional C syntax. We refer to the
part of a program consisting of the core (meta) functions simply as the core (meta or mutator).

To provide scalable efficiency and improve usability, CEAL provides its own memory manager. The
memory manager performs automatic garbage collection of allocations performed in the core (via CEAL’s
allocator) but not in the mutator. The language does not require the programmer to use the provided
memory manager, the programmer can manage memory explicitly if so desired.

The Core Language. The core language extends C with modifiables, which are objects that consist of
word-sized values (their contents) and supports the following primitive operations, which essentially allow
the programmer to treat modifiables like ordinary pointers in memory.

modref t* modref(): creates a(n) (empty) modifiable

void write(modref t *m, void *p): writes p into m

void* read(modref t *m): returns the contents of m

In addition to operations on modifiables, CEAL provides the alloc primitive for memory allocation.
For correctness of change propagation, core functions must modify the heap only through modifiables, i.e.,
memory accessed within the core, excluding modifiables and local variables, must be write-once. Also
by definition, core functions return ceal (nothing). Since modifiables can be written arbitrarily, these
restrictions cause no loss of generality or undue burden on the programmer.

The Meta Language. The meta language also provides primitives for operating on modifiables; modref
allocates and returns a modifiable, and the following primitives can be used to access and update modifiables:

void* deref(modref t *m): returns the contents of m.

void modify(modref t *m, void *p): modifies the contents of the modifiable m to contain p.

As in the core, the alloc primitive can be used to allocate memory. The memory allocated at the meta
level, however, needs to be explicitly freed. The CEAL language provides the kill primitive for this purpose.
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In addition to these, the meta language offers primitives for starting a self-adjusting computation,
run core, and updating it via change propagation, propagate. The run core primitive takes a pointer
to a core function f and the arguments a, and runs f with a. The propagate primitive updates the core
computation created by run core to match the modifications performed by the mutator via modify.1 Except
for modifiables, the mutator may not modify memory accessed by the core program. The meta language
makes no other restrictions: it is a strict superset of C.

3 Example and Overview

We give an example CEAL program and give an overview of the compilation process (Sections 5 and 6) via
this example.

3.1 An Example: Expression Trees

We present an example CEAL program for evaluating and updating expression trees. Figure 1 shows the data
type definitions for expressions trees. A tree consists of leaves and nodes each represented as a record with a
kind field indicating their type. A node additionally has an operation field, and left & right children placed
in modifiables. A leaf holds an integer as data. For illustrative purposes, we only consider plus and minus
operations. 2 This representation differs from the conventional one only in that the children are stored in
modifiables instead of pointers. By storing the children in modifiables, we enable the mutator to modify the
expression and update the result by performing change propagation.

Figure 2 shows the code for eval function written in core CEAL. The function takes as arguments the
root of a tree (in a modifiable) and a result modifiable where it writes the result of evaluating the tree. It
starts by reading the root. If the root is a leaf, then its value is written into the result modifiable. If the root
is an internal node, then it creates two result modifiables (m a and m b) and evaluates the left and the right
subexpressions. The function then reads the resulting values of the subexpressions, combines them with the
operation specified by the root, and writes the value into the result. This approach to evaluating a tree is
standard: replacing modifiables with pointers, reads with pointer dereference, and writes with assignment
yields the conventional approach to evaluating trees. Unlike the conventional program, the CEAL program
can respond to updates quickly.

Figure 3 shows the pseudo-code for a simple mutator example illustrated in Figure 4. The mutator
starts by creating an expression tree from an expression where each subexpression is labeled with a unique
key, which becomes the label of each node in the expression tree. It then creates a result modifiable and
evaluates the tree with eval, which writes the value 7 into the result. The mutator then modifies the
expression by substituting the subexpression (6m +l 7n) in place of the modifiable holding the leaf k and
updates the computation via change propagation. Change propagation updates the result to 0, the new
value of the expression. By representing the data and control dependences in the computation accurately,
change propagation updates the computation in time proportional to the length of the path from k (changed
leaf) to the root, instead of the total number of nodes as would be conventionally required. We evaluate a
variation of this program (which uses floating point numbers in place of integers) in Section 8 and show that
change propagation updates these trees efficiently.

3.2 Overview of Compilation

Our compilation technique translates CEAL programs into C programs that rely on a run-time-system RTS
(Section 6.1) to provide self-adjusting-computation primitives. Compilation treats the mutator and the core

1The actual language offers a richer set of operations for creating multiple self-adjusting cores simultaneously. Since the meta
language is not our focus here we restrict ourselves to this simpler interface.

2In their most general form, expression trees can be used to compute a range of properties of trees and graphs. We discuss such
a general model in our experimental evaluation.
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typedef enum { NODE, LEAF} kind t;

typedef struct {
kind t kind;

enum { PLUS, MINUS } op;

modref t *left, *right;

} node t;

typedef struct {
kind t kind;

int num;

} leaf t;

Figure 1: Data type definitions for expression trees.

1 ceal eval (modref t *root, modref t *res) {
2 node t *t = read (root);

3 if (t->kind == LEAF) {
4 write (res,(void*)((leaf t*) t)->num);

5 } else {
6 modref t *m a = modref ();

7 modref t *m b = modref ();

8 eval (t->left, m a);

9 eval (t->right, m b);

10 int a = (int) read (m a);

11 int b = (int) read (m b);

12 if (t->op == PLUS) {
13 write (res, (void*)(a + b));

14 } else {
15 write (res, (void*)(a - b));

16 }
17 }
18 return;

19 }

Figure 2: The eval function written in CEAL (core).

exp = "(3d +c 4e)−b (1g −f 2h) +a (5j −i 6k)";
tree = buildTree (exp);

result = modref ();

run core (eval, tree, result);

subtree = buildTree ("6m +l 7n");

t = find ("k",subtree);
modify (t,subtree);

propagate ();

Figure 3: The mutator written in CEAL (meta).

separately. To compile the mutator, we simply replace meta-CEAL calls with the corresponding RTS calls—
no major code restructuring is needed. In this paper, we therefore do not discuss compilation of the meta
language in detail.

Compiling core CEAL programs is more challenging. At a high level, the primary difficulty is determining
the code dependence for the modifiable being read, i.e., the piece of code that depends on the modifiable.
More specifically, when we translate a read of modifiable to an RTS call, we need to supply a closure that
encapsulates all the code that uses the value of the modifiable being read. Since CEAL treats references
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1 ceal eval (modref t *root, modref t *res) {
2 node t *t = read (root);

tail read r (t,res);

19 }

a ceal read r (node t *t, modref t *res) {
3 if (t->kind == LEAF) {
4 write (res,(void*)((leaf t*) t)->num);

tail eval final ();

5 } else {
6 modref t *m a = modref ();

7 modref t *m b = modref ();

8 eval (t->left, m a);

9 eval (t->right, m b);

10 int a = (int) read (m a);

tail read a (res,a,m b);

17 }
}

b ceal read a (modref t *res, int a, modref t *m b) {
11 int b = (int) read (m b);

tail read b (res,a,b);

}

c ceal read b (modref t *res, int a, int b) {
12 if (t->op == PLUS) {
13 write (res, (void*)(a + b));

tail eval final ();

14 } else {
15 write (res, (void*)(a - b));

tail eval final ();

16 }
}

d ceal eval final () {
18 return;

}

Figure 5: The normalized expression-tree evaluator.

just like conventional pointers, it does not make explicit what that closure should be. In the context of
functional languages such as SML, Ley-Wild et al used a continuation-passing-style transformation to solve
this problem [26]. The idea is to use the continuation of the read as a conservative approximation of the code
dependence. Supporting continuations in stack-based languages such as C is expensive and cumbersome.
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Another approach is to use the source function that contains the read as an approximation to the code
dependence. This not only slows down change propagation by executing code unnecessarily but also can
cause code to be executed multiple times, e.g., when a function (caller) reads a modified value from a callee,
the caller has to be executed, causing the callee to be executed again.

To address this problem, we use a technique that we call normalization (Section 5). Normalization
restructures the program such that each read operation is followed by a tail call to a function that marks
the start of the code that depends on the modifiable being read. The dynamic scope of the function tail
call ends at the same point as that of the function that the read is contained in. To normalize a CEAL
program, we first construct a specialized rooted control-flow graph that treats certain nodes—function nodes
and nodes that immediately follow read operations—as entry nodes by connecting them to the root. The
algorithm then computes the dominator tree for this graph to identify what we call units, and turns them
into functions, making the necessary transformations for these functions to be tail-called. We prove that
normalization runs efficiently and does not increase the program by more than a factor of two (in terms of
its graph nodes).

As an example, Figure 5 shows the code for the normalized expression evaluator. The numbered lines are
taken directly from the original program in Figure 2. The highlighted lines correspond to the new function
nodes and the tail calls to these functions. Normalization creates the new functions, read r, read a, read b
and tail-calls them after the reads lines 2, 10, and 11 respectively. Intuitively, these functions mark the
start of the code that depend on the root, and the result of the left and the right subtrees (m a and m b
respectively). The normalization algorithm creates a trivial function, eval final for the return statement
to ensure that the read a and read b branch out of the conditional—otherwise the correspondence to the
source program may be lost.3

We finalize compilation by translating the normalized program into C. To this end, we present a basic
translation that creates closures as required by the RTS and employs trampolines4 to support tail calls
without growing the stack (Section 6.2). This basic translation is theoretically satisfactory but it is practically
expensive, both because it requires run-time type information and because trampolining requires creating
a closure for each tail call. We therefore present two major refinements that apply trampolining selectively
and that monomorphize the code by statically generating type-specialized instances of certain functions
to eliminate the need for run-time type information (Section 6.3). It is this refined translation that we
implement (Section 7).

We note that the quality of the self-adjusting program generated by our compilation strategy depends on
the source code. In particular, if the programmer does not perform the reads close to where the values being
read are used, then the generated code may not be effective. In many cases, it is easy to detect and statically
eliminate such poor code by moving reads appropriately—our compiler performs a few such optimizations.
Since such optimizations are orthogonal to our compilation strategy (they can be applied independently),
we do not discuss them further in this paper.

4 The Core Language

We formalize the core-CEAL language as a simplified variant of C called CL (Core Language) and describe
how CL programs are executed.

4.1 Abstract Syntax

Figure 6 shows the abstract syntax for CL. The meta variables x and y (and variants) range over an unspecified
set of variables and the meta variables ` (and variants) range over a separate, unspecified set of (memory)
locations. For simplicity, we only include integer, modifiable and pointers types; the meta variable τ (and
variants) range over these types. CL has a type system only in the sense of the underlying C language, i.e.,
offers no strong typing guarantees. Since the typing rules are standard we do not discuss them here.

3In practice we eliminate such trivial calls by inlining the return.
4A trampoline is a dispatch loop that iteratively runs a sequence of closures.
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Types τ ::= int | modref t | τ∗

Values v ::= ` | n

Prim. op’s o ::= ⊕ | 	 | . . .

Expressions e ::= n | x | o(x) | x[y]

Commands c ::= nop
| x := e
| x[y] := e
| x := modref()
| x := read y
| write x y
| x := alloc y f z
| call f (x)

Jumps j ::= goto l
| tail f (x)

Basic Blocks b ::= {l : done}
| {l : cond x j1 j2}
| {l : c ; j}

Fun. Defs F ::= f (τ1 x) {τ2 y; b}

Programs P ::= F

Figure 6: The syntax of CL

The language distinguishes between values, expressions, commands, jumps, and basic blocks. A value v
is either a memory location ` or an integer n. Expressions include values, primitive operations (e.g. plus,
minus) applied to a sequence of variables, and array dereferences x[y]. Commands include no-op, assignment
into a local variable or memory location, modifiable creation, read from a modifiable, write into a modifiable,
memory allocation, and function calls. Jumps include goto jumps and tail jumps. Programs consist of a set
of functions defined by a name f , a sequence of formal arguments τ1 x, and a body of basic blocks b following
some local variable declarations τ2 y. Each basic block, labeled uniquely, takes one of three forms: a done
block, {l : done}, a conditional block, {l : cond x j1 j2}, and a command-and-jump block, {l : c ; j}. When
referring to command-and-jump blocks, we sometimes use the type of the command, e.g., a read block, a
write block, regardless of the jump. Symmetrically, we sometimes use the type of the jump, e.g., a goto block,
a tail-call block, regardless of the command. Note that since there are no return instructions, a function
cannot return a value (since they can write to modifiables arbitrarily, this causes no loss of generality).

4.2 Execution (Operational Semantics)

We describe the operational semantics of CL informally, and give a formal semantics for CL in Section 4.4.
Execution of a CL program begins when the mutator uses run core to invoke one of its functions (e.g, as
in Figure 3). Most of the operational (dynamic) semantics of CL should be clear to the reader if s/he is
familiar with C or similar languages. The interesting aspects include tail jumps, operations on modifiables
and memory allocation. A tail jump executes like a conventional function call, except that it never returns.
The modref command allocates a modifiable and returns its location. Given a modifiable location, the read
command retrieves its contents, and the write command destructively updates its contents with a new
value. A done block, {k : done}, completes execution of the current function and returns. A conditional
block, {k : cond x j1 j2}, checks the value of local variable x and performs jump j1 if the condition is

8



Store σ ::= · | σ[` 7→ o]

Store Object o ::= empty | modref v | array v

Stack Ψ ::= · | Ψ[Γ, lρ]

Environment Γ ::= · | Γ[x 7→ v]

Return Flag ρ ::= ◦ | •

Figure 7: CL Program State: Stores and Stacks.

true (non-zero) and jump j2 otherwise. A command block, {l : c ; j}, executes the command c followed
by jump j. The alloc command allocates an array at some location ` with a specified size in bytes (y)
and uses the provided function f to initialize it by calling f with ` and the additional arguments (z). After
initialization, it returns `. By requiring this stylized interface for allocation, CL makes it easier to check and
conform to the correct-usage restrictions (defined below) by localizing initialization effects (the side effects
used to initialize the array) to the provided initialization function.

To accurately track data-dependencies during execution, we require, but do not enforce that the programs
conform to the following correct-usage restrictions: 1) each array is side-effected only during the initialization
step and 2) that the initialization step does not read or write modifiables.

4.3 From CEAL to CL

We can translate CEAL programs into CL by 1) replacing sequences of statements with corresponding com-
mand blocks connected via goto jumps, 2) replacing so-called “structured control-flow” (e.g., if, do, while,
etc.) with corresponding (conditional) blocks and goto jumps, and 3) replacing return with done.

4.4 Operational Semantics for CL

We describe a formal operational semantics for (from-scratch runs of) CL programs. In Section 5 we use
the semantics to state and prove that our algorithm for normalization preserves important properties of CL
programs. The operational semantics we present intentionally omit notions of program tracing and change
propagation since these notions are defined only with respect to normalized programs.

Figure 7 defines stores and stacks, which together comprise the state of CL programs.
A store, denoted by σ, maps memory locations to store objects, each denoted by o. We distinguish between

three types of store objects: empty objects, denoted by empty, which indicate that the corresponding store
location is unused and available for allocation; modifiable reference objects (modifiables for short), denoted
by modref v, which consist of a single value v; and array objects, denoted by array v, which consist of a
finite sequence of values v. We make a few simple assumptions about stores, which in turn allow us to define
a deterministic semantics for memory allocation. First, we assume that the domain of σ has a corresponding
total order such that for each `1, `2 ∈ dom(σ), if `1 6= `2 then either `1 < `2 or `2 < `1. Second, assuming that
there exists ` ∈ dom(σ) such that σ(`) = empty, we define nextempty(σ) to be the least such `. The semantics
allocates locations from the store using nextempty and hence picks locations deterministically according to
the ordering on store locations. This determinism is useful for showing that our normalization algorithm
preserves the semantics of CL (Section 5.5), but in practice it is not necessary.

A stack, denoted by Ψ, consists of a finite sequence of zero or more stack frames. For a non-empty
stack Ψ = Ψ′[Γ, lρ] we say that [Γ, lρ] is the topmost stack frame. Each stack frame consists of a local
environment Γ, a basic block label l, and a return flag denoted by ρ ∈ {◦, •}. The stack frame [Γ, lρ] denotes
that basic block l will be executed under the environment Γ. We say that the return flag ρ is “set” if and only
if ρ = •, and “unset” otherwise. At a high-level, the semantics uses the return flag to distinguish between
two execution phases for blocks that perform function invocations (i.e., call and alloc command blocks).
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σ,Γ ` e 7→ v

Γ(x) = v

σ,Γ ` x 7→ v
(Var)

σ,Γ ` n 7→ n
(Num)

Γ(x) = v v = ⊕(v)
σ,Γ ` ⊕(x) 7→ v

(Prim)

Γ(x) = ` Γ(y) = n σ(`) = array 〈v0, . . . , vm〉 , where 0 ≤ n ≤ m
σ,Γ ` x[y] 7→ vn

(Proj)

Figure 8: Expression evaluation

σ,Γ ` c 7→ σ′,Γ′

σ,Γ ` nop 7→ σ,Γ
(Nop)

σ,Γ ` e 7→ v

σ,Γ ` x := e 7→ σ,Γ[x 7→ v]
(Assign)

Γ(x) = ` Γ(y) = n Γ(z) = v σ(`) = array w
(w′n = v ∧ w′i = wi) where i 6= n for 0 ≤ i, n < |w|

σ,Γ ` x[y] := z 7→ σ[` 7→ array w′],Γ
(Store)

nextempty(σ) = ` σ′ = σ[` 7→ modref 0]
σ,Γ ` x := modref() 7→ σ′,Γ[x 7→ `]

(Modref)
σ(y) = modref v

σ,Γ ` x := read y 7→ σ,Γ[x 7→ v]
(Read)

Γ(x) = ` Γ(y) = v′ σ(`) = modref v σ′ = σ[` 7→ modref v′]
σ,Γ ` write x y 7→ σ′,Γ

(Write)

Figure 9: Steps-to relation for (single-step) CL commands

In the first phase, the semantics for these blocks perform setup for the function invocation and essentially
pass control to the initial block of the callee. The second phase begins when the callee completes and the
caller block regains control (with a set return flag).

Figure 8 defines the expression steps-to relation, σ,Γ ` e 7→ v, for evaluating an expression e to a value v
under the store σ and environment Γ. Variables step to their values under the current environment; numbers
step to themselves; primitive operations lookup the values of their arguments in the given environment and
step to the result of the corresponding operation; and array projection accesses the array from the given
store and steps to the requested element.

Figure 9 defines the command steps-to relation, σ,Γ ` c 7→ σ′,Γ′; it evaluates a (single-step) command
c under the store σ and environment Γ and yields an updated store σ′ and updated environment Γ′. The
execution of nop commands, assignment to local variables, and assignment to array elements (i.e., stores
into array memory) are all straightforward. The execution of a modref command picks the next available
location ` from the store (via nextempty), updates the store at ` to contain a modifiable (initially containing
0), and updates the environment, binding the given variable x with value `. The execution of a read
command accesses the value v of the specified modifiable within the store and updates the environment
by binding the given variable x with value v; the write command updates the store, writing the specified
value into the specified modifiable. With the exception of call and alloc commands, all CL commands are
covered by the command steps-to relation.

Figure 10 defines the argument-binding relation, P,Γ ` f(x) ; Γ′, which sets up a new environment Γ′

for executing a function f ∈ P given a sequence of actual arguments {x1, . . . , xn} ⊆ dom(Γ). The relation
defines Γ′ such that dom(Γ′) = formals(f) = y and Γ(xi) = Γ′(yi) for each xi ∈ x and yi ∈ y. We define this
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P,Γ ` f(x) ; Γ′

formalsP (f) = y Γ(x) = v |y| = |v| Γ′ = [y1 7→ v1] · · · [yn 7→ vn] for vi ∈ v
P,Γ ` f(x) ; Γ′

(BindArgs)

Figure 10: Binding of formal arguments to actual arguments

P,Ψ ` j 7→ Ψ′

funP (l) = funP (l′) Γ|liveP (l′) = Γ′

P,Ψ[Γ, l◦] ` goto l′ 7→ Ψ[Γ′, l′◦]
(Goto)

blocksP (f) = 〈l′, . . .〉 P,Γ ` f(x) ; Γ′

P,Ψ[Γ, l◦] ` tail f(x) 7→ Ψ[Γ′, l′◦]
(Tail)

Figure 11: Steps-to relation for CL jumps

relation for convenience and employ it to define the semantics of tail jumps, call commands and alloc
commands.

Figure 11 defines the steps-to relation for jumps, P,Ψ ` j 7→ Ψ′; it evaluates a jump j given the current
stack Ψ and yields an updated stack Ψ′. For both jump cases, goto and tail, the relation assumes that
the current stack is non-empty and that its topmost frame is of the form [Γ, l◦]. In the case of a goto to l′,
the relation also assumes that control-transfer is intra-procedural, i.e., that l and l′ are in the same function
in program P , and the relation replaces the topmost frame with [Γ′, l′◦] where Γ′ is Γ, restricted to the
variables that are live at l′ in P . That is, the domain of environment Γ′ is exactly the set of variables that
are live upon entry to the block labeled l′ (i.e., dom(Γ′) = liveP (l′)) and for each variable x ∈ dom(Γ′) it’s the
case that Γ′(x) = Γ(x). This restriction is reasonable since, by definition, the values of dead variables will
not be used to execute l′ or any other block in the execution of P . The restriction to live variables is useful
for proving that our normalization algorithm preserves CL semantics (Section 5.5), but is not necessary in
practice. In the case of a tail jump to function f ∈ P using arguments x, the relation assumes that l′ is
the initial block of function f and that Γ′ maps the formals for f to the values of x (under Γ). Analogously
to the goto case, the relation replaces the topmost stack frame with [Γ′, l′◦].

Figure 12 defines the steps-to relation for basic blocks, P, σ,Ψ ` b 7→ σ′,Ψ′; it evaluates a basic block b
and yields an updated store and stack. To step a done block, the relation “pops” the topmost stack frame.
To step a conditional, the relation checks the condition variable in the current environment and steps the
corresponding jump. To step a command-and-jump block for a single-step command (i.e., all commands
except call and alloc), the relation steps the command and then uses the updated store and stack to step
the jump. Stepping call and alloc commands happens in two phases. In both cases, the first phase begins
with the topmost stack frame having an unset return flag; the relation sets the return flag and “pushes”
a new frame [Γ′, l′◦], where Γ′ is setup to hold the formal argument values for the corresponding function
invocation and l′ is the initial block for the invocation. For alloc commands, the first phase also allocates a
new location for an array of the specified length, where the location is determined by nextempty; it extends
the local environment with a binding for this location and also prepends it to the arguments passed to the
initialization function. For both call and alloc, the second phase begins with the topmost stack frame
having a set return flag. The second phase for both commands are handled by a single case, which steps the
jump that follows the command.

Figure 13 defines the evaluation relation for program execution with a step count, P, σ,Ψ ↓n σ′; it
evaluates a terminating program under σ and Ψ and yields a step count n and an updated store σ′. At
a high-level, this relation effectively counts the number of steps required to evaluate the program using
the block steps-to relation (Figure 12). If the program stack is empty, evaluation terminates in zero steps.
Otherwise, the stack contains at least one frame [Γ, lρ]. The program terminates in n+ 1 steps if the block
labeled l steps, via the block steps-to relation, and the program terminates in n steps under the resulting
stack and store.
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P, σ,Ψ ` b 7→ σ′,Ψ′

P, σ,Ψ[Γ, l◦] ` {l : done} 7→ σ,Ψ
(Done)

(Γ(x) 6= 0 ∧ j = j1) ∨ (Γ(x) = 0 ∧ j = j2) P,Ψ[Γ, l◦] ` j 7→ Ψ′

P, σ,Ψ[Γ, l◦] ` {l : cond x j1 j2} 7→ σ,Ψ′
(Cond)

σ,Γ ` c 7→ σ′,Γ′ P,Ψ[Γ′, l◦] ` j 7→ Ψ′

P, σ,Ψ[Γ, l◦] ` {l : c ; j} 7→ σ′,Ψ′
(CmdJmp)

blocksP (f) = 〈l′, . . .〉 P,Γ ` f(x) ; Γ′

P, σ,Ψ[Γ, l◦] ` {l : call f(x); j} 7→ σ,Ψ[Γ, l•][Γ′, l′◦]
(Call)

Γ(y) = n nextempty(σ) = `
σ′ = σ[` 7→ array 0n] Γ′ = Γ[x 7→ `] blocksP (f) = 〈l′, . . .〉 P,Γ′ ` f(x :: z) ; Γ′′

P, σ,Ψ[Γ, l◦] ` {l : x := alloc y f z ; j} 7→ σ′,Ψ[Γ′, l•][Γ′′, l′◦]
(Alloc)

P,Ψ[Γ, l◦] ` j 7→ Ψ′

P, σ,Ψ[Γ, l•] ` {l : c ; j} 7→ σ,Ψ′
(RetJmp)

Figure 12: Steps-to relation for CL basic blocks

P, σ,Ψ ↓n σ′

P, σ, · ↓0 σ
(Halt)

blockP (l) = b P, σ,Ψ[Γ, lρ] ` b 7→ σ′,Ψ′ P, σ′,Ψ′ ↓n σ′′

P, σ,Ψ[Γ, lρ] ↓n+1 σ
′′ (Run)

Figure 13: Program execution with step count

5 Normalizing CL Programs

We say that a program is in normal form if and only if every read command is in a tail-jump block, i.e.,
followed immediately by a tail jump. In this section, we describe an algorithm for normalization that
represents programs with control flow graphs and uses dominator trees to restructure them. Section 5.4
illustrates the techniques described in this section applied to our running example.

5.1 Program Graphs

We represent CL programs with a particular form of rooted control flow graphs, which we shortly refer to as
a program graph or simply as a graph when it is clear from the context.

The graph for a program P consists of nodes and edges, where each node represents a function definition,
a (basic) block, or a distinguished root node (Section 5.4 shows an example). We tag each non-root node
with the label of the block or the name of the function that it represents. Additionally, we tag each node
representing a block with the code for that block and each node representing a function, called a function
node, with the prototype (name and arguments) of the function and the declaration of local variables. As a
matter of notational convenience, we name the nodes with the label of the corresponding basic block or the
name of the function, e.g., ul or uf .
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The edges of the graph represent control transfers. For each goto jump belonging to a block {k :
c ; goto l}, we have an edge from node uk to node ul tagged with goto l. For each function node uf
whose first block is ul, we have an edge from uf to ul labeled with goto l. For each tail-jump block
{k : c ; tail f(x)}, we have an edge from uk to uf tagged with tail f(x). If a node uk represents a
call-instruction belonging to a block {k : call f(x) ; j}, then we insert an edge from uk to uf and tag it
with call f(x). For each conditional block {k : cond x j1 j2} where j1 and j2 are the jumps, we insert
edges from k to targets of j1 and j2, tagged with true and false, respectively.

We call a node a read-entry node if it is the target of an edge whose source is a read node. More
specifically, consider the nodes uk belonging to a block of the form {k : x := read y ; j} and ul which is
the target of the edge representing the jump j; the node ul is a read entry. We call a node an entry node if
it is a read-entry or a function node. For each entry node ul, we insert an edge from the root to ul into the
graph.

There is a (efficiently) computable isomorphism between a program and its graph that enables us to treat
programs and graphs as a single object. In particular, by changing the graph of a program, our normalization
algorithm effectively restructures the program itself.

Lemma 1 (Programs and Graphs)
The program graph of a CL program with n blocks can be constructed in expected O(n) time. Conversely,
given a program graph with m nodes, we can construct its program in O(m) time.

Proof: We construct the graph in two passes over the program. In the first pass, we create a root node and
create a node for each block. We insert the nodes for the blocks into a hash table that maps the block label
to the node. In the second pass, we insert the edges by using the hash table to locate the source and the
target nodes. Since hash tables require expected constant time per operation, creating the program graph
requires time in the number of blocks of the graph.

To construct the program for a graph, we follow the outgoing edges of the root. By the definition of the
program graph, each function node is a target of an edge from the root. For each such node, we create a
function definition. We then generate the code for the function by generating the code for each block that
is reachable from the function node via goto edges. Since blocks and edges are tagged with the instructions
that they correspond to, it is straightforward to generate the code for each node. Finally, the ordering
of the functions and the blocks in the functions can be arbitrary, because all control transfers are explicit.
Thus, we can generate the code for a program graph by performing a single pass over the program code. �

5.2 Dominator Trees and Units

Let G = (V,E) be a rooted program graph with root node ur. Let uk, ul ∈ V be two nodes of G. We say that
uk dominates ul if every path from ur to ul in G passes through uk. By definition, every node dominates
itself. We say that uk is an immediate dominator of ul if uk 6= ul and uk is a dominator of ul such that every
other dominator of ul also dominates uk. It is easy to show that each node except for the root has a unique
immediate dominator (e.g., [25]). The immediate-dominator relation defines a tree, called a dominator tree
T = (V,EI) where by EI = {(uk, ul) | uk is an immediate dominator of ul}.

Let T be a dominator tree of a rooted program graph G = (V,E) with root ur. Note that the root of G
and T are both the same. Let ul be a child of ur in T . We define the unit of ul as the vertex set consisting
of ul and all the descendants of ul in T ; we call ul the defining node of the unit. Normalization is made
possible by an interesting property of units and cross-unit edges.

Lemma 2 (Cross-Unit Edges)
Let G = (V,E) be a rooted program graph and T be its dominator tree. Let Uk and Um be two distinct
units of T defined by vertices uk and um respectively . Let ul ∈ Uk and un ∈ Um be any two vertices from
Uk and Um. If (ul, un) ∈ E, i.e., a cross-unit edge in the graph, then un = um.
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1 NORMALIZE (P) =

2 Let G = (V,E) be the graph of P rooted at ur

3 Let T be the dominator tree of G (rooted at ur)

4 G′ = (V ′, E′), where V ′ = V and E′ = ∅
5 for each unit U of T do

6 ul ← defining node of U
7 if ul is a function node then

8 (* ul is not critical *)

9 EU ← {(ul, u) ∈ E | (u ∈ U)}
10 else

11 (* ul is critical *)

12 pick a fresh function f, i.e., f 6∈ funs(P )
13 let x be the live variables at l in P
14 let y be the free variables in U
15 z = y \ x
16 V ′ ← V ′ ∪ {uf}
17 tag(uf ) = f(x){z}
18 EU ← {(ur, uf ), (uf , ul)} ∪
19 {(u1, u2) ∈ E | u1, u2 ∈ U ∧ u2 6= ul}
20 for each critical edge (uk, ul) ∈ E do

21 if uk 6∈ U then

22 (* cross-unit edge *)

23 EU ← EU ∪ {(uk, uf )}
24 tag((u, uf )) = tail f(x)
25 else

26 (* intra-unit edge *)

27 if uk is a read node then

28 EU ← EU ∪ {(uk, uf )}
29 tag((u, uf )) = tail f(x)
30 else

31 EU ← EU ∪ {(uk, ul)}
32 E′ ← E′ ∪ EU

Figure 14: Pseudo-code for the normalization algorithm.

Proof: Let ur be the root of both T and G. For a contradiction, suppose that (ul, un) ∈ E and un 6= um.
Since (ul, un) ∈ E there exists a path p = ur ; uk ; ul → un in G. Since um is a dominator of un, this
means that um is in p, and since um 6= un it must be the case that either uk proceeds um in p or vice versa.
We consider the two cases separately and show that they each lead to a contradiction.

• If uk proceeds um in p then p = ur ; uk ; um ; ul → un. But this means that ul can be reached
from ur without going through uk (since ur → um ∈ G). This contradicts the assumption that uk
dominates ul.

• If um proceeds uk in p then p = ur ; um ; uk ; ul → un. But this means that un can be reached
from ur without going through um (since ur → uk ∈ G). This contradicts the assumption that um
dominates un. �

5.3 An Algorithm for Normalization

Figure 14 gives the pseudo-code for our normalization algorithm, NORMALIZE. At a high level, the algorithm
restructures the original program by creating a function from each unit and by changing control transfers
into these units to tail jumps as necessary.
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Given a program P , we start by computing the graph G of P and the dominator tree T of G. Let ur
be the root of the dominator tree and the graph. The algorithm computes the normalized program graph
G′ = (V ′, E′) by starting with a vertex set equal to that of the graph V ′ = V and an empty edge set E′ = ∅.
It proceeds by considering each unit U of T .

Let U be a unit of T and let the node ul of T be the defining node of the unit. If ul is a not a function
node, then we call it and all the edges that target it critical. We consider two cases to construct a set of
edges EU that we insert into G′ for U . If ul is not critical, then EU consists of all the edges whose target is
in U . If ul is critical, then we define a function for it by giving it a fresh function name f and computing
the set of live variables x at block l in P , and free variables y in all the blocks represented by U . The set
x becomes the formal arguments to the function f and the set z of variables defined as the remaining free
variables, i.e., y \ x, become the locals. We then insert a new node uf into the normalized graph and insert
the edges (ur, uf ) and (uf , ul) into EU as well as all the edges internal to U that do not target ul. This
creates the new function f(x) with locals z whose body is defined by the basic blocks of the unit U . Next,
we consider critical edges of the form (uk, ul). If the edge is a cross-unit edge, i.e., uk 6∈ U , then we replace
it with an edge into uf by inserting (uk, uf ) into EU and tagging the edge with a tail jump to the defined
function f representing U . If the critical edge is an intra-unit edge, i.e., uk ∈ U , then we have two cases to
consider: If uk is a read node, then we insert (uk, uf ) into EU and tag it with a tail jump to function f with
the appropriate arguments, effectively redirecting the edge to uf . If uk is not a read node, then we insert
the edge into EU , effectively leaving it intact. Although the algorithm only redirects critical edges Lemma 2
shows this is sufficient: all other edges in the graph are contained within a single unit and hence do not need
to be redirected.

At a high level, the algorithm computes the program graph and the units of the graph. It then processes
each unit so that it can assign a function to each unit. If a unit’s defining vertex is a function node, then
no changes are required and all non-dominator-tree edges incident on the vertices of the unit are inserted.
If the units defining vertex is not a function node, then the algorithm creates a function for that unit by
inserting a function node uf between the defining node and the node. It then makes a function for each
unit and replaces cross unit edges with tail-jump edge to this function. Since all cross unit have the defining
node of a unit as their target, this replaces all cross-unit control transfers with tail jumps, ensuring that all
control branches (except for function calls, tail or not) remain local. The algorithm preserves the intra-unit
edges that do not target the defining node. The algorithm replaces each intra-unit edge, whose target is the
defining node of the unit, with a tail-jump edge to the new function node if the source of that edge is a read
node. This ensures that read instructions transfer control to the defining node of a unit with a tail jump to
the function node for that unit.

5.4 Example

Figure 15 shows the rooted graph for the expression-tree evaluator shown in Figure 2 after translating it
into CL (Section 4.3). The nodes are labeled with the line numbers that they correspond to; goto edges
and control-branches are represented as straight edges, and (tail) calls are represented with curved edges.
For example, node 0 is the root of the graph; node 1 is the entry node for the function eval; node 3 is the
conditional on line 3; the nodes 8 and 9 are the recursive calls to eval. The nodes 3, 11, 12 are read-entry
nodes. Figure 16 shows the dominator tree for the graph (Figure 15). For illustrative purposes the edges of
the graph that are not tree edges are shown as dotted edges.5 The units are defined by the vertices 1, 3, 11,
12, 18. The cross-unit edges, which are non-tree edges, are (2,3), (4,18), (10,11), (11,12), (13,18), (15,18).
Note that as implied by Lemma 2, all these edges target the defining nodes of the units.

Figure 17 shows the rooted program graph for the normalized program created by algorithm NORMALIZE.
By inspection of Figures 16 and 2, we see that the critical nodes are 3, 11, 12, 18, because they define
units but they are not function nodes. The algorithm creates the fresh nodes a, b, c, and d for these units
and redirects all the cross-unit edges into the new function nodes and tagged with tail jumps (tags not
shown). In this example, we have no intra-unit critical edges. Figure 5 shows the code for the normalized
graph (described in Section 3.2).

5Note that the dominator tree can have edges that are not in the graph.
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5.5 Properties of Normalization

We state and prove some properties about the normalization algorithm and the (normal) programs it pro-
duces. The normalization algorithm uses a live variable analysis to determine the formal and actual argu-
ments for each fresh function (see line 13 in Figure 14). We let TL(P ) denote the time required for live
variable analysis of a CL program P . The output of this analysis for program P is a function live(·), where
live(l) is the set variables which are live at (the start of) block l ∈ P . We let ML(P ) denote the maximum
number of live variables for any block in program P , i.e., maxl∈P |live(l)|. We assume that each variable,
function name, and block label require one word to represent. The following theorems relate the size of a CL
program before and after normalization (Theorem 3) and bound the time required to perform normalization
(Theorem 4).

Theorem 3 (Size of Output Program)
If CL program P has n blocks and P ′ = NORMALIZE(P ), then P ′ also has n blocks and at most n additional
function definitions. Furthermore if it takes m words to represent P , then it takes O(m+ n ·ML(P )) words
to represent P ′.

Proof: Observe that the normalization algorithm creates no new blocks—just new function nodes. Fur-
thermore, since at most one function is created for each critical node, which is a block, the algorithm creates
at most one new function for each block of P . Thus, the first bound follows.

For the second bound, note that since we create at most one new function for each block, we can name
each function using the block label followed by a marker (stored in a word), thus requiring no more than
2n words. Since each fresh function has at most ML(P ) arguments, representing each function signature
requires O(ML(P )) additional words (note that we create no new variable names). Similarly, each call to
a new function requires O(ML(P )) words to represent. Since the number of new functions and new calls is
bounded by n, the total number of additional words needed for the new function signatures and the new
function calls is bounded by O(m+ n ·ML(P )). �
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Theorem 4 (Time for Normalization)
If CL program P has n blocks then running NORMALIZE(P ) takes O(n+ n ·ML(P ) + TL(P )) time.

Proof: Computing the dominator tree takes linear time [19]. By definition, computing the set of live vari-
ables for each node takes TL(P ) time. We show that the remaining work can be done in O(n+ n ·ML(P ))
time. To process each unit, we check if its defining node is a function node. If so, we copy each incoming
edge from the original program. If not, we create a fresh function node, copy non-critical edges, and process
each incoming critical edge. Since each node has a constant out degree (at most two), the total number of
edges considered per node is constant. Since each defining node has at most ML(P ) live variables, it takes
O(ML(P )) time to create a fresh function. Replacing a critical edge with a tail jump edge requires creating
a function call with at most ML(P ) arguments, requiring O(ML(P )) time. Thus, it takes O(n+ n ·ML(P ))
time to process all the units. �

We use the formal semantics described in Section 4.4 to state and prove that our algorithm for normal-
ization preserves the extensional (input-output behavior) and the intensional (time and space requirement)
semantics of CL programs. First, we prove that normalization preserves the basic block step relation (Fig-
ure 12), and then use this result to prove that it preserves CL program execution as defined by the program
execution relation (Figure 13). In particular, the heap & stack usage and the step count (i.e., execution
time) are each preserved by our algorithm.

Lemma 5 (Normalization preserves block steps)
If P ′ = NORMALIZE(P ) and P, σ1,Ψ1 ` b 7→ σ2,Ψ2 and b ∈ P corresponds to b′ ∈ P ′ (i.e., b and b′ have the
same label l) then P ′, σ1,Ψ1 ` b′ 7→ σ2,Ψ2.

Proof: By inspection, the NORMALIZE algorithm does not add or remove basic blocks, nor does it change
their labels or tags in the program graph (e.g., it preserves the commands of command-and-jump blocks
and the conditions of conditional blocks). In fact, it only changes the jumps in basic blocks by replacing
particular jump edges. Therefore, since b and b′ have the same label, they also have the same tag in their
respective program graphs. That is, we can conclude the following:

• If b is a done block, then b′ is also a done block.

• If b is a condition block {l : cond x j1 j2}, then b′ is a condition block of the form {l : cond x j′1 j
′
2}.

• If b is a command-and-jump block {l : c ; j} then b′ is a command-and-jump block of the form {l : c ; j′}.

In each case, the blocks b and b′ only differ in the jumps they contain (and in the case of done blocks, they
never differ). Hence, it suffices to show that for each jump j in the block b and corresponding jump j′ in the
block b′ the following implication holds:

P,Ψ1 ` j 7→ Ψ2 =⇒ P ′,Ψ1 ` j′ 7→ Ψ3 and Ψ2 = Ψ3

If j = j′ then the implication holds trivially. If j 6= j′ then by inspection of the NORMALIZE algorithm we
know that j corresponds to a critical edge in P . Furthermore, we see that j = goto l′, for some block
l′, and j′ = tail f(x) where f is a new function with initial block l′ and x are the live variables at l′

in the original program. To show the implication holds in this case, assume that the antecedent holds,
which means Ψ1 = Ψ[Γ, l◦] for some Ψ, Γ and l. Since we know j = goto l′, by the jump step relation
we have that Ψ2 = [Γ′, l′◦], where Γ′ is Γ, restricted to the live variables at l. Now consider Ψ3. We know
that j′ = tail f(x) and that l′ is the initial block of f , and we also know that x are the live variables
at l′ in P (i.e., the domain of Γ′). Therefore P ′,Γ ` f(x) ; Γ′ and hence, by the jump step relation,
Ψ3 = Ψ[Γ′, l′◦] = Ψ2. This completes the proof. �
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Theorem 6 (Normalization preserves semantics)
If P ′ = NORMALIZE(P ) and P, σ,Ψ ↓n σ′ then P ′, σ,Ψ ↓n σ′.

Proof: By induction of the derivation of P, σ,Ψ ↓n σ′ using the step-counting relation (Figure 13). There
are two cases to consider, which respectively correspond to the two cases for the final derivation step.

1. Consider the case for n = 0, and assume the antecedent holds to show that the consequent holds. Since
the antecedent holds and n = 0, by inspection of the step counting relation we have that Ψ = ·, and
that σ = σ′. Since P ′, σ, · ↓0 σ for any P ′ and σ, we get the desired result.

2. Consider the case for n + 1. Assume that the antecedent holds and that the theorem holds for n to
show that the consequent holds for n+1. Since the antecedent holds, by inspection of the step counting
relation we have that:

(a) P, σ,Ψ ↓n+1 σ
′

(b) Ψ = Ψ1[Γ, lρ], for some Ψ1

(c) blockP (l) = b, for some block b ∈ P
(d) P, σ,Ψ ` b 7→ σ2,Ψ2, for some σ2 and Ψ2

(e) P, σ2,Ψ2 ↓n σ′

It remains to show the derivation step for P ′, σ,Ψ ↓n+1 σ
′. Recall that NORMALIZE preserves each label

of the original program so that if l is a label in P then l is also a label for some block in P ′. Assume
that blockP ′(l) = b′ for some block b′ ∈ P ′. By applying Lemma 5 to (2d) with respect to b in P and
b′ in P ′, we have that

P ′, σ,Ψ ` b′ 7→ σ2,Ψ2

Since the theorem holds for n, we can apply it to (2e) and have that

P ′, σ2,Ψ2 ↓n σ′

By application of the step counting relation with these results, we get the desired consequent:

P ′, σ,Ψ ↓n+1 σ
′

This completes the cases and the proof. �

Corollary 7 (Normalization preserves time and space)
As direct corollaries to Theorem 6, NORMALIZE preserves the following:

• Time to execute the program (in block steps)

• Stack space used by the program

• Heap space used by the program

Stack Space In Practice Formally, we model the stack with Ψ, which is in turn defined by a series of
stack frames, each containing an environment Γ. As in the formal semantics, in practice we push a new
stack frame to perform a function call, replace the current stack frame to perform a tail jump, and pop
the current stack frame when a function completes. Unlike in the formalism, however, in practice these
stack frames are implemented as mutable objects in memory that are side-effected, rather than replaced,
to perform assignments to local variables. Moreover, in practice we do not contract the stack frame to live
variables when performing goto jumps since this is practically unnecessary. However, note that normalized
programs essentially perform this contraction for each goto jump that becomes a tail jump, since such tail
jumps pass only the values of live variables, and thus, may replace the topmost stack frame with a smaller
one (and never a larger one). Therefore, in practice, although a normalized program will use the same
stack space when measured by the number of frames (for this metric, Theorem 6 still applies), a normalized
program may use less stack space the original program when measured by the number of values (or bytes).
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typedef struct {. . .} closure t;

closure t* closure make(closure t* (*f)(τ x), τ x);
void closure run(closure t* c);

typedef struct {. . .} modref t;

void modref init(modref t *m);

void modref write(modref t *m, void *v);
closure t* modref read(modref t *m, closure t *c);

void* allocate(size t n, closure t *c);

Figure 18: The interface for the run-time system.

6 Translation to C

The translation phase translates normalized CL code into C code that relies on a run-time system providing
self-adjusting computation primitives. To support tail jumps in C without growing the stack we adapt a
well-known technique called trampolining (e.g., [23, 35]). At a high level, a trampoline is a loop that runs a
sequence of closures that, when executed, either return another closure or NULL, which signals the trampoline
to terminate.

6.1 The Run-Time System

Figure 18 shows the interface to the run-time system (RTS). The RTS provides functions for creating and
running closures. The closure make function creates a closure given a function and a complete set of
matching arguments. The closure run function sets up a trampoline for running the given closure (and the
closures it returns, if any) iteratively. The RTS provides functions for creating, reading, and writing modi-
fiables (modref t). The modref init function initializes memory for a modifiable; together with allocate
this function can be used to allocate modifiables. The modref write function updates the contents of a
modifiable with the given value. The modref read function reads a modifiable, substitutes its contents as
the first argument of the given closure, and returns the updated closure. The allocate function allocates a
memory block with the specified size (in bytes), runs the given closure after substituting the address of the
block for the first argument, and returns the address of the block. The closure acts as the initializer for the
allocated memory.

6.2 The Basic Translation

Figure 19 illustrates the rules for translating normalized CL programs into C. For clarity, we deviate from C
syntax slightly by using := to denote the C assignment operator.

The most interesting cases concern function calls, tail jumps, and modifiables. To support trampolining,
we translate functions to return closures. A function call is translated into a direct call whose return value
(a closure) is passed to a trampoline, closure run. A tail jump simply creates a corresponding closure and
returns it to the active trampoline. Since each tail jump takes place in the context of a function, there is
always an active trampoline. The translation of alloc first creates a closure from the given initialization
function and arguments prepended with NULL, which acts as a place-holder for the allocated location. It
then supplies this closure and the specified size to allocate.

We translate modref as a special case of allocation by supplying the size of a modifiable and using
modref init as the initialization function. Translation of write commands is straightforward. We translate
a command-and-jump block by separately translating the command and the jump. We translate reads to
create a closure for the tail jump following the read command and call modref read with the closure & the
modifiable being read. As with tail jumps, the translated code returns the resulting closure to the active
trampoline. When creating the closure, we assume, without loss of generality, that the result of the read
appears as the first argument to the tail jump and use NULL as a placeholder for the value read. Note that,
since translation follows normalization, all read commands are followed by a tail jump, as we assume here.
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Expressions:
[[e]] = e

Commands:
[[nop]] = ;

[[x := e]] = x = [[e]];

[[x[y] := e]] = x[y] = [[e]];

[[call f(x)]] = closure run(f(x));

[[x := alloc y f z]] = closure t *c = closure make(f,NULL::z);
x = allocate(y,c);

[[x := modref()]] = [[x := alloc (sizeof(modref t)) modref init 〈〉]]
[[write x y]] = modref write(x, y);

Jumps:
[[goto l]] = goto l;

[[tail f(x)]] = return (closure make(f,x));

Basic Blocks:
[[{l : done}]] = {l: return NULL;}

[[{l : cond x j1 j2}]] = {l: if (x) {[[j1]]} else {[[j2]]}}
[[{l : c ; j}]] = {l: [[c]]; [[j]]}

[[{l : x := read y ; tail f(x, z)}]] = {l: closure t *c = closure make(f,NULL::z);
return (modref read(y,c));}

Functions:

[[f (τx x) {τy y ; b}]] = closure t* f(τx x){τy y; [[b]]}

Figure 19: Translation of CL into C

6.3 Refinements for Performance

One disadvantage of the basic translation described above is that it creates closures to support tail jumps;
this is known to be slow (e.g., [23]). To address this problem, we trampoline only the tail jumps that follow
reads, which we call read trampolining, by refining the translation as follows: [[tail f (x)]] = return f(x).
This refinement treats all tail calls other than those that follow a read as conventional function calls. Since
the translation of a read already creates a closure, this eliminates the need to create extra closures. Since
in practice self-adjusting programs perform reads periodically (popping the stack frames down to the active
trampoline), we observe that the stack grows only temporarily.

Another disadvantage is that the translated code uses the RTS function closure make with different
function and argument types, i.e., polymorphically. Implementing this requires run-time type information.
To address this problem, we apply monomorphisation [36] to generate a set of closure make functions for
each distinctly-typed use in the translated program. Our use of monomorphisation is similar to that of the
MLton compiler, which uses it for compiling SML, where polymorphism is abundant [1].

6.4 Bounds for Translation and Compilation

By inspecting Figure 19, we see that the basic translation requires traversing the program once. Since the
translation is purely syntactic and in each case it expands code by a constant factor, it takes linear time in
the size of the normalized program. As for the refinements, note that read trampolining does not affect the
bound since it only performs a simple syntactic code replacement. Monomorphisation requires generating
specialized instances of the closure make function. Each instance with k arguments can be represented
with O(k) words and can be generated in O(k) time. Since k is bounded by the number of arguments of
the tail jump (or alloc command) being translated, monomorphisation requires linear time in the size of
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the normalized code. Thus, we conclude that we can translate a normalized program in linear time while
generating C code whose size is within a constant factor of the normalized program. Putting together this
bound and the bounds from normalization (Theorems 3 and 4), we can bound the time for compilation and
the size of the compiled programs.

Theorem 8 (Compilation)
Let P be a CL program with n blocks that requires m words to represent. Let ML(P ) be the maximum
number of live variables over all blocks of P and let TL(P ) be the time for live-variable analysis. It takes
O(n+n·ML(P )+TL(P )) time to compile the program into C. The generated C code requires O(m+n·ML(P ))
words to represent.

7 Implementation

The implementation of our compiler, cealc, consists of a front-end and a runtime library. The front-end
transforms CEAL code into C code. We use an off-the-shelf compiler (gcc) to compile the translated code
and link it with the runtime library.

Our front-end uses an intra-procedural variant of our normalization algorithm that processes each core
function independently from the rest of the program, rather than processing the core program as a whole
(as presented in Section 5). This works because inter-procedural edges (i.e., tail jump and call edges) in a
rooted graph don’t impact its dominator tree—the immediate dominator of each function node is always the
root. Hence, the subgraph for each function can be independently analyzed and transformed. Since each
function’s subgraph is often small compared to the total program size, we use a simple, iterative algorithm
for computing dominators [29, 14] that is efficient on smaller graphs, rather than an asymptotically optimal
algorithm with larger constant factors [19]. During normalization, we create new functions by computing
their formal arguments as the live variables that flow into their entry nodes in the original program graph.
We use a standard, intra-procedural liveness analysis for this step (e.g., [29, 7]).

Our front-end is implemented as an extension to CIL (C Intermediate Language), a library of tools used
to parse, analyze and transform C code [30]. We provide the CEAL core and mutator primitives as ordinary
C function prototypes. We implement the ceal keyword as a typedef for void. Since these syntactic
extensions are each embedded within the syntax of C, we define them with a conventional C header file
and do not modify CIL’s C parser. To perform normalization, we identify the core functions (which are
marked by the ceal return type) and apply the intra-procedural variant of the normalization algorithm.
The translation from CL to C directly follows the discussions in Section 6. We translate mutator primitives
using simple (local) code substitution.

Our runtime library provides an implementation of the interface discussed in Section 6. The implemen-
tation is built on previous work which focused on efficiently supporting automatic memory management for
self-adjusting programs. We extend the previous implementation with support for tail jumps via trampolin-
ing, and support for imperative (multiple-write) modifiable references [4].

Our front-end extends CIL with about 5,000 lines of additional Objective Caml (OCaml) code, and
our runtime library consists of about 5,000 lines of C code. Our implementation is available online at
http://ttic.uchicago.edu/~ceal.

8 Experimental Results

We present an empirical evaluation of our implementation.

8.1 Experimental Setup and Measurements

We run our experiments on a 2Ghz Intel Xeon machine with 32 gigabytes of memory running Linux (kernel
version 2.6). All our programs are sequential (no parallelism). We use gcc version 4.2.3 with “-O3” to
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compile the translated C code. All reported times are wall-clock times measured in milliseconds or seconds,
averaged over five independent runs.

For each benchmark, we consider a self-adjusting and a conventional version. Both versions are derived
from a single CEAL program. We generate the conventional version by replacing modifiable references with
conventional references, represented as a word-sized location in memory that can be read and written.
Unlike modifiable references, the operations on conventional references are not traced and thus conventional
programs are not normalized. The resulting conventional versions are essentially the same as the static C
code that a programmer would write for that benchmark.

For each self-adjusting benchmark we measure the time required for propagating a small modification
by using a special test mutator. Invoked after an initial run of the self-adjusting version, the test mutator
performs two modifications for each element of the input: it deletes the element and performs change
propagation, it inserts the element back and performs change propagation. We report the average time for
a modification as the total running time of the test mutator divided by the number of updates performed
(usually two times the input size).

For each benchmark we measure the from-scratch running time of the conventional and the self-adjusting
versions; we define the overhead as the ratio of the latter to the former. The overhead measures the slowdown
caused by the dependence tracking techniques employed by self-adjusting computation. We measure the
speedup for a benchmark as the ratio of the from-scratch running time of the conventional version divided
by the average modification time computed by running the test mutator.

8.2 Benchmark Suite

Our benchmarks include list primitives, and more sophisticated algorithms for computational geometry and
tree computations.

List Primitives. Our list benchmarks include the list primitives filter, map, and reverse, minimum, and
sum, which we expect to be self-explanatory, and the sorting algorithms quicksort and mergesort. Our
map benchmark maps each number x of the input list to f(x) = bx/3c + bx/7c + bx/9c in the output list.
Our filter benchmark filters out an input element x if and only if f(x) is odd. Our reverse benchmark
reverses the input list. The list reductions minimum and sum find the minimum and the maximum elements
in the given lists. We generate lists of n (uniformly) random integers as input for the list primitives. For
sorting algorithms, we generate lists of n (uniformly) random, 32-character strings.

Computational Geometry. Our computational-geometry benchmarks are quickhull, diameter, and
distance; quickhull computes the convex-hull of a point set using the classic algorithm with the same
name; diameter computes the diameter (the maximum distance between any two points) of a point set;
distance computes the minimum distance between two sets of points. The implementations of diameter
and distance use quickhull as a subroutine. For quickhull and distance, input points are drawn from a
uniform distribution over the unit square in R2. For distance, two non-overlapping unit squares in R2 are
used, and from each square we draw half the input points.

Tree-based Computations. The exptrees benchmark is a variation of our simple running example,
and it uses floating-point numbers in place of integers. We generate random, balanced expression trees as
input and perform modifications by changing their leaves. The tcon benchmark is an implementation of the
tree-contraction technique by Miller and Reif [27]. This this a technique rather than a single benchmark
because it can be customized to compute various properties of trees, e.g., [27, 28, 6]. For our experiments,
we generate binary input trees randomly and perform a generalized contraction with no application-specific
data or information. We measure the average time for an insertion/deletion of edge by iterating over all the
edges as with other applications.
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Figure 20: Experimental results for tcon (self-adjusting tree-contraction).
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Figure 21: Comparison between CEAL and RC-Trees [6] performing (self-adjusting) tree contraction.

8.3 Results

For brevity, we illustrate detailed results for one of our benchmarks, tree contraction (tcon), and summarize
the others. Figure 20 shows the results with tcon. The leftmost figure compares times for a from-scratch run
of the conventional and self-adjusting versions; the middle graph shows the time for an average update; and
the rightmost graph shows the speedup. The results show that self-adjusting version is slower by a constant
factor (of about 8) than the conventional version. Change propagation time increases slowly (logarithmically)
with the input size. This linear-time gap between recomputing from scratch and change propagation yields
speedups that exceed four orders of magnitude even for moderately sized inputs.

Figure 21 compares our implementation to that of an hand-optimized implementation written in C++
(labeled “RC-Trees”) [6]. The comparison shows that RC-Trees is only 3–4 times faster than the CEAL
implementation. We interpret this is as a very encouraging result for the effectiveness of our compiler, which
does not perform significant optimizations.

Table 1 summarizes our results for CEAL benchmarks at fixed input sizes of 1 million (written “1.0M”)
and 10 million (written “10.0M”). From left to right, for each benchmark, we report the input size considered,
the time for conventional and self-adjusting runs, the overhead, the average time for an update, the speedup,
and the maximum live memory required for running the experiments (both from-scratch and test mutator
runs). The individual graphs for these benchmarks resemble that of the tree contraction (Figure 20). For
the benchmarks run with input size 10M, the average overhead is 14.2 and the average speedup is 1.4× 105;
for those run with input size 1M, the average overhead is 9.2 and the average speedup is 3.6× 104. We note
that for all benchmarks the speedups are scalable and continue to increase with larger input sizes.

8.4 Full Trampolining

To measure the effectiveness of read trampolining, where closures are created, traced and trampolined only
for tail jumps that follow reads, we compare results for two of our benchmarks, sum and minimum, to the
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From-Scratch Propagation
Application n Cnv. Self. O.H. Ave. Update Speedup Max Live
filter 10.0M 0.5 7.4 14.2 2.1× 10−6 2.4× 105 3017.2M
map 10.0M 0.7 11.9 17.2 1.6× 10−6 4.2× 105 3494.6M

reverse 10.0M 0.6 11.9 18.8 1.6× 10−6 3.9× 105 3494.6M
minimum 10.0M 0.8 10.9 13.8 4.8× 10−6 1.6× 105 3819.4M
sum 10.0M 0.8 10.9 13.9 7.0× 10−5 1.1× 104 3819.8M

quicksort 1.0M 3.5 22.4 6.4 2.4× 10−4 1.4× 104 8956.7M
quickhull 1.0M 1.1 12.3 11.5 2.3× 10−4 4.6× 103 6622.9M
diameter 1.0M 1.0 12.1 12.0 1.2× 10−4 8.3× 103 6426.9M
exptrees 10.0M 1.0 7.2 7.2 1.4× 10−6 7.1× 105 4821.1M
mergesort 1.0M 6.1 37.6 6.1 1.2× 10−4 5.1× 104 15876.3M
distance 1.0M 1.0 11.0 11.0 1.3× 10−3 7.5× 102 5043.6M

rctree-opt 1.0M 2.6 20.6 7.9 1.0× 10−4 2.5× 104 5843.7M

Table 1: Summary of measurements with CEAL; all times in seconds and space in bytes.

result of using “full trampolining”. In full trampolining, we create, trace6 and trampoline closures for every
tail jump. By contrast, in read trampolining, we only create closures for the tail jumps that follow reads
(See Section 6.3).

From-Scratch Propagation
Application n Cnv. Self. O.H. Ave. Update Speedup Max Live
minimum 10.0M 0.8 24.7 31.1 8.3× 10−6 9.6× 104 6840.1M
sum 10.0M 0.8 24.3 31.0 1.3× 10−4 6.0× 103 6840.1M

Table 2: Measurements with CEAL using full trampolining (for minimum & sum)

Table 2 shows the results of using full trampolining in place of the more selective read trampolining tech-
nique. Because these benchmarks tend to have more non-read tail jumps than the others, the additional costs
of performing full trampolining for them is quite high. As the table shows, the overheads for the benchmarks
are more than double of those in Table 1. Moreover, the speedups delivered by change propagation are each
reduced by 50–60%. The performance contrast between the two trampolining techniques shows that read
trampolining can be a very effective translation refinement for some benchmarks.

8.5 Comparison to SaSML

To measure the effectiveness of the CEAL approach to previously proposed approaches, we compare our im-
plementation to SaSML, the state-of-art implementation of self-adjusting computation in SML [26]. Tables 3
and 4 show, respectively, the time and space required for the common benchmarks. The measurements
were taken on the same computer as the CEAL measurements, with inputs generated in the same way. For
both CEAL and SaSML we report the from-scratch run time, the average update time and the maximum
live memory required for the experiment. A column labeled SaSML

CEAL follows each pair of CEAL and SaSML
measurements and it reports the ratio of the latter to the former. Since the SaSML benchmarks do not scale
well to the input sizes considered in Table 1, we make this comparison at smaller input sizes—1 million and
100 thousand (written “100.0K”).

6In future versions of the RTS, we believe it may be useful to distinguish closures that perform reads from those that do not
since the former must be traced, i.e., recorded in the dynamic dependence graph, whereas the latter only need to be traced if
the programmer wishes for these closures to be used latter for memoization. In the current RTS, every trampolined closure is
traced.
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From-Scratch (Self.) Propagation Time

Application n CEAL SaSML SaSML
CEAL

CEAL SaSML SaSML
CEAL

filter 1.0M 0.7 6.9 9.3 1.4× 10−6 8.7× 10−6 6.2
map 1.0M 0.8 7.8 9.3 1.6× 10−6 1.1× 10−5 7.1

reverse 1.0M 0.8 6.7 8.0 1.6× 10−6 9.2× 10−6 5.8
minimum 1.0M 1.1 5.1 4.6 3.4× 10−6 3.0× 10−5 8.8
sum 1.0M 1.1 5.1 4.6 4.8× 10−5 1.7× 10−4 3.5

quicksort 100.0K 1.6 43.8 26.9 1.6× 10−4 2.6× 10−3 15.6
quickhull 100.0K 1.0 5.1 5.1 1.0× 10−4 3.3× 10−4 3.3
diameter 100.0K 0.9 5.2 5.8 8.6× 10−5 3.7× 10−4 4.3

Table 3: Times for CEAL versus SaSML for a common set of benchmarks.

Propagation Max Live

Application n CEAL SaSML SaSML
CEAL

filter 1.0M 306.5M 1333.5M 4.4
map 1.0M 344.7M 1519.1M 4.4

reverse 1.0M 344.7M 1446.7M 4.2
minimum 1.0M 388.4M 1113.8M 2.9
sum 1.0M 388.5M 1132.4M 2.9

quicksort 100.0K 775.4M 3719.9M 4.8
quickhull 100.0K 657.9M 737.7M 1.1
diameter 100.0K 609.0M 899.5M 1.5

Table 4: Space for CEAL versus SaSML for a common set of benchmarks.

Comparing the CEAL and SaSML figures shows that CEAL is about 5–27 times faster for from-scratch
runs (about 9 times faster on average) and 3–16 times faster for change propagation (about 7 times faster
on average). In addition, CEAL consumes up to 5 times less space (about 3 times less space on average).

An important problem with the SaSML implementation is that it relies on traditional tracing garbage
collectors (i.e., the collectors used by most SML runtime systems, including the runtime used by SaSML)
which previous work has shown to be inherently incompatible with self-adjusting computation, preventing it
from scaling to larger inputs [21]. Indeed, we observe that, while our implementation scales to larger inputs,
SaSML benchmarks don’t. To illustrate this, we limit the heap size and measure the change-propagation
slowdown computed as the time for a small modification (measured by the test mutator) with SaSML divided
by that with CEAL for the quicksort benchmark (Figure 22). Each line ends roughly when the heap size
is insufficient to hold the live memory required for that input size. As the figure shows, the slowdown is not
constant and increases super linearly with the input size to quickly exceed an order of magnitude (can be as
high as 75).

8.6 Performance of the Compiler

We evaluate the performance of our compiler, cealc, using test programs from our benchmark suite. Each
of the programs we consider consists of a core, which includes all the core-CEAL code needed to run the
benchmark, and a corresponding test mutator for testing this core. We also consider a test driver program
which consists of all the test mutators (one for each benchmark) and their corresponding core components.

We compile each program with cealc and record both the compilation time and the size of the output
binary. For comparison purposes, we also compile each program directly with gcc (i.e., without cealc) by
treating CEAL primitives as ordinary functions with external definitions. Table 8.6 shows the results of the
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cealc gcc
Program Lines Time Size Time Size
Expression trees 422 0.84 74K 0.34 58K
List primitives 553 1.87 109K 0.49 61K
Mergesort 621 2.25 123K 0.54 62K
Quicksort 622 2.22 123K 0.54 62K
Quickhull 988 3.81 176K 0.72 66K
Tree contraction 1918 8.16 338K 1.03 76K
Test Driver 4229 13.69 493K 2.61 110K

Table 5: Compilation times (in seconds) and binary sizes (in bytes)
for some CEAL programs. All compiled with -O0.

comparison. As can be seen, cealc is 3–8 times slower than gcc and creates binaries that are 2–5 times
larger.

In practice, we observe that the size of core functions can be bounded by a moderate constant. Thus the
maximum number of live variables, which is an intra-procedural property, is also bounded by a constant.
Based on Theorem 8, we therefore expect the compiled binaries to be no more than a constant factor larger
than the source programs. Our experiments show that this constant to be between 2 and 5 for the considered
programs.

Theorem 8 implies that the compilation time can bounded by the size of the program plus the time for
live-variable analysis. Since our implementation performs live variables analysis and constructs dominator
trees on a per-function basis (Section 7), and since the sizes of core functions are typically bounded by a
moderate constant, these require linear time in the size of the program. We therefore expect to see the
compilation times to be linear in the size of the generated code. Indeed Figure 23 shows that the cealc
compilation times increase nearly linearly with size of the compiled binaries.

9 Related Work

We discuss the most closely related work in the rest of the paper. In this section, we mention some other
work that is related more peripherally.

Incremental and Self-Adjusting Computation. The problem of developing techniques to enable com-
putations respond to incremental changes to their output have been studied since the early 80’s. We refer
the reader to the survey by Ramalingam and Reps [33] and a recent paper [26] for a more detailed set
of references. Effective early approaches to incremental computation either use dependence graphs [16] or
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Figure 23: Time for cealc versus size of binary output.

memoization (e.g., [32, 2]). Self-adjusting computation generalizes dependence graphs techniques by intro-
ducing dynamic dependence graphs, which enables a change propagation algorithm update the structure of
the computation based on data modifications, and combining them with a form of computation memoization
that permits imperative updates to memory [3].

Dominators. The dominator relation has common use in compilers that perform program analysis and
optimization (e.g., [7, 15, 18]). There are a number of asymptotically efficient algorithms for computing dom-
inators (e.g., [25, 19]). In practice simple but asymptotically inefficient algorithms also perform reasonably
well [14]. Our implementation uses the simple algorithm described in many compiler books, e.g., [29].

Tail Calls. We use a selective trampolining to support tail calls efficiently (Section 6). Several other
proposals to supporting tail calls in C exists (e.g., [35, 22, 9, 20]). Peyton Jones summarizes some of these
techniques [23] and discusses the tradeoffs. The primary advantage of trampolining is that it is fully portable;
the disadvantage is its cost, which our compiler reduces by piggy-backing closure creation with those of the
reads.

10 Discussions

We discuss some limitations of our approach and propose future research directions.

Syntax and Types for Modifiables. The modifiable primitives read and write assume that the type
of a modifiable’s contents is void*. As a result, their uses sometimes require explicit type coercions (e.g., as
in Figure 2). Furthermore, the primitives have a function-like syntax, rather than the familiar C-like syntax
for dereferencing (reading) and assignment (writing).

It may be possible to support more conventional C syntax and avoid type coercions by generalizing the
notion of a modifiable reference to that of a “modifiable field”. In this approach, the programmer would
annotate the fields of structs that are subject to change across core updates with a new keyword (e.g., mod)
that indicates that the field is modifiable. Accessing (reading) and assigning to (writing) these fields would
use the same syntax as conventional C structs, which would make the use of modifiable primitives implicit.
Just as conventional fields carry type information, each modifiable field would also carry a type that could
be used to ensure that its uses are well-typed. This approach would generalize modifiable references since
they could be easily encoded as struct with a single modifiable field.

27



Automatic Minimization of Read Bodies. Conceptually, each read operation in CEAL has an implicit
“read body” which consists of the code that uses the read value. Our normalization algorithm approximates
each read body conservatively by assuming that it extends to the end of the function containing the associated
read operation. In general, however, a read value may be used in only a small portion of the body found
by normalization. In these cases it’s often advantageous (though not always necessary) to refactor the core
program so that each read body identified by normalization is minimal, i.e., it contains no code that is
independent from the read value. In the proposed approach the programmer can perform this refactoring
by hand, but we expect that a compiler mechanism could handle some cases for refactoring automatically
by employing further data- and control-flow analysis.

Support for Return Values. Currently, core functions in CEAL cannot return values as functions can
in C, but instead use destination-passing style (DPS) to communicate results through modifiables. In DPS,
the caller provides one or more destinations (modifiables) to the callee who writes these destinations with its
results before returning control to the caller; to access the results, the caller reads the value of each destination
(e.g., in Figure 2). By restricting core programs to DPS, we ensure that the caller/callee data-dependencies
can be correctly tracked via modifiable references and their associated operations.

Although DPS simplifies tracking data dependencies in CEAL, it also forces the programmer to essentially
perform a DPS conversion by hand. Moreover, the DPS restriction can be viewed as overly conservative: if
the return value of a core function is not affected by changes to modifiables then the use of this value need
not be tracked via modifiable references, i.e., it can be returned directly to the caller. We expect that future
work on CEAL can add support conventional C-style return values by adding an automatic DPS conversion to
the CEAL compiler that acts selectively: when a return value is subject to change across modifiable updates
the compiler should automatically DPS convert this function (and its call sites), otherwise, the function can
return a value as usual, without any special treatment.

Optimizations. Although the proposed approach is faster and requires less memory than previous ap-
proaches, we expect that future optimizations will offer additional time and space savings.

As an example, it may be possible to reduce the overhead of tracing the core primitives (e.g., read) when
they are used in consecutive sequences (e.g., Figure 2 contains a pair of consecutive reads). The compiler
could detect such uses and allow the runtime to trace them as a group rather than individually, thereby
reducing their individual costs. In particular, since consecutive reads usually store similar closures in the
trace (i.e., closures with one or more common values), tracing such reads using a single closure would offer
a significant time and space savings.

In addition to reducing the tracing overhead, future work can explore more efficient ways of supporting tail
calls in normalized programs. The proposed approach uses trampolines since they are simple to implement
in a portal manner. However, each “bounce” on a trampoline requires at least a function-return (passing
control to the trampoline) and an indirect call (to the function contained in the trampolined closure). By
contrast, a “real” tail call is little more than an unconditional jump [35, 23].

Intermediate Representation. Our core language CL can be thought of as a simplified source language
for self-adjusting computation. As we show, this language is sufficient to implement and reason about the
proposed compilation techniques. However, we expect that both implementing and reasoning about fu-
ture analyses, transformations and optimizations (e.g., those proposed in this section) will be simplified by
translating into an intermediate language that is either based on static single assignment (SSA) form [15],
or a suitable alternative [10]. Furthermore, since SSA form shares a close relationship to functional pro-
gramming [8, 24], we expect that using it as an intermediate language for CEAL will allow future work on
CEAL to be more directly applicable to the self-adjusting languages that extend existing functional languages
(e.g., SaSML [26]).
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11 Conclusion

We describe a C-based language for writing self-adjusting programs in a style similar to conventional C
programs, present compilation strategies for the language, and describe & evaluate our implementation. This
is the first result in making self-adjusting computation work in its full generality with a (low-level) language
that does not support higher-order features or offer automatic memory management. Our experiments show
that the proposed approach is efficient in practice and significantly improves performance over previous
approaches.
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A Evaluation Graphs

Section 8.3 gives detailed results for the tcon benchmark. In this section we give similar detailed results for
the other CEAL benchmarks. For each benchmark, we include a graph comparing the from-scratch runs of
the self-adjusting and conventional versions, a graph showing the average update time of the self-adjusting
version (i.e., the average time required to respond to a small input modification), and a graph showing
the speedup delivered by the self-adjusting version for such a modification when compared to running the
conventional version from-scratch.
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