
THE UNIVERSITY OF CHICAGO

SELF-ADJUSTING MACHINES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MATTHEW ARTHUR HAMMER

CHICAGO, ILLINOIS

DECEMBER 2012

Copyright c© 2012 by Matthew Arthur Hammer

All Rights Reserved

For my parents, for my sister,

for my friends, and for Nikita

We are the Other,

all arising together,

Self adjusting Self.

Table of Contents

List of Figures . viii

List of Tables . x

Acknowledgments . xi

Abstract . xiii

1 Introduction . 1
1.1 Problem statement . 3
1.2 Challenges . 5
1.3 Thesis and contributions . 8
1.4 Technical results . 10

1.4.1 Contexts of concern . 11
1.4.2 Abstract machine design . 12
1.4.3 Compiler and run-time system design 13
1.4.4 Efficient stack-based execution . 14
1.4.5 Efficient memory management . 16
1.4.6 Simple programming model . 17

1.5 Chapter outline . 18
1.6 Background . 22

1.6.1 Self-adjusting structures . 22
1.6.2 Tools and techniques . 27
1.6.3 Limitations of high-level languages 32
1.6.4 Low-level languages . 35

2 Related work . 40
2.1 Incremental computation: Early work . 40
2.2 Self-adjusting computation . 42
2.3 Incremental computation: Contemporary work 50
2.4 Garbage collection . 52

3 Surface Language . 55
3.1 Programming model . 55
3.2 Modifiable memory . 57
3.3 The outer level . 58
3.4 The inner level . 60
3.5 Resource interaction . 64
3.6 Example: Reducing Trees . 67
3.7 Example: Reducing Arrays . 70
3.8 Type qualifiers . 72
3.9 Foreign level . 72

v

4 Abstract machines . 74
4.1 Introduction to IL . 74
4.2 Example programs . 80
4.3 IL: a self-adjusting intermediate language 83
4.4 Consistency . 97
4.5 Destination-Passing Style . 103
4.6 Cost Models . 106

5 Compilation . 111
5.1 Overview . 111
5.2 Multiple levels . 114
5.3 Run-time interface . 117
5.4 Program representation . 123
5.5 Static analyses . 129
5.6 Translation . 134
5.7 Normalization . 143
5.8 Optimizations . 153
5.9 Notes . 156

6 Run-time system . 160
6.1 Overview . 160
6.2 Memory management . 164
6.3 Basic structures . 171
6.4 Trace nodes . 173
6.5 Self-adjusting machine . 175

6.5.1 Interfaces . 176
6.5.2 Internal structures . 178
6.5.3 Outer-level target code . 180
6.5.4 Inner-level target code . 182
6.5.5 Internal machine operations . 185
6.5.6 Cost analysis . 191

7 Empirical evaluation . 193
7.1 Experimental setup . 193
7.2 Experimental results . 197
7.3 Implementation . 200

8 Conclusion . 206
8.1 Future directions . 206

References . 210

A Surface language code listings . 218

vi

B Run-time system listings . 226

C Abstract machine proofs . 232
C.1 Proofs for Consistency . 232
C.2 Proofs for DPS Conversion . 269

C.2.1 DPS Conversion Preserves Extensional Semantics 269
C.2.2 DPS Conversion Produces CSA Programs 272

C.3 Cost Semantics Proofs . 277

vii

List of Figures

1.1 The operational knot of self-adjusting computation. 29
1.2 Multi-language comparison with quicksort. 32
1.3 GC cost for quicksort in SML. 34

2.1 max(x, y) expressed with modal, one-shot modifiable references. 44

3.1 Type declarations for expression trees in C. 67
3.2 The eval function in C. 67
3.3 Example input trees (left) and corresponding execution traces (right). 68
3.4 Iteratively compute the maximum of an array. 70
3.5 Snapshots of the array from Figure 3.4. 70

4.1 The eval CEAL function of Figure 3.2, translated into in IL. 75
4.2 Three versions of IL code for the for loop in Figure 3.4; highlighting indicates

their slight differences. 76
4.3 IL syntax. 83
4.4 Common machine components. 87
4.5 Stepping relation for reference machine (r

−→). 87
4.6 Stepping relation for store instructions (s

−→). 88
4.7 Traces, trace actions and trace contexts. 89
4.8 Tracing transition modes, across push actions. 90
4.9 Tracing machine: commands and transitions. 91
4.10 Stepping relation for tracing machine (t

−→): Evaluation. 94
4.11 Stepping relation for tracing machine (t

−→): Revaluation and propagation. . . . 95
4.12 Stepping relation for tracing machine (t

−→): Undoing the trace. 95
4.13 Destination-passing-style (DPS) conversion. 103

5.1 The TRACE_HOOK_CLOSURE signature. 118
5.2 The TRACE_NODE_ATTRIBUTES signature. 119
5.3 The TRACE_NODE_DESCRIPTOR signature. 122
5.4 The sytnax of CL . 124
5.5 Rooted CFG. 147
5.6 Dominator tree. 147
5.7 Normalized CFG. 147
5.8 Pseudo-code for the NORMALIZE algorithm . 148
5.9 The Trace_action module. 154

6.1 The BASEMM signature. 171
6.2 The TRACE_NODE signature. 174
6.3 The SELF_ADJUSTING_MACHINE signature. 176
6.4 The Self_adj_machine module. 179
6.5 The create function. 181

viii

6.6 The cycle function. 181
6.7 The destroy function. 182
6.8 The frame_push function. 182
6.9 The frame_pop function. 183
6.10 The frame_memo function. 185
6.11 The load_root function. 186
6.12 The revoke_until function. 186
6.13 The frame_prop function. 188
6.14 The frame_load function. 190
6.15 The frame_jump function. 190

7.1 Comparison of benchmark targets. 197
7.2 DeltaML versus stages two and three (“CEAL” and “SASM”). 198

A.1 The List module. 219
A.2 The List_map module. 220
A.3 The List_util module. 221
A.4 The modules List_pred1 and List_pred2 . 222
A.5 The coin module. 222
A.6 The List_reduce module. 223
A.7 The List_msort module. 224
A.8 The List_qsort module. 225

B.1 The Cell module . 226
B.2 The MODREF signature: An interface to modifiable references. 227
B.3 The Oneshot_modref module: Single-write modifiable references 228
B.4 The Multwr_modref module: Declarations. 229
B.5 The Multwr_modref.Read module: Read trace hooks. 230
B.6 The Multwr_modref.Write module: Write trace hooks. 231

ix

List of Tables

1.1 Self-adjusting trees and computations: Parallel Concepts 24
1.2 Self-adjusting trees and computations: Contrasting Concepts 25
1.3 Low-level versus high-level languages . 36

5.1 Functions versus blocks in CL . 126
5.2 Translation of IL to CL: traced operations and control-flow 138
5.3 Translation of IL to CL: push and pop forms . 140
5.4 Translation of IL to CL: memo and update forms 141

7.1 Targets and their optimizations (Section 5.8). 196
7.2 Summary of benchmark results, opt targets . 196

x

Acknowledgments

As a graduate student, I have been extremely fortunate to have been a member of vari-

ous research institutions, and to have benefited from the wonderfully gifted people that

embody these institutions. These institutions include the The University of Chicago, the

Toyota Technological Institute at Chicago, Intel Corporation (specifically, the Program-

ming Systems Lab, in Santa Clara), and the Max Planck Institute for Software Systems (in

Kaiserslautern and Saarbrücken, Germany). The faculty, staff and fellow students at these

institutions have given me support; over the course of many years, they have shared their

advice, wisdom and experiences with me, for which I am grateful and eternally indebted.

Through these experiences, I have had unique opportunities to grow as a student, as a

researcher and as a human being. My trajectory continues to be shaped for the better by

these relationships. This section of acknowledgments can never be sufficient for its in-

tended purpose: To recognize those people from whom I have benefited, and for who I am

thankful to know.

First, I thank my advisor, Umut Acar. Our relationship has been one of the most im-

portant in my life to date, and one for which I continually feel fortunate. Likewise, for

their advice, feedback and support, I thank the rest of my thesis committee: John Reppy,

David MacQueen and Rupak Majumdar. John, David and Rupak have each given me very

thoughtful perspectives on this work, and have opened my mind to future possibilities.

Several fellow students, Ruy Ley-Wild, Georg Neis, Yan Chen, Roly Perera, Mike Rainey

and Duru Turkoglu, have given me feedback on this research, or ideas related to it, and I

have grown and benefited tremendously from our discussions together. In the context of

this dissertation, I am particularly grateful to Georg Neis for his insights into the abstract

machine formalism presented in Chapter 4 and Appendix C, and to Ruy Ley-Wild for his

thoughtful guidance throughout our friendship; I have learned much from our collabora-

tions together. Similarly, I have benefited tremendously from collaborations with Joshua

xi

Dunfield, and discussions with Neelakantan Krishnaswami. At various points through-

out the years, Derek Dreyer, Matthias Blume and Viktor Vafeiadis have supported me by

providing space and time for open-ended discussions, where they always answered my

questions thoughtfully. I am thankful to the other students with whom I have worked, and

who have provided me with thoughtful feedback on the implementation presented in this

dissertation. Some of these students include Pramod Bhatotia, Ezgi Cicek, Reinhard Munz

and Mustafa Zengin. For their support and advice, I also thank Anne Rogers, Matthew

Fluet, Anwar Ghuloum, Mohan Rajagopalan, Neal Glew, Leaf Petersen, Rose Hoberman,

Paul Francis and Bob Harper.

Finally, I thank my parents, my sister and Nikita for their love and emotional support.

xii

Abstract

In computer systems, the interaction of computations and data often causes incremental

changes, not wholesale ones. Hence, there exists the possibility of improving the efficiency

of a system by recording and reusing computations, rather than blindly remaking them

anew. To this end, self-adjusting computation is a technique for systematically constructing

computational structures that evolve efficiently and incrementally. Past work has explored

several facets of this programming language-based approach, but no prior formulations

have given a low-level account of self-adjusting computation. By low-level, we mean an

account where machine resources are defined and managed explicitly, e.g., as in the C

programming language.

We offer self-adjusting machines, a concept based on an operational interpretation of

self-adjusting computation with explicit machine resources. By making their resources

explicit, self-adjusting machines give an operational account of self-adjusting computation

suitable for interoperation with low-level languages; via practical compilation and run-

time techniques, these machines are programmable, sound and efficient.

Abstractly, we formally define self-adjusting machines that run an intermediate lan-

guage; we prove that this abstract machine semantics is sound. Concretely, we give

techniques based on this semantics that construct self-adjusting machines by compiling

a C-like surface language into C target code that runs within an extensible, C-based run-

time system. By creating new programming abstractions, library programmers can extend

this C-based system with new self-adjusting behavior. We demonstrate that this extension

framework is powerful by using it to express a variety of both new and old self-adjusting

abstractions. We give an empirical evaluation showing that our approach is efficient and

well-suited for programming space and time-efficient self-adjusting computations.

xiii

CHAPTER 1

INTRODUCTION

The world around us is continually changing. The information that our programs consume

and produce changes with it. However, not all changes occur at once; rather, they occur

gradually over time. Hence, there is a potential for our programs to avoid repeating un-

affected work: By recording their past work, and by adjusting that record to account for

incremental input changes, programs can avoid repeating redundant work in the future,

potentially resulting in improvements that are asymptotically significant.

To exploit this potential, one can develop “dynamic” or “kinetic” algorithms that are

designed to deal with particular forms of changing input by exploiting particular structural

properties of the problem at hand (Chiang and Tamassia, 1992; Eppstein et al., 1999;

Agarwal et al., 2002). This manual approach often yields updates that are asymptotically

faster than full reevaluation, but carries inherent complexity and non-compositionality that

makes the algorithms difficult to design, analyze, and use.

As an alternative to manual design of dynamic and kinetic algorithms, the program-

ming languages community has developed techniques that either automate or mostly au-

tomate the process of translating an implementation of an algorithm for fixed input into

a version for changing input. For a survey of this work, we refer the reader to Chapter 2.

A recent approach for doing this kind of historical record-keeping and record adjustment,

broadly called self-adjusting computation (Acar, 2005), builds on prior techniques from the

programming languages community.

Specifically, self-adjusting computation generalizes the data dependence graphs of ear-

lier language-based techniques (Section 2.1) by introducing dynamic dependence graphs (Acar

et al., 2002). Unlike earlier dependence graphs, these graphs are generated from programs

written in a mostly conventional way (e.g., using an existing Turing-complete language

with general recursion).

1

Broadly, self-adjusting computation offers a systematic way of extending existing pro-

gramming languages, as well as their programs, with an additional computational inter-

pretation beyond normal execution. This additional interpretation is equivalent to normal,

fixed-input execution from an extensional point of view, in terms of input and output, but

is distinct from normal execution from an intensional view—that is, in terms of compu-

tational resources (Ley-Wild et al., 2008). Namely, by making an initial investment (in

space), self-adjusting computations offer the potential of responding to incremental input

changes significantly faster (in time). The investment of space is proportional to the frac-

tion of the computation’s running time that consists of interaction with changing data. In

this sense, self-adjusting computation is a technique for amortizing the work associated

with past computation across future incremental input changes; specifically, it trades com-

putational space for time. Depending on the program, its environment, and the way that

the environment changes, the improvement in update times may be up to a linear factor or

better. Indeed, self-adjusting computation has been shown to be effective in a reasonably

broad range of areas including computational geometry, invariant checking (Shankar and

Bodik, 2007), motion simulation (Acar et al., 2008), and machine learning (Acar et al.,

2007) and has even helped solve challenging open problems (Acar et al., 2010).

Being a programming language-based approach, self-adjusting computation relies on

programmer help to identify the data that can change over time, called changeable data,

and the dependencies between this data and program code. This changeable data is stored

in special memory cells referred to as modifiable references (modifiables for short), so called

because they can undergo incremental modification. The read and write dependencies of

modifiables are recorded in a dynamic execution trace (or trace, for short), which effec-

tively summarizes the dependency structure of self-adjusting computation. We refer to the

implementation of this trace as the dynamic dependency graph (DDG). When modifiables

change, the trace is automatically edited through a change propagation algorithm: some

2

portions of the trace are reevaluated (when the corresponding subcomputations are af-

fected by a changed value), some portions are discarded (e.g., when reevaluation changes

control paths) and some portions are reused (when subcomputations remain unaffected,

i.e., when they remain consistent with the values of modifiables).

We say that a semantics for self-adjusting computation is sound (alternatively, consis-

tent), if the change propagation mechanism always yields a result consistent with full

reevaluation. In practice, the primitives for programming with modifiables can often be

misused, in the absence of static checks baring this. In turn, the programmer’s misuse of

these primitives can break the soundness proven for the system, which makes assumptions

of the program regarding the correct-usage of the self-adjusting primitives.

As we survey in Section 2.2, self-adjusting computation was first implemented in the

form of libraries (and eventually a compiler) for high-level languages such as SML. These

high-level languages act as both the host and implementation languages: Programmers

write self-adjusting programs in same language that implements the self-adjusting primi-

tives, including trace generation and change propagation. That these languages are high-

level is not accidental: the dynamic dependence graph (execution trace) is a higher-order

data structure, and as such, the implementation of self-adjusting computation uses the

higher-order features of the high-level languages. In particular, since higher-order lan-

guages can natively represent closed functions, they are naturally suitable for implement-

ing traces.

1.1 Problem statement

While in many ways ideal for expressing self-adjusting computation, high-level languages

have a central drawback: By being high-level, they give up control over low-level details.

In the context of self-adjusting computation, these details include the low-level repre-

sentation and management of the trace. Indeed, empirical evaluations have shown that

3

memory management can be a significant overhead both in high-level languages gener-

ally (Tarditi and Diwan, 1994), and particularly for their self-adjusting computations (Acar

et al., 2009). Moreover, this memory management overhead worsens as free memory be-

comes more scarce (Hammer and Acar, 2008).

However, there is a potential for a holistic combination of change propagation and

memory management, by redesigning the techniques of self-adjusting computation at a

lower level of machine abstraction, for a low-level programming language. What is lack-

ing from previous self-adjusting computation techniques is an account of this lower level

of abstraction—i.e., that of a low-level host and implementation language, where the pro-

grammer and the self-adjusting system cooperatively exert explicit control over machine

resources. Our goal is to integrate self-adjusting primitives, originally designed in and for

high-level languages, into a low-level, machine-oriented language.

Low-level languages are more machine-oriented languages. Specifically, by low-level

language, we mean a language where:

• The type system describes memory layout

• The program text is a flat, static resource

• The call stack is a distinct resource from heap memory1

• Heap memory is managed explicitly

We choose the C language (Kernighan and Ritchie, 1988; Norrish, 1998), the de facto

portable assembly language, as our canonical low-level language. Since previous ap-

proaches for self-adjusting computation rely on the abstractions of high-level languages

(viz. higher-order functions and garbage collection), previous approaches for self-adjusting

1. For instance, programmers in low-level settings such as C often avoid recursion in favor of loops to
preserve stack space. Such care avoids over-running whatever stack is preallocated for their process and
avoids the details of growing this stack space dynamically.

4

computation are not directly applicable when C is the host language. Many details—such

as how the dynamic dependency graph is created, represented and managed—must be

resolved before applying the previous high-level approaches. Moreover, past approaches

change the stack behavior of the program, changing tail-recursive fixed-input algorithms

into non-tail recursive self-adjusting ones. In C, the call stack is a distinct resource whose

use is often carefully managed.

1.2 Challenges

Our goal is to integrate self-adjusting primitives into a low-level language. When attempt-

ing to apply known techniques in this new setting, issues arise due to their reliance on the

abstractions provided by high-level languages. We survey four interrelated challenges:

Pervasive mutation. The imperative semantics of high-level self-adjusting systems as-

sume that only modifiable references are mutable: All other data is immutable (i.e., pure).

Moreover, their type systems distinguish between mutable and immutable data. Beyond

guaranteeing a notion of soundness, these type systems either under-pin a higher-order li-

brary interface for the programmer, or they guide a compiler as it transforms the program

with specially-typed primitives to use the associated run-time library.

By contrast, in a low-level setting, mutation is pervasive. Moreover, all data (both stack

and heap-allocated) is implicitly mutable, and the type system only helps to describe the

layout of this memory, not what operations on this memory are permissible or illegal. In

this context, we must find a programmable, sound and efficient way for the programmer

and compiler to distinguish modifiable from non-modifiable data.

Trace representation. Past high-level approaches have a high-level account of traces,

which are higher-order data structures. In these languages traces are readily created and

5

composed via function abstraction and function application; together with garbage collec-

tion, these high-level features abstract over the low-level details of closed functions, such

as their representation and dynamic management.

By contrast, in low-level languages functions are merely names for statically-fixed,

globally-scoped blocks of code. For programmability, we must find a way to replace the

necessary higher-order language features with appropriate compiler technology. More-

over, for efficiency, we must mitigate the cost of tracing the comparatively large amount of

mutation found in low-level languages, lest our traces become too large.

Stack management. Past approaches for self-adjusting computation tacitly assume that

the stack is inexhaustible, and that the stack profile of a program need not be preserved

by execution tracing or change propagation. This stack management task is complicated

by the operational knot of self-adjusting computation, a term we introduce to refer to the

recursive control flow induced by the internal techniques of self-adjusting computation.

Unlike high-level languages, low-level languages allocate the call stack as an effi-

cient and distinct run-time resource. Hence, it is desirable that the high-level approaches

of traced execution and change propagation be adapted so that they are properly tail-

recursive.

Heap management. Finally, past approaches for self-adjusting computation tacitly as-

sume that all garbage is collected automatically. This includes garbage generated by the

self-adjusting program, as well as internal garbage that results from updating the trace

via change propagation. Traditional garbage collection approaches are badly-suited to the

recursive, imperative structure of the execution trace and its complex mutator (viz. the

change propagation algorithm). This memory management task is complicated by the spa-

tial knot of self-adjusting computation, a term that we introduce to refer to the complex

structure of the execution trace.

6

In contrast to high-level settings, automatic collection is lacking in low-level languages;

instead, the heap is managed explicitly. To effectively interoperate with low-level code,

we require a simple protocol whereby self-adjusting computations and their execution

environments can manage memory cooperatively.

To address the challenges above, we want a sound, programmable and efficient solution.

For soundness, we must provide an underlying self-adjusting model that is consistent with

full reevaluation. For programmability, we must not overly burden the programmer with

heavy annotations, manual transformations or complex programming models. For effi-

ciency, we should exploit known analyses and techniques that are applicable for low-level

settings.

While adopting a low level of abstraction usually means being more detailed and ex-

plicit, by virtue of this lower level, we gain more control over a machine’s resources. With

this control, there is an opportunity for a self-adjusting system to incorporate the manage-

ment of its resources within its incremental rules of self-adjustment. For instance, garbage

collection can itself be seen as another incremental problem, arising at the level of the

system’s implementation, rather than at the level of its applications2. More generally, in

a low-level setting there is the unique possibility for the trace mechanics, as well as ex-

plicit management of other dynamic resources, to be folded into the operational rules of

self-adjustment.

We address the challenges posed by a low-level setting by using specialized compilation

and run-time techniques, based on a new low-level machine model, called self-adjusting

machines, which we introduce below. Our static compilation techniques transform the

program to extract information from and perform transformations on the program that

2. For instance, if we define memory liveness generically using pointer reachability, then garbage collec-
tion can be seen as an incrementalized graph-reachability problem: As memory incrementally mutates, the
problem is to incrementally find blocks that become unreachable.

7

would be overly burdensome to require of the programmer. This includes providing simple

primitives that, through compilation, perform trace construction and management of the

program’s execution. Our dynamic run-time techniques incorporate resource management,

including garbage collection, into the rules of self-adjustment.

1.3 Thesis and contributions

We give an account of self-adjusting computation at a low level of abstraction through the

theory and practice of self-adjusting machines. We study these machines both abstractly, as

a formalism, and concretely, as a closely-related implementation.

Thesis statement

By making their resources explicit, self-adjusting machines give an operational

account of self-adjusting computation suitable for interoperation with low-level

languages; via practical compilation and run-time techniques, these machines

are programmable, sound and efficient.

Below, we sketch our main contributions, with the intention of showing how these

contributions fit together conceptually. In Section 1.4, we give a more detailed account

of our specific technical concerns, and a more detailed overview of our corresponding

technical results.

Surface language based on C. We give a C-like surface language, called CEAL, for writ-

ing self-adjusting programs at a low level of abstraction. The CEAL language augments (a

large subset of) C with minimal primitives for self-adjusting computation. We provide a

8

front-end that translates CEAL input into IL, which has structure well-suited for compila-

tion (analysis and transformation) but not well-suited for human readability. For practi-

cal purposes, our surface language CEAL interoperates with C: under certain restrictions,

CEAL can call and be called by other C code.

Abstract machines. We give an abstract machine semantics for self-adjusting computa-

tion for a low-level intermediate language IL. This includes accounts of how change prop-

agation interacts with a control stack, with return values and with memory management.

We prove that this semantics is sound. We use this semantics to guide the design of an

associated compiler and run-time system.

Compiler and runtime system. Via compilation and run-time techniques, we realize our

abstract machine model with a concrete design and implementation based in C.

We design and implement a compiler and runtime system for IL, the intermediate lan-

guage used by our abstract machines. The compiler emits as a target C, the language of

the run-time system and its extensions. Guided by the self-adjusting machine model, our

compiler combines standard and new static analyses to transform IL programs into opti-

mized C-based target code. The transformations make IL, and consequently CEAL, more

easily programmable. The analyses inform the transformations by relating the control- and

data-flow of the program to its trace structure. By extracting this static information, we

specialize the transformations and optimize the generated target code.

Our C-based run-time system implements the automatic memory management design

of the abstract machine. Furthermore, the system is extensible: it allows library program-

mers to create new programming abstractions, which the compiler and run-time system

incorporate into the self-adjusting programs that they compile and run.

9

Empirical evaluation. We perform an empirical evaluation of our implementation, com-

paring language features and optimizations. In many cases our optimizations reduce the

overhead of the naive compilation and run-time approach by an order of magnitude in

both time and space.

We also compare our approach with competing approaches in other languages. Overall,

our implementation is very competitive, but especially so when memory is scarce. In some

cases we significantly outperform competing approaches, where we reduce resource usage

by an order of magnitude in time, and a 75% reduction in space (Hammer and Acar, 2008;

Hammer et al., 2009).

1.4 Technical results

Under the constraint of preserving extensional semantics (a property we refer to variously

as consistency or soundness), the study of self-adjusting computation is concerned with giv-

ing a more efficient intensional semantics to programs whose input changes incrementally

over time. Hence, an intensional view of computation (e.g., a cost model) is needed to jus-

tify that techniques offered by self-adjusting computation have efficacy. This dissertation

gives both abstract and concrete machines for self-adjusting computation. These machines

share a cost model that we define in Section 4.6; in this model, the cost of updating a

computation is proportional to the sum of new and old work that represents the com-

puted difference between the new and old traces. This cost model is consistent with that

of earlier work based on adapting Standard ML (Ley-Wild et al., 2008, 2009; Ley-Wild,

2010).

10

1.4.1 Contexts of concern

Our high-level domain of interest is in using the approach taken by self-adjusting compu-

tation to reduce the cost of adjusting a computation to incremental change in its execution

environment. Within this domain, our technical results share a common overarching con-

text of concern: the context where low level models and implementations of self-adjusting

computations are desired. For instance, previous intensional models of self-adjusting com-

putation do not consider the costs associated with managing dynamic memory; the cor-

responding implementations use high-level languages with automatic garbage collection

(e.g., Standard ML). While such models and implementations correspond intensionally (in

terms of a cost model that relates them), neither the abstract models nor the implementa-

tions are concerned with saying how to manage memory, or how its associated costs are

quantified. By contrast, in a low level model of computation, the low level nature of the

memory model gives programs control over and responsibility for being explicit about how

dynamic memory in the heap is allocated and reclaimed, if at all.

Within this context of concern (a low level machine model), our technical results in-

clude a number of designs, techniques and proofs, whose specific contexts of concern vary.

To organize them, we consider how our techniques for self-adjusting computation fall ad-

dress three (interrelated sub-)contexts of concern:

• when one desires efficient stack-based management of control flow,

• when one desires efficient memory management of trace and heap resources, and

• when one desires programming abstractions whose uses are not burdensome.

These contexts are not mutually-exclusive: some of our results are applicable in two or

several contexts. Below, we survey our abstract machine design and an associated compiler

and run-time system design; these designs are relevant for all the concerns above. We

11

discuss each of the contexts of concern individually in greater detail, highlighting their

associated technical results within this dissertation.

1.4.2 Abstract machine design

Our abstract machine design is central to our entire approach, and is relevant for all the

concerns that we consider (viz., for stack-based execution, for efficient trace and heap

management, and for a simple programming model). We use the abstract machine design

to guide and unify our techniques, and to establish their soundness from a formal (i.e.,

abstract) view.

From a high-level, our methodology for establishing soundness is as follows. We give

two abstract machine models: the reference machine serves as a conventional semantics

that we use to model ordinary execution; it lacks the features of self-adjusting computa-

tion. The self-adjusting machine semantics is modeled formally by an extension of the

reference machine that we call the tracing machine, since it features an execution trace,

as well as transitions that model change propagation of the trace. We characterize the

soundness (or consistency) of our approach by showing that these machines are related.

In particular, we show that under certain conditions, every run of the self-adjusting

machine is consistent with a corresponding run of the reference machine, which lacks

self-adjusting features (Theorem 4.4.3 in Section 4.4). Separately, we show a simple com-

pilation technique, destination-passing-style (DPS) conversion, that achieves the program

property required by our soundness result (Theorem 4.5.1 in Section 4.5). Later, in the

context of a compilation framework, we show how to refine this program transformation

using further static analysis; the refined approach works to lower the (constant-factor)

overhead of the program transformation (Section 5.8).

12

Abstract versus concrete machines. Throughout this dissertation, we use the term self-

adjusting machine to refer both to the tracing machine formalism, as well as its concrete

realization via our compiler and run-time library techniques. We organize this dissertation

so that the context of the term clarifies how to interpret it; when ambiguity is possible, we

use the terms abstract machine and concrete machine to respectively disambiguate between

the self-adjusting machine formalism and its concrete realization achieved via our compiler

and run-time system.

1.4.3 Compiler and run-time system design

We show how to realize concrete, executable self-adjusting machines via compilation and

run-time techniques. Our abstract machine model guides and corresponds with these com-

pilation and run-time techniques. Like the abstract machine design, our compilation and

run-time techniques are relevant for all the concerns that we consider.

Compilation techniques. Our compilation techniques prepare programs written in a C-

like surface language for inter-operation with our run-time system. Our compiler performs

two major program transformations: DPS-conversion and normalization. These transforms

automate otherwise tedious program transformations, and are each designed within the

context of the concerns listed above. Regarding stack-based execution, we show that our

compiler’s program transformations preserve the stack profile of the transformed program

(i.e., that our compiler preserves the stack space required by the program, up to a con-

stant factor). Regarding dynamic memory management, our the compiler statically places

(and optimizes) allocations performed at run-time; hence, it plays a significant role in

our approach for efficient heap and trace management. Finally, since it automates other-

wise tedious, manual transformations of program text, the compiler greatly simplifies the

programming model for our surface language.

13

Run-time techniques. Our run-time system complements target programs of our com-

piler; together, they realize the transition semantics of our abstract machine. Our run-time

techniques are motivated by all the concerns listed above. Regarding stack-based execu-

tion, our run-time library techniques are properly tail-recursive, guaranteeing that they do

not consume more than a constant-factor of additional stack space. Regarding dynamic

memory management, the run-time library efficiently realizes the heap and trace memory

management of the abstract model. In particular, our run-time technique automatically

reclaims garbage in amortized constant-time per allocated block. Finally, the run-time sys-

tem is designed with usability in mind: It implements the simple, orthogonal primitives

of the abstract model, as well as a general framework for extending this model with new

features. In particular, domain-specific library authors can readily supplement these core

primitives with new programming abstractions that interface internally to the run-time

system trace and its change propagation algorithm.

1.4.4 Efficient stack-based execution

When one desires efficient stack-based management of control flow, one writes programs

consciously with respect to a stack resource that saves and restores local state and local

control flow (e.g., across interprocedural boundaries). The primary concern here is the

program’s complexity with respect to this stack resource. Within this context of concern,

features of our surface language, program transformations and run-time techniques are

relevant:

• Our surface language gives simple primitives for specifying stack operations that are

orthogonal to the syntax for function calls, and which are preserved by our compi-

lation and run-time techniques. That they are orthogonal to function calls and not

eliminated or reduced during compilation is crucial: These stack operations encode

14

programmer intentions and associated intensional properties that are relevant during

self-adjustment (Section 3.4).

• We show that our compiler’s program transformations preserve the stack require-

ments of the program, up to a constant factor in required space. Specifically, we first

show that DPS-conversion preserves the stack behavior of the program precisely, i.e.,

in terms of the occurrences of pushes and pops (Section 4.6). Next, we show that

normalization also preserves the stack behavior of the program (Section 5.7). Both

transformations introduce only a constant-factor overhead in required stack space.

• We give a run-time system’s interface and implementation that is properly tail-recursive:

Its own usage of the (concrete) machine stack adds only a constant factor of space

to that of the compiled program with which it inter-operates (Section 6.5.6).

Beyond low level settings. Stack-based control flow is relevant outside the setting of

low level languages and low level machine models. Prior to this work, however, the stack

profile of the program (as an intensional property) was not considered in the context of

self-adjusting computation. In fact, through library-based instrumentation or through spe-

cial compilation techniques, all previous approaches for self-adjusting computation alter

the direct-style, stack-based mechanics of the program’s underlying algorithm. As a direct

consequence, these approaches generally affect a program’s complexity with respect to the

control stack. Hence, the results above give an alternative to previous approaches for self-

adjusting computation whenever there is concern for stack complexity. Though we study

C specifically, our results in this context are broadly applicable, and are not specific just to

low level settings. For instance, they can be readily applied in other stack-based languages,

both high and low level (C++, Java, OCaml, etc.). The only requirement we demand is

that the underlying machine model properly support function calls in tail-position (i.e., as

jumps that do not return).

15

1.4.5 Efficient memory management

When one desires efficient management of dynamic memory, one writes programs con-

sciously with respect to a heap resource. Within the context of self-adjusting computation,

this heap resource is used to store two interrelated structures: the trace structure of the

self-adjusting computation, and the user-defined structures created and manipulated by

this computation. The management of the heap resource is efficient if the complexity

cost associated with reclaiming a previously-allocated block (of either the trace or a user-

defined structure) is low. While automatic management techniques (i.e., general-purpose

garbage collectors) can often be very efficient, they do not generally provide a complexity

guarantee that is independent of available free space. When one wants a stronger guar-

antee, one uses a specialized approach to managing memory, perhaps resorting to explicit

management (i.e., where the program itself says how and when to reclaim blocks).

Within this context of concern, features of our surface language, compilation and run-

time techniques are relevant:

• Our surface language provides a single primitive for allocating memory; depending

on the context of this allocation, reclamation is either automatic (in the context of

self-adjusting code), or manual (in the context of a non-self-adjusting code) (Sec-

tion 3.2).

• Our compiler performs optimizations that coalesce heap resources, combining trace

and user-defined allocations. In doing so, it amortizes the overhead of tracing in

terms of both space and time, and simplifies the layout of generated traces by flat-

tening them into larger blocks in the heap (Section 5.8).

• Using our abstract machine model, we describe the automatic reclamation of garbage

during change propagation. We formally establish in this abstract model that this

technique is sound (Section 4.4). Guided by the technique of the abstract machine,

16

our run-time system performs an garbage collection analogously within the context

of concrete machines. Both abstractly and concretely, we show that the cost of re-

claiming an allocated block during garbage collection adds only a constant-factor

overhead to the cost of performing change propagation (Sections 4.3 and 6.5.6).

Beyond low level settings. Our automatic memory management techniques are appli-

cable in any setting where the programming model of self-adjusting computation makes

reclamation implicit (as in our surface language), while the implementation has the free-

dom to make reclamation explicit (as in a low level language, such as C). We simplify our

model and implementation by insisting that non-self-adjusting code manage its allocated

memory explicitly, and that this explicit management is coordinated with the self-adjusting

computation with respect to certain restrictions (Section 6.2). Extending our approach to

implicitly reclaim non-self-adjusting allocations remains an open problem.

1.4.6 Simple programming model

When one desires a usable set of programming annotations, one desires that the required

annotations rely on abstractions that are easy to reason about; moreover, one desires that

the annotations themselves are easy to insert, easy to move, and easy to delete or replace.

Within the context of low level self-adjusting computation, we provide annotations within

a C-like surface language that meet these criteria:

• Our surface language provides annotations whose semantics is extensionally mean-

ingless: They do not alter the input-output behavior of the annotated program. As

such, they can be inserted gradually, as the program is developed and maintained.

While abstract, these annotations still give the human programmer control over the

intensional behavior of the underlying (concrete) self-adjusting machine.

17

• These annotations correspond to operations over the abstract resources of our (ab-

stract) self-adjusting machines Chapter 4; hence, the programmer can use this model

to reason abstractly about their usage.

• These annotations correspond to operations over the concrete resources of our (con-

crete) self-adjusting machines Chapters 5 and 6; hence, the compiler uses these

annotations to guide its transformation of the surface program, through the inter-

mediate language shared with the abstract model, and into the concrete machine

implemented by the run-time system.

1.5 Chapter outline

The outline below consists of a digest of summaries that we collect from each chapter.

Chapter 1 introduces the topic of this dissertation.

Section 1.6 follows this outline and provides additional background on the prob-

lem statement and challenges given above (Sections 1.1 and 1.2). We describe the

general problem of information maintenance in the presence of dynamic change,

and self-adjusting computation as a language-based technique for constructing solu-

tions (Section 1.6.1). We introduce the tools and internal techniques that comprise

a self-adjusting language system (Section 1.6.2). We describe how these techniques

are inherently higher-order, and how the high-level languages used in previous work

have performance shortcomings, especially when traces are large and memory re-

sources are scarce (Section 1.6.3). We describe our use of the terms high- and low-

level language in more detail, focusing on the extra control (and associated burdens)

that low-level languages offer the programmer (Section 1.6.4).

Chapter 2 surveys related work and contrasts it with our own.

18

In this chapter, we focus on the work most closely related to self-adjusting compu-

tation generally, and to self-adjusting machines, specifically. First, we characterize

a selection of the most closely related early work from the 1980’s, the 1990’s and

earlier (Section 2.1). Next, we characterize the development of self-adjusting com-

putation (Section 2.2). Finally we contrast and compare to other contemporary work

on incremental computation (Section 2.3) and garbage collection (Section 2.4).

Chapter 3 describes CEAL, our surface language.

We describe a C-based surface language called CEAL for writing low-level self-adjusting

programs. We introduce the programming model used by CEAL (Section 3.1), which

is based on the notion of levels. We describe the programming abstractions modifi-

able memory (Section 3.2), and the outer and inner levels of a CEAL program (Sec-

tions 3.3 and 3.4). We describe how self-adjusting machine resources interact in the

CEAL programming model (Section 3.5). We illustrate the programming model with

two simple examples (Sections 3.6 and 3.7). Finally, we describe certain practical

concerns (Sections 3.8 and 3.9).

Chapter 4 describes IL and its associated abstract machine semantics.

We present an abstract self-adjusting machine model that runs programs written

in an intermediate language for self-adjusting computation that we simply call IL.

We give an informal introduction to the design of IL (Section 4.1), and using with

examples from Chapter 3, we illustrate example IL programs (Section 4.2). We give

the formal syntax of IL, to which we give two semantics, by defining two abstract

machines: The reference machine models conventional evaluation semantics, while

the tracing machine models the trace structure and self-adjusting semantics of a self-

adjusting machine (Section 4.3).

19

Our low-level setting is reflected by the abstract machines’ configurations: each con-

sists of a store, a stack, an environment and a program. Additionally, the tracing ma-

chine’s configurations include a trace component. We show that automatic memory

management is a natural aspect of automatic change propagation by defining a no-

tion of garbage collection. Under certain conditions, we show that this self-adjusting

semantics is (extensionally) consistent (Section 4.4). We give a simple transforma-

tion that achieves these necessary conditions (Section 4.5). Finally, we give a cost

model framework to relate the intensional semantics of self-adjusting machines to

that of the reference semantics (Section 4.6).

Chapter 5 describes the design of an optimizing compiler for IL targeting C.

First, we give an overview of the role of compilation as a bridge from the abstract

machine (Chapter 4) to the run-time system (Chapter 6) and outline the reminder of

the chapter in greater detail (Section 5.1). We describe how a C-based self-adjusting

program consists of multiple levels of control, which our compiler automatically sep-

arates (Section 5.2). We give a C-based run-time library interface for constructing

execution traces (Section 5.3). We represent programs during compilation using IL

and CL (Section 5.4). CL is a representation closely-related to IL that augments pro-

grams with additional static control structure. We use static analyses to inform both

our basic compilation and our optimizations (Section 5.5). We give a basic transla-

tion (from IL to CL) for basic compilation (Section 5.6). We give a graph algorithm

for normalization, which statically relocates certain CL blocks as top-level functions

(Section 5.7). To improve upon this compilation approach, we describe several opti-

mizations (Section 5.8). Finally, we give further notes and discussion (Section 5.9).

Chapter 6 describes the design of an extensible C-based run-time system.

20

First, we present an overview of the run-time system’s role in the design of the larger

system, and in particular, its role vis-à-vis the compiler; we also review the chal-

lenges inherent to low-level memory and stack management (Section 6.1). Within

the context of memory management, we give a detailed discussion of our run-time

system’s interaction in memory as implemented with an abstraction we call the trace

arena (Section 6.2). Based on certain assumptions and restrictions, we describe the

basic data structures and memory management techniques for an efficient run-time

implementation of self-adjusting machines in C (Section 6.3). With detailed code

listings, we describe the design and implementation of the two central abstractions

in our run-time system design: trace nodes and self-adjusting machines (Sections 6.4

and 6.5). In doing so, we pay careful attention to how memory and stack resources

are created and destroyed, within the context of subtle internal invariants and state

changes.

We study the performance of our current and past implementations. We evaluate our

current compiler for self-adjusting computation, based on the theory and practice

of self-adjusting machines. We empirically evaluate our current system by consider-

ing a number of benchmarks written in the current version of CEAL, and compiled

with our current compiler. Our experiments are very encouraging, showing that our

latest approach still yields asymptotic speedups, resulting in orders of magnitude

speedups in practice; it does this while incurring only moderate overhead (in space

and time) when not reusing past computations. We evaluate our compiler and run-

time optimizations (Section 5.8), showing that they improve performance of both

from-scratch evaluation as well as of change propagation. Comparisons with pre-

vious work, including our own and the DeltaML language shows that our approach

performs competitively. Finally, we briefly survey our current and past implemen-

tions Section 7.3.

21

Chapter 8 concludes. We describe future directions and open problems.

1.6 Background

This section provides additional background on the problem statement (Section 1.1) and

challenges (Section 1.2) given above. We describe the general problem of information

maintenance in the presence of dynamic change, and self-adjusting computation as a

language-based technique for constructing solutions (Section 1.6.1). We introduce the

tools and internal techniques that comprise a self-adjusting language system (Section 1.6.2).

We describe how these techniques are inherently higher-order, and how the high-level lan-

guages used in previous work have performance shortcomings, especially when traces are

large and memory resources are scarce (Section 1.6.3). We describe our use of the terms

high- and low-level language in more detail, focusing on the extra control (and associated

burdens) that low-level languages offer the programmer (Section 1.6.4).

1.6.1 Self-adjusting structures

Self-adjusting computation uses an amortized analysis3, as do other self-adjusting struc-

tures, such as certain binary search trees. In his 1986 Turing Award lecture, Robert Tarjan

explains the organic, naturalistic design principle underlying the concept of self-adjusting

data structures (Tarjan, 1987):

3. Self-adjusting computation uses an amortized analysis in at least two ways: First, it relies on data-
structures that themselves use an amortized analysis, such as the structure used to maintain the total order
of the execution trace (Dietz and Sleator, 1987; Bender et al., 2002); hence, the complexity of an imple-
mentation based on those structures, such as the one in this dissertation, can be characterized best in an
amortized sense as well, i.e., across sequences of interleaved input changes, change propagation cycles and
output observations. Second, in a more informal sense, self-adjusting computation amortizes the (space and
time) work of tracing over the savings gained by reusing and adapting the saved results in new execution
contexts with changed inputs.

22

In designing a data structure to reduce amortized running time, we are led

to a different approach than if we were trying to reduce worst-case running

time. Instead of carefully crafting a structure with exactly the right proper-

ties to guarantee a good worst-case time bound, we can try to design simple,

local restructuring operations that improve the state of the structure if they

are applied repeatedly. This approach can produce “self-adjusting” or “self-

organizing” data structures that adapt to fit their usage and have an amortized

efficiency close to optimum among a broad class of competing structures.

To illustrate how self-adjusting structures are related to efficiently maintaining incre-

mentally changing information, we use an analogy between self-adjusting trees and self-

adjusting computation. Through this analogy, we highlight the inherent challenges ad-

dressed by self-adjusting computation.

Self-adjusting trees. Suppose that a programmer wishes to maintain a sorted view of

a collection of data items, whose members change over time. After the collection has

changed and one needs the new sorted view, one can fully re-sort the entire collection.

In this way, one only need to be concerned with sorting a complete collection, and not

with the problem of updating a prior sort to reflect a different set of initial conditions (i.e.,

the changed data collection). However, if the collection only ever changes gradually, it’s

more efficient in an amortized sense to do something other than a full resorting4. What is

needed is to record and repair a dynamic structure that encodes the items’ comparisons, so

4. In the amortized analysis of an algorithm or data structure, we characterize efficiency in terms of
operation sequences, as opposed to the worst-case performance of individual operations. Likewise, in the
context of self-adjusting computation, we focus on the aggregate performance of updating a computation
across a sequence of input updates and output observations over time; during this time span, we use overall
time savings to justify the from-scratch (space and time) overhead of performing fresh computation (from-
scratch computation is that which is not being reused, but may be stored to be reused and/or adapted in
future execution contexts).

23

that pairs of items that aren’t changing need not be re-compared each time the collection

changes.

Using any one of the many varieties of standard, textbook algorithms for self-adjusting

binary search trees, e.g., splay trees (Sleator and Tarjan, 1985; Bender et al., 2002), one

can accomplish this maintenance task optimally. That is to say, one first makes an asymp-

totically linear investment of space, as the self-adjusting tree requires O(1) space for each

data item being sorted. In return, this space “remembers” past comparisons between the

collection’s keys, saving time when and if the collection changes. In particular, as data

items are added or removed from the set, the self-adjusting tree allows one to maintain

a sorted view in O(logn) time per update (amortized across the sequence of updates),

by injecting these collection updates (e.g., a sequence of insertions to and removals from

the collection) into the self-adjusting trees abstract interface (e.g., a sequence of insertions

into and removals from the tree).

Self-adjusting trees and self-adjusting computations serve as an illustrative pairing for

comparison and contrast. Table 1.1 shows how the two concepts parallel each other.

Table 1.1: Self-adjusting trees and computations: Parallel Concepts

Parallel concept Self-adjusting trees Self-adjusting computation

Problem specification An ordering A program

Problem instance A collection of keys A program input

Generic maintenance rules Splaying algorithm Change-propagation algorithm†

Spatial record Self-adjusting tree Self-adjusting program trace†

Input changes Key insertion or deletion General input mutation††

Invariant maintained Sorted keys Output consistent with input
† We introduce these techniques in greater detail in Section 1.6.2.
†† Depending on the system, different restrictions apply to this mutation; see Section 2.2 for details.

Both structures are parameterized by both a problem specification and a problem instance.

24

In this sense, they are both parametric structures. They both employ generic maintenance

rules, which are independent of both the problem specification, and the problem instance.

The underlying techniques of both use a spatial record to save time when re-establishing

the maintained invariant. In both cases, the techniques maintain an invariant that reflects

a high-level property of the problem instance.

While parallel in many ways, the two concepts are also quite different: a self-adjusting

tree is parameterized by only an ordering with certain simple mathematical properties

(reflexivity, transitivity and antisymmetry), while a self-adjusting computation is parame-

terized by a program, whose complexity is of an entirely richer nature, since it can describe

anything that is computable. Table 1.2 summarizes how, out of this gap, important con-

trasts arise. In particular, the known lower bounds and simple information interaction

used for sorting become complex and unknown for general computational patterns.

Table 1.2: Self-adjusting trees and computations: Contrasting Concepts

Contrasting concept Self-adjusting trees Self-adjusting computations

Invariant maintained Sorted keys Output consistent with input

Dynamic dependence

structure

Simple:

Binary tree of pairwise

comparisons

Complex:

Any computable pattern is

possible

Lower bounds Established and well-known Unknown / input-sensitive

If we consider information-maintenance problems that are more complex than the sort-

ing problem from above, the question arises: How do we best systematize the specification

and implementation of these problems’ solutions?

Designing, analyzing, and implementing dynamic (or kinetic) algorithms can be com-

plex, even for problems that are relatively simple in the conventional setting. As an exam-

25

ple, consider the problem of planar convex hulls, whose conventional version is straightfor-

ward. The incremental version, which allows discrete changes in the set of input points5,

has been studied for over two decades (Overmars and van Leeuwen, 1981; Brodal and

Jacob, 2002). In particular, Jacob’s dissertation focuses solely on this topic (Jacob, 2002),

describing and analyzing an efficient (albeit considerably complex) algorithmic approach

over the course of one hundred pages. By contrast, self-adjusting computation can be used

to give a practical implementation based on the programmer supplying little more than

the conventional, fixed-input algorithm (Acar et al., 2006).

Self-adjusting computation. Self-adjusting computation is a language-based approach

for solving dynamic information-maintenance problems. What these solutions have in

common is that they are all based around the approach of extracting the desired behavior

from a program that also (and primarily) describes non-incremental input-output behavior.

The qualities that make self-adjusting computation appealing follow from it being pro-

gramming language-based: since programmers already know how to program for the non-

incremental case, we can see self-adjusting computation as just another extension of our

programs’ original meaning:

• two programs’ composition leads to their self-adjusting computations’ composition.

• a program’s correctness leads to its self-adjusting computations’ correctness.

• a program’s optimization (for time and space) leads to its self-adjusting computa-

tions’ optimization (for space and time, perhaps in different proportions).

5. Despite the term incremental, we mean to consider both insertions and deletions from the set of input
points. In this dissertation, we do not differentiate between problems whose input is incremental (allowing
insertions) versus decremental (allowing deletions).

26

Listing these parallels is not to say that self-adjusting efficiency always comes “for free”

from ordinary programming principles, but that in many cases, common patterns for ef-

ficiently handling dynamic changes can be swept under programming abstractions that

resemble conventional programming (higher-order functions and mutable reference cells).

However, to realize more efficiency improvements, some incremental patterns may re-

quire specialized abstractions of their own. For this purpose, self-adjusting computation

offers extensibility, again drawing on the benefits of being language-based. Just as pro-

gramming languages can encapsulate domain-specific knowledge into libraries of reusable

abstractions, self-adjusting computations can also be extended in a similar fashion. First,

the library extension programmer uses special knowledge of the domain in question to

define the efficient incremental behavior that is internal to their extension. Then, once

written, these extensions are exposed to the programmer as new abstract data types (Acar

et al., 2010).

1.6.2 Tools and techniques

From the client programmer’s viewpoint, a self-adjusting language system (such as the one

presented in this thesis) consists of:

1. a set of primitive programming abstractions for interacting with modifiable data,

2. a compilation strategy for compiling programs containing these primitives,

3. an efficient run-time implementation of these primitives, and

4. a framework for extending these primitives with new abstractions.

27

In recent years, the basic primitives have become better understood and easier to use.

Despite the differences in the exact facade presented to the programmer, all of these varia-

tions on the programming abstraction share a set of conceptual themes and internal tech-

niques, which we introduce below. We give a more detailed survey of the development of

self-adjusting computation in Chapter 2.

Abstractly, the self-adjusting programming primitives provide some family of queryable,

modifiable structures for storing and representing program state. As the input undergoes

incremental change (e.g., caused by external, environmental changes), the self-adjusting

techniques work in concert to maintain the program’s input-output relationship across this

state. To accomplish this efficiently, self-adjusting computation combines three techniques:

Traced execution to maintain a record of dynamic dependencies among modifiable data.

Change propagation is a a scheduling algorithm, designed in conjunction with the trace

data structure. It edits the trace, replacing inconsistent portions with consistent ones.

Memoization caches and reuses portions of execution traces, to avoid reexecution.

Given an initial environment, the program executes and generates an initial execution

trace. Internally, this trace is represented as a dynamic dependency graph (DDG) that relates

incrementally modifiable data to the execution steps that depend on it. The DDG is a

higher-order data structure: each traced step stores a suspended computation that can be

re-executed to adjust the execution to newly-modified data. Managing this reexecution is

the purpose of the change propagation algorithm.

Change propagation. The change propagation algorithm removes inconsistent parts of

the trace and installs new, consistent replacements. It is a worklist algorithm: Using the

DDG trace data structure, change propagation consists of scheduling inconsistent intervals

of the trace for reexecution. Each interval begins with a traced action that is no longer

28

Figure 1.1: The operational knot of self-adjusting computation.

consistent with the current execution environment. Change propagation reexecutes (the

suspended versions of) these actions monotonically with respect to their original execution

order. In doing so, it replaces the affected portions of the trace, making them consistent.

The operational knot. In a self-adjusting system, the change propagation algorithm,

memoization and traced execution are coroutines, operationally. That is, these techniques

are knotted in mutual reference: change propagation consists of intervals of traced reexe-

cution, which, due to memoization, may each consist of intervals of change propagation.

Hence, from an operational perspective, there is a recursive dependency between the al-

gorithmic decisions of change propagation and the reexecution of inconsistent portions of

the program under consideration.

Figure 1.1 illustrates an example of how this operational knot arises. The figure shows

an execution trace with nested intervals that correspond to nested function invocations

(where function f calls g, g calls h and afterward function f calls i). The trace interval for g

contains an inconsistency. Since it occurs before (to the left of) the other inconsistency,

29

change propagation schedules its reexecution first. During its reexecution, the program

generates a new (consistent) interval for g to replace the old (inconsistent) one.

Within this new execution, g again calls h; in doing so, say that it reaches a state that is

locally-consistent with a state in the old trace. At this point, reexecution uses memoization

to locate and reuse this nested interval from the old trace. Though not shown in the figure,

this interval may itself contain internal inconsistencies that demand repair from change

propagation. Hence, the operations of change propagation, reexecution and memoization

are nested and recursively interdependent.

Generally speaking, this operational knot makes it difficult to tell what reexecution

is required, since each update can create a cascading flow of inconsistencies that ripple

through the entire execution trace. However, for certain categories of programs, input data

and input changes, the techniques offered by self-adjusting computation lead to optimal

incremental update times.

Higher-order language features. As we survey in Chapter 2, self-adjusting computa-

tion primarily arose in the form of libraries (and eventually a compiler) for high-level

host languages such as SML. This is not accidental: self-adjusting computation critically

relies on higher-order features of high-level languages. In particular, since higher-order

languages can natively represent closed functions, they are naturally suitable for imple-

menting traces.

Function closures, or simply closures, consist of a record containing a function and

values for some subset of its free variables. When these functions are completely closed

(all free variables have an associated value recorded in the closure), they are commonly

referred to as thunks (Ingerman, 1961).

Thunks are ubiquitous in functional programming. In lazy languages (e.g., Haskell),

thunks are shared by otherwise-pure data structures, and their role is to delay computation

(in time) and share computational resources (namely, space and time) (Hudak et al., 1992;

30

Rudiak-Gould et al., 2006). Thunks are also used for the same purpose in eager higher-

order languages, such as Standard ML (SML) (Milner et al., 1990a; Appel and MacQueen,

1991). In effectful higher-order languages (e.g., SML), thunks are commonly stored in

data structures for the purpose of suspending and/or replaying computational side effects.

These effects may include incrementing a counter, checking and setting environmental

flags or accessing some other globally shared data structure. Effectful thunks are also

relevant to the efficient implementation of self-adjusting computation.

Thunks and self-adjusting computation. As a somewhat complex example of an im-

perative, higher-order data structure, we describe the role that thunks play in implement-

ing self-adjusting computation. As introduced above, self-adjusting computation is repre-

sented as an imperative higher-order data structure, variously referred to as the trace, or

the dynamic dependence graph of the computation.

The trace consists of modifiable data and the thunks that depend on that data. Each

thunk is crafted such that, when invoked, it will reperform the local computation, but with

the new modifiable value in the place of the previous one. To do this, the thunk records

the modifiable location as well as other contextual information required to later restore

the local state, modulo a different value for the access.

The spatial knot. As introduced in Section 1.6.2, change propagation is operationally

knotted with new execution. Given a data modification, change propagation finds the

thunks in the trace that first depend on the modified data, and reexecutes them to update

the computation and the output. To ensure that change propagation is efficient it uses a

DDG representation where the modifiable data itself records the thunks that depend on it,

which can change over time as the structure evolves. Hence, the modifiable data and the

code on which it depends are knotted spatially, since each refers to the other.

31

 0

 50

 100

 150

 0 50 100 150 200 250 300

T
im

e
(s

)

Input Size (n × 103)

Quicksort From-Scratch

 SML+GC
 SML-GC

C

 0

 5

 10

 15

 0 50 100 150 200 250 300

T
im

e
(m

s)

Input Size (n × 103)

Quicksort Ave. Update

 SML+GC
 SML-GC

C

Figure 1.2: Multi-language comparison with quicksort.

As another example of how the higher-order and imperative features of traces are subtly

knotted, consider how these traces are edited during change propagation. In particular,

each traced thunk used for reexecution comes with a related, but distinct thunk, call it its

“undo” thunk, whose role is to uninstall the first thunk from the trace. Change propagation

uses these “undo” thunks to reverse an earlier effect on the trace; including the effect of

installing the original thunk (that is, the one that generates replacement traces).

1.6.3 Limitations of high-level languages

While in many ways ideal for expressing self-adjusting computation, high-level languages

have a central drawback: by being high-level, they give up control over low-level details.

Specifically, detailed practical evaluations of self-adjusting computation show that memory

management via traditional automatic garbage collection (GC) can be a significant cost.

As an example, Figure 1.2 shows timings for from-scratch runs and change propaga-

tion of a self-adjusting program. The program, a standard quicksort implementation, is

taken directly from a recent implementation of self-adjusting computation in Standard ML

(SML) (Acar et al., 2006). The program is compiled with the MLton compiler (Weeks,

2006) and run with a fixed heap of two gigabytes. The MLton compiler employs a mix of

copying, generational, and mark-and-compact strategies based on the workload to deliver

32

efficient garbage collection. The graph on the left shows the running time of a from-scratch

execution of the program on inputs with up to 275,000 elements. The graph on the right

shows the average time for change propagation under an insertion/deletion of an element

(average taken over all possible positions in the input). The lines labeled “SML+GC” show

the time including the GC time and the lines labeled “SML-GC” shows the time excluding

the GC time. In both graphs, GC time increases significantly with the input size. For com-

parison, we include a line labeled “C”, showing timings with the approach described in

this dissertation (Chapter 7 gives a detailed evaluation of our approach).

Self-adjusting programs are challenging for traditional automatic garbage collection for

several reasons:

1. the total amount of live data at any time can be high,

2. many allocated objects have long life spans, and

3. old and new data interact in complex ways.

The total amount of live data is large because a self-adjusting computation stores the trace,

which records the dependences between computation data, in memory. As a result, even

for moderately-sized inputs the total amount of live data can be quite high. For example,

with the SML quicksort example, when the input has 100,000 elements, the amount of live

data can be as high as 650 megabytes. Next, trace elements tend to be long-lived because

change-propagation is generally successful in reusing them. Finally, since the trace itself

is a highly cyclic structure (see Section 1.6.2), after performing change propagation, old

parts of the trace point to the new parts and vice versa; this establishes cyclic dependences

between old and new data.

The cost of memory traversal. The characteristics described above make self-adjusting

programs pessimal for memory-traversing collectors. To see this, recall that for traversal-

based GC, the cost for each reclaimed memory cell is 1
1−f−1, where f ∈ [0, 1] is the fraction

33

 0

 2

 4

 6

 0 50 100 150 200 250 300T
ra

ve
rs

ed
 /

A
llo

ca
te

d

Input Size (n × 103)

Quicksort Change Propagation

Self Adj SML

Figure 1.3: GC cost for quicksort in SML.

of memory that is live (Jones, 1996). We note that this function grows very quickly. For

instance, consider the folllowing equation:

1

1− f
= 1+ f+ f2 + f3 + · · ·

As f approaches one (as memory fills and free space becomes vanishingly scarce), the

traversal cost per reclaimed memory block approaches infinity.

We confirm the correlation between f and the GC costs by collecting some GC statis-

tics. Figure 1.3 shows the GC cost for each allocated byte during the change-propagation

experiments with quicksort (Figure 1.2). We measure the GC cost as the total number of

bytes traversed by GC during the experiment divided by the total number of bytes allo-

cated during the experiment. As can be seen, as the input size increases (requiring more

live memory to hold the trace), the cost increases dramatically, essentially following the

function 1
1−f .

Avoiding memory traversal. Because of its high cost, automatic memory management

management techniques try to avoid memory traversal when possible. However, these

general approaches are not well-suited to the context of self-adjusting computation.

34

Reference counting. First, reference counting may perform better than traversal when

free space is scarce, but it also has a large, constant-factor overhead (Jones, 1996). This

overhead results from maintaining counters for each dynamically allocated block (where

each counter counts the number of incoming pointers to the block), and frequently up-

dating these counts to reflect changes in the pointer structure of memory. Furthermore,

reference counting requires additional facilities for dealing with cyclic memory topologies.

Generational collection. Next, generational collectors mitigate the traversal cost by sep-

arating data into generations to avoid traversing all of memory. Self-adjusting computa-

tion, however, does not observe the generational hypothesis, which says that most garbage

is newly created data (Hammer and Acar, 2008). Moreover, especially in the context of

functional languages, generational assumptions often also say that pointer topology is re-

lated to the age of memory, positing that new data points to old data, but rarely the other

way around. By virtue of its large, recursively-knotted execution trace, this assumption is

also violated by self-adjusting computation.

Explicit management using domain knowledge. Intuitively, the automatic techniques

discussed above stand in for lack of domain-specific knowledge: they attempt to automat-

ically detect, using the global memory configuration of the system, when memory blocks

are guaranteed to be dead (i.e., never accessed again). In some cases, it is possible to

know this event with only local knowledge, by using domain-specific insights and reason-

ing principles. In these cases, the programmer can be explicit about how to manage the

computation’s memory resources. However, to gain control over these low-level details,

they typically program in a low-level language, introduced below.

1.6.4 Low-level languages

As first explained in Section 1.1, by low-level language, we mean languages where:

35

• The type system describes memory layout.

• The program text is a flat, static resource.

• The call stack is a distinct, bounded resource.

• The program’s management of the heap is explicit.

Concretely, we mean that both the programs and the underlying implementation are ex-

pressed in C (Kernighan and Ritchie, 1988). We note that while C does have a type system,

it is essentially just a description language for describing the format of memory; it provides

no safety guarantees.

Table 1.3 summarizes the contrasts between low-level and high-level languages, as they

pertain to our context of self-adjusting computation. We explore the key aspects of these

contrasts below.

Table 1.3: Low-level versus high-level languages

Language aspect Low-level language

(i.e., C)

High-level language

(e.g., ML, Haskell)

Functions Flat, globally-scoped Nested, lexically-scoped

Data representation Words (e.g., pointers) Algebraic, higher-order

Data types Describe memory format Have a logical interpretation

Stack space Distinct, bounded Indistinct, unbounded

Heap space Explicit reclamation Implicit reclamation

In both high-level and low-level languages, programs consist of collections of functions

and data type definitions. Sharp distinctions between low-level languages and high-level

languages center around when information is known, how it is allowed to change, and

how it is discarded. These differences give rise to the following dichotomy:

36

• Low level: statically weak, and dynamically explicit

• High level: statically strong, and dynamically implicit

We elaborate on this characterization below.

Program representation. In low-level languages, programs are dynamically explicit:

functions are flat and globally-scoped; they cannot be partially applied (and further, in

this dissertation we assume that their code is static and immutable); and a function invo-

cation’s local variables are stack-allocated, meaning that their lifetimes end when the cor-

responding function invocation returns. Programmers may construct closures, but must

do so explicitly, i.e., by declaring top-level functions, declaring records for closing these

functions, and constructing and managing space for each closure instance.

In high-level languages, programs are dynamically implicit: functions can nest and

variables are lexically scoped; functions can be partially applied, and a function invoca-

tion may construct nested functions that escape, making lifetimes of this higher-order data

generally undecidable. Hence, many operational (machine-oriented) details are unspeci-

fied, especially those related to the construction and reclamation of dynamic, higher-order

data.

Data representation. Compared with a high-level language, the data that programmers

represent in a low-level language often has a very machine-oriented structure. First, nearly

everything is mutable (except the program text, usually). Next, no uniform representation

37

for data exists6. These two facts allow for complex memory structures: sharing7, unbox-

ing8, cycles, pointer aliasing9, address arithmetic10 and bit-packing11 are all common.

By contrast, in a high-level setting, the system imposes abstractions, under which it

assumes that data has a uniform, boxed representation, and that only certain parts of it

are mutable. These assumptions simplify the implementation of polymorphically-typed

code generation and automatic garbage collection (Jones, 1996; Appel, 1998a).

Data types. As a result of these contrasts in data representation, the type system used

in each level is afferent. In low-level settings, types just express the format of memory,

and the type system does not enforce any strong, static properties. In fact, the “type” of a

pointer (i.e., the format of the memory that it points at) may not even be known statically,

or it may change dynamically, or both.

By contrast, in high-level settings, the Curry-Howard correspondence views a program’s

type as a logical proposition, and it views the program itself as a candidate proof term for

this proposition. Operationally, this logical interpretation yields powerful, sound reasoning

about what operations can occur to what operands, and in what contexts. Because it yields

such strong reasoning principles, approaches to self-adjusting computation in high-level

languages often revolve around a special extension of the underlying (higher-order) type

6. By uniform representation we mean that the system uses a memory representation such that the garbage
collector’s traversal of memory can precisely find and traverse every pointer. Languages such as C do not ob-
serve any uniform representation: they allow pointer arithmetic or other bit-level manipulations of pointers,
of which the traversal may be unaware.

7. Sharing consists of common sub-structures being shared among super-structures; e.g., consider two
trees that share a subtree, making the super-structure into a DAG.

8. Unboxing consists of storing in an aggregate block the elements themselves, not pointers to the ele-
ments; e.g., storing a tuple of tuples as a flat, array-like structure, rather than a tree-like structure.

9. Pointer aliasing consists of multiple pointers pointing at shared content, which we say is aliased. For
instance, in low-level languages such as C, local variables can be aliased by pointers.

10. Instead of locations being abstract names, they are numbers that programs manipulate arithmetically.

11. For instance, when the least-significant bits of a pointer are used to store another field of either the
containing structure, or the pointed-at structure.

38

system. See Section 2.2 for more details on work combining self-adjusting computation

and type systems. Ensuring that the programmer uses self-adjusting primitives correctly

relies on the soundness of the extended type system. By contrast, in low-level settings,

there exists no sound type system to extend12.

Heap and stack space. Programmers in low-level languages take control of explicitly

managing the heap, and must be careful not to overuse the call stack, lest they overrun

it. By contrast, automatic memory management is typically assumed in a higher-order

setting, since automatic techniques are often viewed as a necessary consequence of higher-

order programming: since function closures often capture pointers to other structures, the

liveness of objects in a higher-order program is difficult to judge locally, without a global

traversal of memory. Hence, manual management is thus not typically feasible, since this

global information is lacking (Jones, 1996; Appel, 1998a), and because general, explicit

management cannot be provided safely13.

12. We note that a large and growing body of research consists of using powerful type systems or program
logics to verify that the precarious programming patterns found in low-level languages can be used without
fear of danger. However, at present, formal verification of low-level programs poses many challenges for
researchers and proof engineers alike. In the meantime, we want a practical programming model that does
not depend on the existence or usability of a powerful type system, even if it means that the system primitives
can potentially be misused for lack of static checks, or other proofs of correct usage.

13. In Section 2.4 we discuss techniques that mix automatic memory management with some explicit
control, in the form of region-based memory management.

39

CHAPTER 2

RELATED WORK

General-purpose, programming language-based techniques for building incremental com-

putations have been studied since the early 1980’s. We refer the reader to the survey by

Ramalingam and Reps (1993) for a more detailed set of references for earlier work. In this

chapter, we focus on the work most closely related to self-adjusting computation generally,

and to self-adjusting machines, specifically. First, we characterize a selection of the most

closely related early work from the 1980’s, the 1990’s and earlier (Section 2.1). Next, we

characterize the development of self-adjusting computation (Section 2.2). Finally we con-

trast and compare to other contemporary work on incremental computation (Section 2.3)

and garbage collection (Section 2.4).

2.1 Incremental computation: Early work

Of the many earlier language-based techniques proposed to support incremental computa-

tion, the most effective ones are dependence graphs, memoization, and partial evaluation.

When surveying this early work, we characterize both how incremental constraints are

specified by the programmer, and what incremental computations result.

Incremental constraints via dependence graphs. Broadly speaking, dependence graphs

record the data dependency structure of an incremental computation. These structures

come equipped with an associated change-propagation algorithm that updates the incre-

mental computation when its input data is modified (Demers et al., 1981; Hoover, 1987).

Depending on the system and the strategy taken by its change propagation algorithm, the

dependency structures of the computation are limited to some class of expressiveness. The

way that these dependencies are specified varies from system to system; below, we survey

various approaches taken in the past.

40

Incremental constraints via attribute grammars. First proposed by Knuth (1968), at-

tribute grammars offer a declarative programming model for giving context-sensitive se-

mantics to otherwise context-free languages. That is, attribute grammars declaratively

specify sets of constraints that relate data items whose inter-dependencies are defined

by a tree structure (e.g., the context-sensitive attributes that decorate an abstract syntax

tree, such as its typing information). By virtue of their declarative nature, attribute gram-

mars deliberately sweep away the implementation details of attribute evaluation (i.e., they

sweep away the underlying method used for solving the constraints). Different systems for

attribute grammars support different attribute evaluation strategies, both conventional and

incremental. These strategies give rise to different classes of attribute grammars, where

each class is defined by the way it limits the dependency structure of its attributes. In the

systems that support incremental attribute evaluation, after the attributed tree is changed,

the system can sometimes update the affected attributes in optimal time (Reps, 1982a,b;

Reps and Teitelbaum, 1984, 1989; Efremidis et al., 1993). The definition of optimal in

this case is input-sensitive: it is based on counting of the minimum number of attributes

that must be updated after a tree edit occurs; in general this is not known until such an

incremental reevaluation is completed. In this sense, the change propagation algorithm

used in these systems is similar to that of self-adjusting computation (see Section 1.6.2).

Incremental constraints over collection operations. The INC language (Yellin and

Strom, 1991) allows programmers to work with aggregate data structures that incremen-

tally change (e.g., sets, lists, etc.). By programming with these collections’ operations,

programmers implicitly specify constraints for incrementally-updated computations. How-

ever, the INC language does not permit general recursion, and consequently, the computa-

tions that it can describe are limited.

41

Incremental reuse via memoization. Memoization, also called function caching (Pugh

and Teitelbaum, 1989; Liu and Teitelbaum, 1995; Abadi et al., 1996; Heydon et al., 2000),

is a technique that can improve efficiency of any purely functional program wherein func-

tions are applied repeatedly to equivalent arguments. In fact, this idea dates back to at

least the late 1950’s (Bellman, 1957; McCarthy, 1963; Michie, 1968). Due to its rather

strict reliance on argument equivalence, however, sometimes even small data modifica-

tions can prevent memoization-based reuse in general incremental computations (Acar

et al., 2006). These restrictions can be overcome, however, by integrating memoization

with other complementary incremental techniques; several examples of this integration

can be found in work on self-adjusting computation (Acar, 2005; Ley-Wild, 2010; Ley-Wild

et al., 2011).

Efficiency improvements via partial evaluation. Partial evaluation has an incremental

flavor: It consists of techniques where a program is given some if its input (which is fixed)

and not given other input (which can change over time). Using this information, cer-

tain analyses and compilation techniques specialize the program to the fixed input, which

speedup responses when the unfixed, changing input is modified (Sundaresh and Hudak,

1991; Field and Teitelbaum, 1990). The main limitation of this approach is that it allows

input modifications only within a predetermined partition, and the user must determine

the partitioning of the fixed and changing input parts before running the program. That

is, a partition that is fixed statically, at binding time (viz., at compilation time).

2.2 Self-adjusting computation

Self-adjusting computation generalizes the data dependence graphs of earlier techniques

(see above) by introducing dynamic dependence graphs (DDGs) (Acar et al., 2002). Unlike

42

earlier dependence graphs, these graphs are generated from programs written in a conven-

tional programming language with general recursion. Later, Acar et al. (2004) combined

these dynamic graphs with a form of memoization where partially inconsistent subgraphs

can be rearranged, reused and consistently repaired, making the approach even more effi-

cient and broadly applicable.

Self-adjusting computation first arose in high-level languages, where it benefited from

their higher-order features. They offer programming interfaces within existing functional

languages, namely, SML (Milner et al., 1990b) and Haskell (Hudak et al., 1992), either

via a library (Acar et al., 2002; Carlsson, 2002; Acar et al., 2009) or with special compiler

support (Ley-Wild et al., 2008a). Below, we survey the evolution of self-adjusting com-

putation techniques, including those that support both purely functional and imperative

programming models.

Monadic approaches, without memoization. Using Standard ML as their implemen-

tation and host language, Acar et al. (2002) were the first to formulate a general pro-

gramming interface and algorithmic implementation for self-adjusting computation. Soon

afterward, Carlsson (2002) showed how to adapt this programming model for Haskell, by

exploiting certain Haskell features such as monads and type classes. In both cases, the

early approaches of Carlsson (2002) and Acar et al. (2002) use monadic types in Haskell

and SML, respectively; these systems both encapsulate incrementally modifiable state1. In

both cases, this work did not incorporate the memoization aspect of self-adjusting com-

putation, which Acar (2005) later showed was crucial for writing a large class efficient

self-adjusting programs. We discuss the incorporation of memoization below.

Compared with later approaches, the monadic library interfaces place a comparatively

heavy cognitive burden on programmer. This results from the programmer having to pro-

1. Acar et al. (2002) characterize incremental state as modifiable, a notion that they define.

43

gram in a higher-order, modal way, with one-shot modifiable references. A one-shot ref-

erence is one that is written exactly once. We say that this interface is modal because

modifiables cannot be written or read unless in a special mode, represented by an abstract

monadic type. Entering this monadic type requires programmers to supply a function argu-

ment that contains their program’s local continuation. The write-once protocol is enforced

using a higher-order, modal style: each local continuation of a read ends with a write

operation; the write populates a modifiable reference and carries a monadic type. As a

simple illustrative example, consider the pseudo code to compute the maximum value of

two modifiable inputs, x and y, given in Figure 2.1.

1 let
2 val m_max = mod (-- make mod. ref., enter changeable mode
3 read m_x (fn x => -- read from modifiable holding x
4 read m_y (fn y => -- read from modifiable holding y
5 write max (x, y)))) -- write to modifiable, leave chg. mode
6 in · · · -- use modifiable holding max

Figure 2.1: max(x, y) expressed with modal, one-shot modifiable references.

To read a modifiable requires the population of another modifiable reference, which

holds the incremental information gathered. Though stateful, these earlier systems en-

forced a kind of correlated pure execution, in the sense that all data structures built from

modifiable references are acyclic. This acyclicity invariant is enforced by a combination of

syntactic techniques which includes a special modal type system (Acar et al., 2002). Asso-

ciated formal semantics and their proofs of consistency relied on the essential elements of

this modal design with its purely-functional correspondence (Acar et al., 2007).

In the case of the early library-based SML implementations of self-adjusting compu-

tation, this higher-order modal/monadic style comes without any special assistance from

the compiler. Specifically, if they want to access incremental state, the programmer must

provide a function that populates a new piece of incremental state; Figure 2.1 gives an

44

example of this, where the programmer creates m_max to hold the result of accessing mod-

ifiable references x and y and computing their maximum.

To later access the newly created modifiable state of m_max, the programmer needs to

provide another function and another modifiable reference. By using this higher-order

interface, the programmer manually performs a compiler transformation of their program,

explicitly creating λ-abstractions to record and suspend the control flow that follows each

modifiable access (i.e., each modifiable access’s continuation).

The reader may recognize this pattern as one that can be expressed through a monad

(Wadler, 1995). Indeed, the recognition of this connection between incremental program-

ming and monadic programming is at least a decade old (Carlsson, 2002). While Haskell

has specific tool and language support for monads, the the incorporation of memoization

into change propagation also requires a higher-order style, and to this author’s knowledge,

has not been incorporated into the work of Carlsson (2002).

Monadic approaches, with memoization. Memoization of dynamic dependency graphs

is a key ingredient in self-adjusting computation (Acar et al., 2004), one that sharply

distinguishes it from other work on programming with incrementally-changing state. In

particular, DDG memoization gives rise to a larger class of efficient execution trace edits,

and consequently, a larger class of efficient input changes. For instance, in recursive loops

consuming recursive input structures (such as lists), memoization within the recursive loop

allows for individual recursive iterations to be inserted or removed from the sequence,

without having to reexecute recursive iterations that are not affected (Acar et al., 2004).

As with libraries for incremental state, libraries implementing memoization are natu-

rally higher-order: given a client’s function, and arguments to be applied (viz., a thunk)

the library tries to search for a viable match in the prior execution; the client’s function is

applied only if no such match is found.

45

The initial approach with the combined features of incremental state and memoization

were implemented as library-based approaches in SML (Acar et al., 2006). When program-

mers want to memoize a function call, as when they access modifiable memory, this library

interface demands that they η-expand the code being memoized2, essentially making all

the higher-order plumbing of the memoized code explicit (Acar et al., 2006).

Hence, early approaches benefited heavily from being hosted by higher-order lan-

guages: recording thunks, reusing thunks and re-executing thunks constitutes the core

behavior of self-adjusting computation. This programming style is expressive, in that it

is general-purpose, but it is also inexpressive, in that doing simple tasks is highly cum-

bersome: Essentially, the programmer manually subdivides their code’s logic into several,

smaller pieces organized by the placement of modifiable accesses and memoization points.

The created boundaries are sometimes, but not always, in close correspondence with

the natural conceptual boundaries of the program’s logic. When the code boundaries re-

quired by the primitives are numerous, or misaligned with the code boundaries in the

conceptual view, the code becomes harder to understand. The cognitive burden of pro-

gramming in this style comes from having to think about and spell out all the higher-order

plumbing, and mix it with the conceptual logic of the program. This mixing is burdensome

to initially create; moreover, making small changes is harder compared with the uninstru-

mented version of the program. As such, some recent work on self-adjusting computation

focuses on improving the programmer’s experience.

Easing the programmer’s burdens. In contrast to Acar et al. (2006), who use a li-

brary of modal self-adjusting primitives, Ley-Wild et al. give a more programmer-friendly

approach where a compiler does the work to translate certain self-adjusting parts of an

SML program into a specially-instrumented continuation-passing style (CPS) (Ley-Wild

2. An η-expansion of a arrow-typed term encloses the original term with an additional λ-abstraction.

46

et al., 2008a; Ley-Wild, 2010). A key feature of this program representation, as with the

monadic style of earlier work, is that its higher-order control-flow becomes explicit (Fried-

man et al., 1984; Appel, 1991; Danvy and Hatcliff, 1993). Unlike earlier work, however,

this representation is generated by the compiler, not by the programmer.

While Ley-Wild et al. (2008a) still uses a type system to delimit the self-adjusting code

and enforce invariants in the way that incremental state is used, this type system gives

first-order types to the operations that access and modify incremental state, as opposed

to the higher-order types used in previous monadic systems3. Hence, a programmer can

more directly see the conventional semantics of the program, without having to be explicit

about the higher-order plumbing required to construct and save thunks. Though much

easier to use than earlier approaches, the programmer must still be explicit about what is

incrementally modifiable.

Chen et al. (2011) recently showed how a Hindley-Milner-style type system can be

extended with implicit self-adjusting computation primitives, using type annotations to

implicitly and polymorphically indicate where incremental modification can occur. After

inferring where the (implicit) self-adjusting primitives must be placed, the compiler uses

knowledge of the self-adjusting primitive types to both translate and optimize the self-

adjusting target program (Chen et al., 2012).

In the systems above, self-adjusting programs have a purely-functional flavor, as modi-

fiables must be written exactly once4.

High-level, imperative semantics. By giving an imperative higher-order semantics, Acar

et al. (2008) lifted the write-once restriction on modifiable state that earlier work im-

3. In Ley-Wild et al. (2008a)’s system, reading from incremental state is a first-order order operation, but
it uses a special arrow type to distinguish it from pure, non-self-adjusting code, with which it can interoper-
ate.

4. Through the use of special abstract data types, Ley-Wild (2010)’s complete system incorporates many
extensions, including various imperative features. We discuss this further in Section 2.2.

47

posed on self-adjusting computations. Based on their imperative semantics, they describe

a library-based implementation for SML, which resembles an earlier proposal (Acar et al.,

2006), except extended with general imperative modifiables, as opposed to modal one-

shot modifiables.

As mentioned above in Section 2.2, Ley-Wild (2010) makes self-adjusting programming

easier by giving a compilation strategy based on a specially-instrumented continuation-

passing-style (CPS) translation. In addition to providing one-shot modifiable references,

he extends the special CPS translation to support more general imperative primitives (Acar

et al., 2010). Unlike prior work, the programmer writes higher-order code when concep-

tually necessary; it is not required by the primitives for accessing incremental state5.

High-level versus low-level semantics. The imperative semantics developed for self-

adjusting computation in and for high-level languages are not well-suited for modeling

low-level languages. By low-level we mean stack-based, machine-oriented languages that

lack strong type systems and automatic memory management6. A low-level semantics of

self-adjusting computation is one that explicitly manages its resources including the heap,

stack and execution trace (Section 1.2 introduces these challenges).

A low-level account is missing in the imperative semantics of Acar et al. (2008). In-

stead, the semantics effectively relies on an oracle to generate reusable traces, and leaves

the internal behavior of this oracle unspecified. Consequently, the oracle hides many of

the practical issues that arise, such as how memory allocation and collection interact with

trace reuse.

Ley-Wild (2010) gives an explicit account of trace editing, but his semantics requires

the program be converted into continuation-passing style. By virtue of being based on

5. However, in Ley-Wild (2010)’s library interface, given in section 6.3, one sees that memoization still
uses a higher-order programming interface.

6. See Section 1.6.4 for a longer introduction to the notion of low-level used in this dissertation.

48

continuation-passing-style, this approach is very general. For instance, this approach sup-

ports patterns of control flow more general than those limited to a stack discipline. For

instance, their system supports exceptions; it is conceivable that general control operators

such as call/cc could also be incorporated7.

However, by being so general, the approach demands more than required for the spe-

cific case of low-level, stack-based programs, since these programs do not require the

full range of incremental control-flow patterns expressible via continuations. Moreover,

by maintaining the self-adjusting program’s continuation as an incrementally modifiable

structure, Ley-Wild (2010)’s approach requires powerful self-adjusting primitives in the

target of the CPS translation. Namely, to efficiently incrementalize recursive flows of con-

trol, it requires separate memoization and keyed allocation primitives, as well as higher-

order modifiable references.

The previously-purposed approaches for self-adjusting computation demand high-level

host languages because they require higher-order functions in either the source language

or the target language—as exemplified by the library and compilation approaches of Acar

et al. (2008) and Ley-Wild (2010), respectively. By requiring high-level host languages,

these approaches forgo control of low-level machine-oriented details. These low-level de-

tails, which are relevant for an operational, machine-oriented view, include the manage-

ment of spatial resources such as the stack, execution trace and modifiable heap.

In Chapter 3 of his dissertation, Acar presents a machine model for self-adjusting com-

putation that he calls the closure machine (Acar, 2005). Within the context of that work,

the closure machine was used as a tool for algorithmic analysis (i.e., complexity analysis

for the algorthmics presented in other chapters). From a distance this model is quite simi-

lar to the one proposed in this thesis; however, upon closer inspection we note important

7. Call-with-current-continuation, often abbreviated as call/cc, is a programming primitive that captures
the current execution context and binds it to a program variable; this primitive can be used to build very
general operations to manipulate a program’s control-flow (Friedman et al., 1984).

49

distinctions: (1) there is no notion of trace memoization, just allocation memoization (so-

called keyed allocation); (2) there is no characterization of the call stack size with respect

to change propagation; (3) there is no characterization of memory management; (4) there

is no attempt to connect this model with either a formally-proven semantics, nor a usable

surface language. Indeed, this model is the seed for the work presented in this dissertation,

but leaves much left to be determined.

2.3 Incremental computation: Contemporary work

Researchers working within and outside the context of self-adjusting computation continue

to address incremental computations in a variety of contexts. We survey these below.

Parallelism. More recent work generalizes self-adjusting computation techniques to sup-

port parallel computations. We briefly survey current challenges. Hammer et al. (2007)

presents a preliminary algorithm for parallel change propagation which relaxes the total

order trace structure imposed by sequential self-adjusting computation to a partial order.

However, the paper does not incorporate any memoization technique, which due to its

interaction with the execution trace, seems to be a difficult technique to generalize to a

setting of general-purpose parallel execution. Other work considers parallel self-adjusting

computation for individual problems (Acar et al., 2011; Sümer et al., 2011), as well the

map-reduce framework (Bhatotia et al., 2011), a more general setting.

Burckhardt et al. (2011) consider a parallel setting where concurrently-executed threads

communicate using primitives that resemble that of a revision control system, e.g., CVS (Ves-

perman, 2003) or subversion (Pilato, 2004). In particular, these primitives tame parallel

thread programming by limiting their interaction patterns to graph structures that they re-

fer to as revision diagrams. The dependencies arising from these directed graphs consist of

a special lattice structure (Burckhardt and Leijen, 2011). It is this lattice structure is that

50

is cached, reevaluated and incrementally reused. However, due to their limited support

for memoization, certain incremental changes to revision diagrams prevent efficient reuse.

For instance, compare the arithmetic expression tree evaluation example handled by both

Hammer et al. (2009) and Demetrescu et al. (2011): When an internal node in the tree

is inserted or removed, these sequential approaches can recover the work associated with

the unaffected subtree beneath it (see Section 3.6 for a detailed discussion of this example

in the context of this dissertation). By contrast, since this edit of the input tree affects

the parent-child relationships of the revision diagram that evaluates it, the comparatively

fragile memoization technique proposed by Burckhardt et al. (2011) requires a complete

reevaluation of the affected subtree.

DITTO: incremental invariant checks for Java. DITTO offers support for incremental

invariants-checking in Java (Shankar and Bodik, 2007). It requires no programmer an-

notations but only supports a purely-functional subset of Java. DITTO also places further

restrictions on the programs; while these restrictions are reasonable for expressing invari-

ant checks, they also narrow the scope of the approach.

Reactive imperative programming. Demetrescu et al. (2011) consider a class of dy-

namic dependencies that arise from one-way data-flow constraints. Their techniques repre-

sent a combination of high and low-level techniques: They give high-level abstractions for

creating and constraining reactive memory, the memory that holds incrementally-changing

values; to efficiently implement this memory, they rely on clever low-level techniques at

the level of the operating system kernel. They perform empirical comparisons to CEAL

that show that their techniques are very competitive, and that their approach can be more

efficient (in terms of time) for the problems that they consider.

51

IncPy: memoization for scientific workloads in python Guo and Engler (2011) intro-

duce a variant of python that specifically targets scientists and scientific work flows. They

evaluate their tool in case studies with real scientists’ scripts and get speedups in these

contexts via automatic (file system-level) caching of interemdiate results. Unlike earlier

work on memoization (or function caching), the work of Guo and Engler (2011) begins

with an effectful, IO-oriented scripting language (Python) and specifically targets research

scientists; in this context, it gives a practical tool to an audience in need. The tool works by

recording dependencies between files and python scripts, where it gives coarse resuse of

a function’s results whose input (files and data) are not affected. Hence, while useful and

demonstrably practical in scientific settings, this work does not offer a general solution for

creating fine-grained incremental computations: It lacks the ability to adjust efficiently to

fine-grained changes within incrementally-changing datasets.

2.4 Garbage collection

Garbage collection has been shown to be effective in improving programmer productiv-

ity often without decreasing performance significantly (Zorn, 1993; Berger et al., 2002).

Numerous techniques for garbage collection (McCarthy, 1960; Collins, 1960; Baker, 1978;

Diwan et al., 1993; Tofte and Talpin, 1997) have been proposed and studied; we refer the

reader to Cohen (1981) and Wilson (1992) for surveys.

It is worth noting that much garbage collection research is done with assumptions

that make sense for conventional programming, but which are violated by self-adjusting

computation. As one example, it is typically assumed that garbage is much more likely to

be young than old. This assumption leads to approaches that are badly misaligned with

the setting of incremental or self-adjusting computation, such as ones where reclaimation

cost is proportional to total object lifetime (Lieberman et al., 1983).

52

Traversal-based collection. As outlined in Section 1.6.3, non-traversal collection exists.

However, it typically comes as a form of reference counting, which has its own serious

shortcomings and limitations (e.g., the difficultly of detecting and collecting cyclic data

structures). Hence, most general-purpose techniques for collecting memory consist of

some kind of traversal of the pointer-structure of memory. Many garbage collection tech-

niques can be classified based on how they perform this traversal (e.g., it may be done

sequentially, incrementally, concurrently, or in parallel, etc.), and what assumptions they

make about the memory being traversed (e.g., it may or may not have a uniform, tagged

representation).

Of the proposed techniques, sequential non-incremental traversal of memory with a

uniform representation is common in high-level languages. As outlined in Section 1.6.3,

these high-level langauges make the wrong assumptions about memory use in self-adjusting

computation, and their traversal of memory leads to performance that degrades quickly as

the heap becomes occupied (e.g., by a large execution trace).

Customized memory traversal. Researchers have explored ways of customizing existing

traversal-based collectors. For instance, traversing collectors have been extended to offer

domain-specific customization in the form of simplifiers (O’Neill and Burton, 2006). Sim-

plifiers can help reduce total live memory by running programmer-supplied code during

memory traversal that mutates the heap in a semantics-preserving way. As a second exam-

ple, researchers can also piggyback other actions on the memory traversal of GC, such as

domain-specific invariant checks (Aftandilian and Guyer, 2009; Reichenbach et al., 2010).

In contrast to customized traversal-based approaches, self-adjusting machines perform

basic memory management of the trace without fully traversing it, by instead integrating

memory management into change propagation (as opposed to, for instance, the other way

around with change propagation as a subroutine of garbage collection).

53

Region-based memory management. Region-based memory management shows that

explicit low-level and automatic high-level techniques can be mixed effectively. These

techniques apply when several allocations’ lifespans coincide and this shared lifespan can

be proven to end by a certain execution point (Ruggieri and Murtagh, 1988; Tofte and

Talpin, 1997; Grossman et al., 2002; Hallenberg et al., 2002; Tofte et al., 2004). In these

cases, the allocations are coalesced into a shared region of memory. The detection of

regions may be made explicit by the programmer or be inferred by the system; in either

case, the decision comes with a check and a proof of soundness. Regions are most notably

used to mimic the stack-allocated local variables of C: all stack variables of a stack frame

have a lifespan that begins when the frame is pushed, and ends when the frame is popped.

However, regions need not follow a stack discipline, and many systems explore extensions

that permit other patterns (See Tofte et al. (2004) for a retrospective and a more detailed

survey of related systems).

Although self-adjusting machines do not use region-based memory management tech-

niques per se, in the future it might be possible to describe their management technique

based on them. However, instead of relying on a particular type system explored by past

work, one would require more complex semantic reasoning to determine when a region

becomes garbage. In particular, when change propagation revokes an interval from the

self-adjusting machine’s execution trace, we need to exploit the knowledge the memory

regions allocated by this interval will become garbage at the end of change propagation.

The soundness of this reasoning holds because change propagation yields a computation

that is consistent with a from-scratch execution, a fact that is difficult (or impossible) to

establish without domain-specific knowledge (See Section 4.4 for an example of such an

argument, based on a formal model of a self-adjusting machine).

54

CHAPTER 3

SURFACE LANGUAGE

We describe a C-based surface language called CEAL for writing low-level self-adjusting

programs. We introduce the programming model used by CEAL (Section 3.1), which

is based on the notion of levels. We describe the programming abstractions modifiable

memory (Section 3.2), and the outer and inner levels of a CEAL program (Sections 3.3

and 3.4). We describe how self-adjusting machine resources interact in the CEAL pro-

gramming model (Section 3.5). We illustrate the programming model with two simple ex-

amples (Sections 3.6 and 3.7). Finally, we describe certain practical concerns (Sections 3.8

and 3.9).

3.1 Programming model

The CEAL language is a C-like surface language for writing low-level programs that contain

self-adjusting computations. The CEAL language is closely related to the C language: It

restricts some features of C, and it adds several new features for creating and managing

self-adjusting computations. A CEAL program consists of several subprograms, which we

variously refer to simply as programs or levels. These levels consist of the non-self-adjusting

outer level, the self-adjusting inner level, and optionally, the foreign level. In this section, we

introduce these levels conceptually. We give a detailed discussion of the outer, inner and

foreign levels in Sections 3.3, 3.4 and 3.9, respectively.

The role of the inner level is to define the behavior of self-adjusting programs. The

role of the outer level is to create and manage the self-adjusting programs written in

the inner level, including the creation and mutation of the inner level’s input data. The

role of the foreign level is to write conventional C code that interoperates with both the

inner and outer levels, which are both written in CEAL. Such foreign code is is useful, for

55

instance, if either the inner or outer levels wish to call certain standard C library functions,

either when these functions’ interfaces do not obey the restrictions imposed on CEAL code

(Section 3.9), or when the library interfaces consist of auxilliary functions or state that are

included (from their corresponding C header files) into the CEAL program text.

The outer and inner levels are written in the CEAL language, and are compiled with

the CEAL compiler. The foreign level is written in conventional C code, and is separately

compiled and linked with the output of the CEAL compiler. While foreign C code can be

written separately from CEAL code and linked later, it is often more convienent to intermix

these levels in a single source file. Moreover, for certain common implementations of

standard C header files, this mixing is difficult or impossible to avoid1. Our compiler

carefully separates each level before it compiles the inner and outer CEAL code to target C

code; it recombines this target C code with any foreign C code extracted from the inputed

source code.

The C language can be viewed as giving a portal (machine-independent) syntax for

writing low-level, resource-aware code. In a similar way, the CEAL language can be viewed

as giving a portal syntax for writing low-level, resource-aware code for an extension of

the underyling machine model. In this extended model, the underlying (self-adjusting)

machine model has an additional resource, namely, that of a self-adjusting execution trace.

This machine model is implemented by CEAL by building on the C language, by extending

it with a special C-based run-time library that provides implementations of the traced

inner-level primitives.

1. In these cases, the library header files include auxilliary functions or state which, through the C pre-
pocessor, are included into the CEAL source file before it reaches the CEAL compiler.

56

3.2 Modifiable memory

Modifiable memory consists of those memory locations on which the behavior of self-

adjusting computations depend, whose values generally change over time. Past language

designs for self-adjusting computation distinguish modifiable data from non-modifiable

data, and typically require that the programmer explicitly declare and create modifiable

data differently from non-modifiable data. In CEAL, however, modifiable data implicitly

consists of all non-local memory, which we define below. This assumption simplies the

initial implementation of self-adjusting programs by CEAL programmers: The language

makes the conservative assumption that all non-local data dependencies may be relevant

to the modifiable output of the self-adjusting computation. To increase performance, CEAL

allows programmers to refine this (safe) conservative assumption with simple annotations,

which we introduce in Section 3.8. Using these annotations, programmers explicitly qual-

ify certain fields, indicating if and how they change value.

Local versus non-local memory. In CEAL, local memory consists of local function vari-

ables that are not explicitly qualified as changing, and which are not aliased by pointers.

Conservatively, CEAL defines non-aliased local variables as those (unqualified) variables

whose addresses are not taken, i.e., they are not used with the address-of operation & of

C/CEAL. In the current CEAL language, local memory must also be scalar-sized (viz., the

size of a pointer or smaller). The CEAL language considers local variables with non-scalar-

sized aggregate types (viz., those with a multi-field struct type) to also be non-local,

even if they are not pointer-aliased2. When local variables do not meet the criteria for

being treated as local memory (if they are too large in size, or have the potential to be

pointer-aliased), the CEAL language implicitly promotes them to non-local memory.

2. This design choice merely simplifies the CEAL compiler’s conversion of the program’s local memory
into static single assignment (SSA) form; this conversion can be generalized to multi-field structures where
fields of structures are treated in an SSA-like way, when possible.

57

Non-local memory consists of all other memory locations that are not local by the

definition above. These memory locations consist of those for global variables, heap data,

statically-allocated data3 , and local variables whose addresses are taken, and thus may be

aliased by pointers. Since each of these memory locations can potentially be affected by

both the inner and outer levels, they naturally fill the role of modifiable references: They

offer a shared space for communicating changing inputs and outputs between the inner

and outer levels.

Memory allocation and reclamation. Our surface language provides a single alloc

primitive for allocating memory parameterized by a type, as in the following examples:

1 T* x = alloc(T);
2 int y* = alloc (long);
3 struct myrecord* z = alloc (struct myrecord);

Whether the allocation is collected automatically depends on its allocation context. In the

context of the outer level, reclaimation is manual via the kill primitive:

1 kill(x); kill(y); kill(z);

In the context of the inner level reclaimation is automatic and implicit (furthermore, the

kill primitive is ignored).

3.3 The outer level

The outer level of a CEAL program consists of all of its non-self-adjusting code (but still

excludes foreign C code). Its role is create and manage the self-adjusting computations of

the inner level. To do so, CEAL augments C with the following additional keywords:

• The inner_self primitive creates a new self-adjusting computation.

3. In both C and CEAL, this data is indicated by the static keyword; it resides within the local scope of
a function, but is not stack-allocated.

58

• The propagate primitive change-propagates the current self-adjusting computation.

The inner_self primitive has a higher-order flavor: It is parameterized by a CEAL

function and a list of arguments to apply. For instance, to create a self-adjusting compu-

tation from the application of the function compute on the arguments arg1 and arg2, the

CEAL programmer writes the following code at the outer level:

1 int result = inner_self (compute) (arg1, arg2) ;

This use of this (outer level) primitive instansiates a new self-adjusting computation at the

inner level that consists of an initial (from-scratch) evaluation of the compute function’s

application to the given arguments arg1 and arg2.

Once run initially, the modifiable memory written at the inner level can be read by

the outer level as modifiable output. Though shown above returning a value, the CEAL

language currently restricts functions used with inner_self to return void. This lan-

guage restriction can be relaxed using a compiler transformation similar to one already

implemented by the compiler (viz., destination-passing-style conversion). Alternatively,

programmers can always apply this conversion manually, by adding an explicit destination

argument to the functions that they use with inner_self:

1 int result ;
2 inner_self (compute) (arg1, arg2, & result) ;

By taking its address to pass by reference, this code conversion implicitly moves the local

variable result into local-local, modifiable memory, where it holds the changing return

value of the inner computation.

After receiving an initial output of the inner level, the outer level can mutate the input

memory of the inner level; aferwards, it can automatically update the output of the inner

level using the propagate primitive. No other parameters are required for this primitive;

it implicitly change-propagates the current self-adjusting computation’s execution trace:

59

1 propagate ;

While in general the outer level program can simultaneously manage multiple self-adjusting

inner programs, for simplicitly we assume throughout this chapter that each outer pro-

gram manages at most one inner program. We give a more general interface to creating

and change-propagating inner programs in Chapter 6, in the context of CEAL’s run-time

system implementation.

Determining inner versus outer levels. The CEAL language does not require that pro-

grammers declare the level of functions a priori. That is to say, in CEAL, functions are not

tied to either the inner or outer level at the exclusion of the other; rather, the level of a

function depends on the context of its use in the CEAL program. In the listing above, the

function compute is neither intrinsically inner nor outer level; it can be used at both levels,

and its status as “inner level” above is deterined by its use with inner_self. When used in

a outer level context, appearances of inner level primitives (described below) are ignored;

similarly, when used at the inner level, uses of the outer level kill primitive are ignored.

Currently, CEAL forbids using either inner_self or propagate at the inner level, and our

compiler issues a compile-time error in both cases.

3.4 The inner level

The role of the inner level is to define both the initial (from-scratch) behavior of a self-

adjusting computation, as well its incremental-update behavior during change propaga-

tion. This behavior is determined by the way that the inner level (implicitly) controls the

execution trace resource exposed by the CEAL language abstractions. In this sense, the

language name CEAL can aptly be expanded to C-based, Execution-Adjusting Language.

The CEAL surface language gives a compositional, portal way of describing this trace

and controling it as a resource. Though it masks tedious details, CEAL simultaneously

60

provides a minimal layer of abstraction over the run-time interface, which consists of all

the low-level details of trace construction and maintenance. Specifically, CEAL separates

the programmer from the low-level details of saving and restoring local state from the

trace, as well as from the details of determining exactly which execution points should be

traced and recorded, versus executed but untraced. Though not always made syntactically

explicit in concrete syntax, the CEAL programmer remains in control over these decisions,

as we explain below.

The traces created by CEAL inner programs have a structure that is determined in

three complementrary, but ultimately orthogonal ways. These three dimensions of control

correspond to three resources of the underlying self-adjusting machine model:

• Modifiable memory records non-local state changes.

• The control stack manages nested frames of local state.

• The execution trace correlates local state with past execution on non-local state.

We explain the concepts behind each machine resource above. We focus on how these

concepts appear to the programmer, and how they help the programmer to control the

structure of inner program’s execution trace.

Modifiable memory operations consist of allocating, dereferencing and updating non-

local state (i.e., modifiable memory). These inner-level effects are traced implicitly, in the

sense that no special syntax is used to distinguish pointer dereferences that are traced (as

a modifiable memory dependency), versus those that are not. Rather, the programmer

supplies type qualifiers to distinguish the later case (Section 3.8).

61

Stack operations consist of push and pop operations, which are implicit in C syntax;

they correspond to (most) function calls4. In addition to being implicit around every

(non-tail-recursive) function call, the CEAL language primitives include syntax for insert-

ing explicit pairs of balanced push and pop operations. For instance, the following code

isolates statement S2 from statements that preceede and follow it by employing a cut block.

1 S1 ; cut { S2 } ; S3

The extensional meaning of this code is equivalent to the statement sequence S1;S2;S3.

Intensionally, the cut block alters the stack behavior of the code via function outlining,

which consists of the following (non-local, tedious) code transformation: create a new

function abstraction fS2 whose body is S2; the parameters of function fS2 consist of the

live local variables upon statement S2’s entry; the return values of function fS2 consist

of the live local variables upon statement S2’s exit; replace the cut block with a call to

function fS2, passing and returning the live local state to and from fS2 . Clearly, this is a

meaning-preserving transformation, in terms of extensional semantics (i.e., ignoring re-

source usage such as the call stack). This primitive is significant only in an intensional

sense, which we discuss further below.

Trace checkpoints consist of the points during execution where a snapshot of the cur-

rent local state is saved in the trace. These points come in two varieties: update points

and memoization points (or memo points for short). Semantically, memo points and update

points both preserve the extensional meaning of the program; they both alter the inten-

sional meaning during change propagation, in terms of information saved in the execution

4. Some C compilers may transform certain function calls into non-returning jumps, as an optimization.
In these cases, the stack does not grow in size. This is commonly refered to as tail-call optimization, since it
optimizes those function calls in tail position, i.e., immediately before the calling function returns control to
its caller.

62

trace. Syntactically, memo points are explicit (and “opt-in” where desired), and update

points are implicit5 . We explain their various uses below.

In the case of both checkpoint varieties, we say that these points guard the execution of

a subtrace. This subtrace is a subtree of the execution trace; it corresponds to the interval

of execution consisting of the checkpoint’s local continuation, up to and including the end

of its immediate stack frame. Using cut blocks, introduced above, the CEAL programmer

can further refine this tree structure easily; these blocks are syntactic sugar that insert

additional pairs of balanced stack operations (a stack push followed by a corresponding

stack pop).

Memo points. Programmers can explicitly add memo points using a simple memo state-

ment primitive, as in the following code:

1 S1 ; memo ; S2

Extensionally, the meaning of this code is equivalent to the statement sequence S1;S2.

Intensionally, the memo primitive guards statement S2 with a memo point that is identified

by this (static) program point, along with the current live local state upon entry to S2 (or

equivalently, the live local state upon exit of S1).

Update points. By default, the CEAL language associates every read of non-local memory

with an implicit update point that dominates it immediately. Compilers for CEAL can

implicitly coalesce these update points during compilation when they can be safely shared

by larger blocks of code (our current compiler does this optimization to a limited extent).

5. In Section 8.1, we describe future work that makes update points explicit, and provides a way to
“opt-out” of their implicit positioning by the CEAL compiler.

63

3.5 Resource interaction

The CEAL language allows programmers to control the underlying stack and trace re-

sources using orthogonal primitives that permit local reasoning, and localized evolution of

program logic (i.e., the primitives can be inserted and removed using local code changes).

Since they permit local changes, they lead to straight-forward evolution of code from hav-

ing coarse-grained to fine-grained incremental behavior. Yet, the intensional meaninings

of these primitives, while highly orthogonal in nature, still witness interactions that are

inherent to resource interactions in the underlying machine model (viz., self-adjusting

machines).

In the CEAL programming model, (and more generally, in the self-adjusting machine

programming model), stack operations affect the trace’s shape, and consequently, these

operations help to define the possible dynamic behaviors when traces adjust to changes.

Recall that, ignoring the trace resource, our stack operations are conventional in terms of

their intensional semantics: Push operations extend the control stack of the underlying

machine with a new stack frame that saves a return control context; pop operations (alter-

natively, returns) remove the topmost evaluation context, and return control to it, either

passing no extra information (in the case of a void return type), or perhaps one or more

values (viz., the return values).

Stack operations implicitly control the trace structure. In addition to managing local

state and implicitly controlling the set of live local variables (viz., the local state saved and

restored from the trace at checkpoints), stack operations also define the nesting structure

of the trace, which can be thought of both as a temporal sequence with nested subse-

quences, and as a tree with nested subtrees. In particular, these stack operations determine

the branching structure of the corresponding execution trace; as a first approximation, one

64

can think of the execution trace as an incrementally-constructed call graph (though the in-

formation stored therein is generally more fine-grained than that of a call-graph).

During execution of the inner-level program, the trace grows in a depth-first order:

Statements extend the current execution interval, push operations begin a nested interval

(a nested subtree); pop operations end the current nested interval (nested subtree), and

resume extending the top-most interval. To better see how stack operations determine the

trace structure, consider a balanced pair of push and pop operations defined by the cut

block of the following code:

1 S1 ; cut{ S2 } ; S3

The cut block isolates the interval of execution for S2 (and its trace T2) from that of the

surrounding execution context (and its trace T1; []; T3). In this sense, balanced pairs of

push/pop operations define the nesting structure of the trace (viz., the nested intervals of

the sequence, under the sequence-oriented view).

Many update or control points may be executed before a particular execution point in

question. However, each control point in the code is guarded immediately by at most one

unique memo point, and at most one unique update point. These immediate guardians are

defined by the CEAL language to be those memo/update points that immediately dominate

the point in question6. When reasoning about the incremental behavior defined by the

inner level of a CEAL program, it are these immediate guards that determine the finest

granularity at which execution intervals (trace subtrees) can be reevaluated (via an update

point) or reused (via a memo point). Hence, by having control over their placement, the

CEAL programmer can implicitly control (by implicitly extending or limiting) the possible

behaviors of the trace during change propagation.

6. Intuitively, the immediate dominator relation is a tree where parent-child relationships are determined
by domination; in turn, a control point dominates another if all possible control paths that reach the point
in question must first travel through the candidate domination point.

65

Stack operations implicitly control the trace dynamics. As described above, trace

checkpoints determine where local state is saved in the trace; stack operations define what

subset of local state is saved in the trace (viz., those variables that are live upon entry to

and exit from the nested execution interval). Given this structure, the two checkpoint va-

rieties play dual roles within the dynamics of the trace during change propagation. Memo

points save the local state for the purposes of caching and resuing the work performed by

the guarded code, including its resulting return value and its trace. Update points save

the local state for the purpose of incrementally reevaluating the work performed by the

guarded code; this reevaluation occurs if and when the modifiable values accessed by the

corresponding subtrace change value (in which case these inconsistencies in the prior trace

will be replaced).

Syntactic sugar. Since memo points and cut blocks often go together in practice, CEAL

introduces syntanctic sugar that defines a memo block with the following syntax:

1 memo { S }

The memo block above is equivalent to a cut block whose body is immediately guarded by

a memo point, as in the following:

1 cut { memo ; S }

Further, CEAL generalizes memo and cut forms beyond C blocks and statements, and al-

lows them both to be used in the context of C expressions, as below:

1 T1 x1 = memo(e1);
2 T2 x2 = cut (e2);

These have an analogous meaning to their block-form counterparts:

1 T1 x1; memo { x1 = e1 };
2 T2 x2; cut { x2 = e2 };

66

typedef struct node s* node t;
struct node s {

enum { LEAF, BINOP } tag;
union { int leaf val;

struct { enum { PLUS, MINUS } op;
node t left, right; } binop;

} u; };

Figure 3.1: Type declarations for expression trees in C.

int eval (node t root) {
if (root->tag == LEAF)

return root->u.leaf val;
else {

int l = eval (root->u.binop.left);
int r = eval (root->u.binop.right);
if (root->u.binop.op == PLUS) return (l + r);
else return (l - r);

} }

Figure 3.2: The eval function in C.

3.6 Example: Reducing Trees

For our first example, we consider a simple evaluator for expression trees, as expressed

with user-defined C data structures. These expression trees consist of integer-valued leaves

and internal nodes that represent the binary operations of addition and subtraction. Fig-

ure 3.1 shows their representation in C. The tag field (either LEAF or BINOP) distinguishes

between the leaf val and binop fields of the union u. Figure 3.2 gives a simple C function

that evaluates these trees.

Suppose we first run eval with an expression tree as shown on the left in Figure 3.3;

evaluating ((3 + 4) − 0) + (5 − 6), the execution will return the value 6. Suppose we then

change the expression tree to ((3 + 4) − 0) + ((5 − 6)+5) as shown in Figure 3.3 on the

67

+

+

--

a

b

c

d e

f

g

h i
3 4

0 5 6

a1 a2 a3

b1 b2 b3 g1 g2 g3

c1 c2 c3 f1 h1 i1

d1 e1

+

+ -

-

a

b

c

d e

f
g

h i
3 4

0

5 6

+

k

j

5

a1 a2 a3

b1 b2 b3 j1 j2 j3

c1 c2 c3 f1 g1 g2 g3 k1

d1 e1 h1 i1

Figure 3.3: Example input trees (left) and corresponding execution traces (right).

right. How shall change propagation efficiently update the output?

Strategy for change propagation. We first consider the computation’s structure, of

which Figure 3.3 gives a summary: the upper and lower versions summarize the compu-

tation before and after the change, respectively. Their structure reflects the stack behavior

of eval, which divides each invocation into (up to) three fragments: Fragment one checks

the tag of the node, returning the leaf value, if present, or else recurring on the left sub-

tree (lines 2–5); fragment two recurs on the right subtree (line 6); and fragment three

combines and returns the results (lines 7–8).

In Figure 3.3, each fragment is labeled with a tree node, e.g., b2 represents fragment

two’s execution on node b. The dotted horizontal arrows indicate pushing a code fragment

on the stack for later. Solid arrows represent the flow of control from one fragment to the

next; when diagonal, they indicate popping the stack to continue evaluation.

Based on these two computations’ structure, we informally sketch a strategy for change

propagation. First, since the left half of the tree is unaffected, the left half of the compu-

68

tation (a1–b3) is also unaffected, and as such, change propagation should reuse it. Next,

since the right child for a has changed, the computation that reads this value, fragment a2,

should be reevaluated. This reevaluation recurs to node g, whose subtree has not changed.

Hence, change propagation should reuse the corresponding computation (g1–g3), includ-

ing its return value, −1. Comparing j1–j3 against g1–g3, we see that a’s right subtree

evaluates to 4 rather than −1. Hence, change propagation should reevaluate a3, to yield

the new output of the program, 11.

Complexity of change propagation. To consider the complexity of change propagation

for this expression tree evaluation program, let us first generalize the change considered

above to a class of changes of unit size. Define this class of (unit sized) changes as all

of those that insert, remove or replace a constant-sized, continuous group of nodes from

the tree (e.g., either inserting a binary operation, removing a binary operation, or replac-

ing a constant-sized subtree with a different constant-sized subtree). Across this class of

changes, we expect that the change propagation strategy above generalizes: a constant-

sized group of work is inconsistent and must be replaced (viz., the work performed directly

on the changed input), some group of work can be reused (viz., the work associated with

the subtrees that are not changed). Some subset of return values are also affected (viz.,

those return values that correspond to the path from the highest affected input position

back up to the root of the tree). Hence, the expected complexity for handing this class of

changes is dependent on the length of the longest pathes in the tree; the complexity of

change propagation for such changes is proportional to its expected length.

Challenges for change propagation. For change propagation to use the strategy sketched

above, it must identify dependencies among data and the three-part structure of this code,

69

int MAX;

void array max(int* arr, int len) {
while(len > 1) {

for(int i = 0; i < len - 1; i += 2) {
int m;
max(arr[i], arr[i + 1], &m);
arr[i / 2] = m;

}
len = len / 2;

}
MAX = arr[0];

}

Figure 3.4: Iteratively compute the maximum of an array.

Run one Run two

Initial array 2 9 3 5 4 7 1 6

After round 1 9 5 7 6 4 7 1 6

After round 2 9 7 7 6 4 7 1 6

After round 3 9 7 7 6 4 7 1 6

2 0 3 5 4 7 1 6

2 5 7 6 4 7 1 6

5 7 7 6 4 7 1 6

7 7 7 6 4 7 1 6

Figure 3.5: Snapshots of the array from Figure 3.4.

including its call/return dependencies. In particular, it must identify where previous com-

putations should be reused, reevaluated or discarded7.

3.7 Example: Reducing Arrays

As a second example, Figure 3.4 gives C code for (destructively) computing the maximum

element of an array. Rather than perform a single linear scan, it finds this maximum

iteratively by performing a logarithmic number of rounds, in the style of a (sequentialized)

7. To see an example where computation is discarded, imagine the change in reverse; that is, changing
the lower computation into the upper one.

70

data-parallel algorithm. For simplicity, we assume that the length of arrays is always a

power of two. Each round combines pairs of adjacent elements in the array, producing a

sub-sequence with half the length of the original. The remaining half of the array contains

inactive elements no longer accessed by the function.

Rather than return values directly, we illustrate commonly used imperative features of

C by returning them indirectly: function max returns its result by writing to a provided

pointer, and array max returns its result by assigning it to a special global variable MAX.

Figure 3.5 illustrates the computation for two (closely-related) example inputs. Below

each input, each computation consists of three snapshots of the array, one per round.

For readability, the inactive elements of the array are still shown but are greyed, and the

differences between the right and left computation are highlighted on the right.

Strategy for change propagation. We use Figure 3.5 to develop a strategy for change

propagation. Recall that each array snapshot summarizes one round of the outer while

loop. Within each snapshot, each (active) cell summarizes one iteration of the inner for

loop. That array max uses an iterative style affects the structure of the computation, which

consequently admits an efficient strategy for change propagation: reevaluate each affected

iteration of the inner for loop, that is, those summarized by the highlighted cells in Fig-

ure 3.5.

Complexity of change propagation. It is simple to (manually) check that each active

cell depends on precisely two cells in the previous round, affects at most one cell in the

next round, and is computed independently of other cells in the same round. Hence, for a

single input change, at most one such iteration is affected per round. Since the number of

rounds is logarithmic in the length of the input array, this change propagation strategy is

efficient.

71

Challenges of change propagation. To efficiently update the computation, change prop-

agation should reevaluate each affected iteration, being careful not to reevaluate any of

the unaffected iterations.

3.8 Type qualifiers

The CEAL programmer uses type qualifiers to explicitly indicate how memory changes

over time, if at all. The set of qualifiers is not fixed, and is existensible by library pro-

grammers. The basic set of built-in qualifiers includes a stable qualifier, for qualifying

fixed-value memory that need not be traced at all. It also includes a “one-shot” qualifier,

for marking memory as changing, but only in constrained way. A common example of such

memory, one-shot memory, consists of memory that is only ever written once in within a

single execution, but whose “one-write” value can change across successive executions

(e.g., destinations that hold a function’s return values are examples of one-shot memory).

3.9 Foreign level

The CEAL compiler accepts source files that consist of a mixture of inner and outer code

with foreign C code. Foreign C code is neither inner nor outer code; it does not directly

interact with self-adjusting machines or their modifiable memory. Rather, it can call outer

called, and be called by both inner and outer code.

The presence of foreign C code has several purposes. First, CEAL allows programmers

to mix foreign (non-CEAL) C code into their CEAL source files, to act as utility functions

or wrappers around standard library code. Wrapping calls to foreign C libraries is required

whenever the interfaces of these libraries require clients to operate in destination-passing

style, where they provide the library with a pointer to store results. It is most convenient

to allocate this space temporarily, directly on the C stack; to gain access to this stack as

72

a mutable structure that is non-modifiable (not traced as a modifiable), we isolate the

mutated stack frame by defining it with foreign C code.

73

CHAPTER 4

ABSTRACT MACHINES

In this chapter, we describe techniques for sound self-adjusting computation which are

suitable for low-level languages. We present an abstract self-adjusting machine model that

runs programs written in an intermediate language for self-adjusting computation that we

simply call IL. We give an informal introduction to the design of IL (Section 4.1), and

using with examples from Chapter 3, we illustrate example IL programs (Section 4.2). We

give the formal syntax of IL, to which we give two semantics, by defining two abstract

machines: The reference machine models conventional evaluation semantics, while the

tracing machine models the trace structure and self-adjusting semantics of a self-adjusting

machine (Section 4.3).

Our low-level setting is reflected by the abstract machines’ configurations: each consists

of a store, a stack, an environment and a program. Additionally, the tracing machine’s con-

figurations include a trace component. We show that automatic memory management is a

natural aspect of automatic change propagation by defining a notion of garbage collection.

Under certain conditions, we show that this self-adjusting semantics is (extensionally) con-

sistent (Section 4.4). We give a simple transformation that achieves these necessary con-

ditions (Section 4.5). Finally, we give a cost model framework to relate the intensional

semantics of self-adjusting machines to that of the reference semantics (Section 4.6).

4.1 Introduction to IL

The primary role of IL is to make precise the computational dependencies and possible

change propagation behaviors of a low-level self-adjusting program. In particular, it is

easy to answer the following questions for a program when expressed in IL:

• Which data dependencies are local versus non-local?
74

let TAG = 0 in
let LEAF VAL = 1 in
let OP = 1 in
let LEFT = 2 in
let RIGHT = 3 in

let eval (node) =
memo
let eval right (l) =

let eval op (r) =
update
let op = read (node[OP]) in
if (op == PLUS) then pop (l+r)
else pop (l-r)

in
push eval op do

update
let right = read (node[RIGHT]) in
eval (right)

in
update

let tag = read (node[TAG]) in
if (tag == LEAF)

let leaf val = read (node[LEAF VAL]) in
pop (leaf val)

else
push eval right do
update

let left = read (node[LEFT]) in
eval (left)

Figure 4.1: The eval CEAL function of Figure 3.2, translated into in IL.

75

let for loop (i) =
let m ptr = alloc(1) in
let after max() = update

let m val = read(m ptr[0]) in
let = write(arr[i/2], m val) in
if (i < len - 1)

then for loop(i + 2)
else . . .

in
push after max do update

let a = read(arr[i]) in
let b = read(arr[i + 1]) in
max(a, b, m ptr)

in for loop(0)

(a)

let for loop (i) =
let m ptr = alloc(1) in
let after max() = update

let m val = read(m ptr[0]) in
let = write(arr[i/2], m val) in
memo

if (i < len - 1)
then for loop(i + 2)
else . . .

in
push after max do update

let a = read(arr[i]) in
let b = read(arr[i + 1]) in
max(a, b, m ptr)

in for loop (0)

(b)

let for loop (i) =
let for next () =

if (i < len - 1) then for loop(i + 2)
else . . .

in
push for next do

let m ptr = alloc(1) in
let after max() = update

let m val = read(m ptr[0]) in
let = write(arr[i/2], m val) in
pop ()

in
push after max do update

let a = read(arr[i]) in
let b = read(arr[i + 1]) in
max(a, b, m ptr)

in for loop(0)

(c)

Figure 4.2: Three versions of IL code for the for loop in Figure 3.4; highlighting indicates
their slight differences.

76

• Which code fragments are saved on the control stack?

• Which computation fragments are saved in the computation’s trace, for later reeval-

uation or reuse?

We informally introduce the syntax and semantics of IL by addressing each of these

questions for the examples in Sections 3.6 and 3.7. In Section 4.3, we make the syntax

and semantics precise.

Static Single Assignment. To clearly separate local and non-local dependencies, IL em-

ploys a (functional variant of) static single assignment form (SSA) (Appel, 1998b). Within

this representation, the control-flow constructs of C are represented by locally-defined

functions, local state is captured by let-bound variables and function parameters, and all

non-local state (memory content) is explicitly allocated within the store and accessed via

reads and writes.

For example, we express the for loop from Figure 3.4 as the recursive function for loop

in Figure 4.2(a). This function takes an argument for each variable whose definition is de-

pendent on the for loop’s control flow1, in this case, just the iteration variable i. Within

the body of the loop, the local variable m is encoded by an explicit store allocation bound

to a temporary variable m ptr. Although not shown, global variable MAX is handled analo-

gously. This kind of indirection is necessary whenever assignments can occur non-locally

(as with global variables like MAX) or via pointer indirection (as with local variable m). By

contrast, local variables arr, i and len are only assigned directly and locally, and con-

sequently, each is a proper SSA variable in Figure 4.2(a). Similarly, in Figure 3.2 the

assignments to l and r are direct, and hence, we express each as a proper SSA variable in

1. Where traditional SSA employs φ-operators to express control-dependent variable definitions, func-
tional SSA uses ordinary function abstraction.

77

Figure 4.1. We explain the other IL syntax from Figures 4.1 and 4.2(a) below (push, pop,

update, memo).

Stack operations. As our first example illustrates (Section 3.6), the control stack nec-

essarily breaks a computation into multiple fragments. In particular, before control flow

follows a function call, it first pushes on the stack a code fragment (a local continuation)

which later takes control when the call completes.

The stack operations of IL make this code fragmentation explicit: the expression push f do e

saves function f (a code fragment expecting zero or more arguments) on the stack and con-

tinues by evaluating e; when this subcomputation pops the stack, the saved function f is

applied to the (zero or more) arguments of the pop.

In Figure 4.1, the two recursive calls to eval are preceded by pushes that save functions

eval right and eval op, corresponding to code fragments for evaluating the right subtree

(fragment two) and applying the binary operator (fragment three), respectively. Similarly,

in Figure 4.2(a), the call to max is preceded by a push that saves function after max,

corresponding to the code fragment following the call. We note that since max returns no

values, after max takes no arguments.

Reevaluation and reuse. To clearly mark which computations are saved in the trace—

which in turn defines which computations can be reevaluated and reused—IL uses the

special forms update and memo, respectively.

The IL expression update e, which we call an update point, has the same meaning as

e, except that during change propagation, the computation of e can be recovered from

the program’s original computation and reevaluated. This reevaluation is necessary ex-

actly when the original computation of e contains reads from the store that are no longer

consistent within the context of new computation.

78

Dually, the IL expression memo e, which we call a memo point, has the same meaning as

e, except that during reevaluation, a previous computation of e can be reused in place the

present one, provided that they match. Two computations of the same expression e match

if they begin in locally-equivalent states (same local state, but possibly different non-local

state). This notion of memoization is similar to function caching (Pugh and Teitelbaum,

1989) in that it reuses past computation to avoid reevaluation, but it is also significantly

different in that impure code is supported, and non-local state need not match (a matching

computation may contain inconsistent reads). We correct inconsistencies by reevaluating

each inconsistent read within the reused computation.

We can insert update and memo points freely within an existing IL program without

changing its meaning (up to reevaluation and reuse behavior). Since they allow more

fine-grained reevaluation and reuse, one might want to insert them before and after ev-

ery instruction in the program. Unfortunately, each such insertion incurs some tracing

overhead, as memo and update points each necessitate saving a snapshot of local state.

Fortunately, we can automatically insert a smaller yet equally effective set of update

points by focusing only on reads. Figures 4.1 and 4.2(a) show examples of this: since

each read appears within the body of an update point, we can reevaluate these reads,

including the code that depends on them, should they become inconsistent with memory.

We say that each such read is guarded by an update point.

For memo points, however, it is less clear how to automatically strike the right balance

between too many (too much overhead) and not enough (not enough reuse). Instead, we

expose surface syntax to the C programmer, who can insert them as statements (memo;) as

well as expressions (e.g., memo(f(x))). In Section 4.2, we discuss where to place memo

points within our running examples.

79

4.2 Example programs

In Sections 3.6 and 3.7, we sketched strategies for updating computations using change

propagation. Based on the IL representations described in Section 4.1, we informally de-

scribe our semantics for change propagation in greater detail. The remainder of the chap-

ter makes this semantics precise and describes our current implementation.

Computations as traces. We represent computations using an execution trace, which

records the memo and update points, store operations (allocs, reads and writes), and

stack operations (push and pop).

To a first approximation, change propagation of these traces has two aspects: reeval-

uating inconsistent subtraces, and reusing consistent ones. Operationally, these aspects

mean that we need to decide not only which computations in the trace to reevaluate, but

also where this reevaluation should cease.

Beginning a reevaluation. In order to repair inconsistencies in the trace, we begin

reevaluations at update points that guard inconsistent reads. We identify reads as in-

consistent when the memory location they depend on is affected by writes being inserted

into or removed from the trace. That is, a read is identified as affected in one of two

ways: when inserting a newly traced write (of a different value) that becomes the newly

read value, or when removing a previously traced write that had been the previously read

value. In either case, the read in question becomes inconsistent and cannot be reused in

the trace without first being reevaluated. To begin such a reevalaution, we restore the local

state from the trace and reevaluate within the context of the current memory and control

stack, which generally both differ from those of the original computation.

Ending a reevaluation. We end a reevaluation in one of two ways. First, recall that we

begin reevaluation with a different control stack than that used by the original computa-

80

tion. Hence, we will eventually encounter a pop that we cannot correctly reevaluate, as

doing so requires knowing the contents of the original computation’s stack. Instead, we

cease reevaluation at such pops. We justify this behavior below and describe how it still

leads to a sound approach.

Second, as described in Section 4.1, when we encounter a memo point, we may find

a matching computation to reuse. If so, we cease the current reevaluation and begin

reevaluations that repair inconsistencies within the reused computation, if any.

Example 1 revisited. The strategy from Section 3.6 requires that the previous computa-

tion be reevaluated in some places, and reused in others. First, as Figure 4.1 shows, we

note that however an input tree is modified, update points guard the computation’s af-

fected reads. We reevaluate these update points. For instance, in the given change (of the

right subtree of a), line 9 has the first affected read, which is guarded by an update point

on line 8; this point corresponds to a2, which we reevaluate first. Second, our strategy

reuses computation g1–g3. To this end, we can insert a memo statement at the beginning

of function eval in Figure 3.2 (not shown), resulting in the memo point shown on line 1

in Figure 4.1. Since it precedes each invocation, this memo point allows for the desired

reuse of unaffected subcomputations.

Example 2 revisited. Recall that our strategy for Section 3.7 consists of reevaluating

iterations of the inner for loop that are affected, and reusing those that are not. To begin

each reevaluation within this loop (Figure 4.2(a)), we reevaluate their update points.

Now we consider where to cease reevaluation. Note that the update point in after max

guards a read, as well as the recursive use of for loop, which evaluates the remaining

(possibly unaffected) iterations of the loop. However, recall that we do not want reevalu-

ation to continue with the remaining iterations—we want to reuse them.

81

We describe two ways to cease reevaluation and enable reuse. First, we can insert

a memo statement at the end of the inner for loop in Figure 3.4, resulting in the memo

point shown in Figure 4.2(b). Second, we can wrap the for loop’s body with a cut block,

written cut{...}, resulting in the additional push-pop pair in Figure 4.2(c). Cut blocks

are optional but convenient syntactic sugar: their use is equivalent to moving a code block

into a separate function (hence the push-pop pair in Figure 4.2(c)). Regardless of which

we choose, the new memo and pop both allow us to cease reevaluation immediately after

an iteration is reevaluated within Figures 4.2(b) and 4.2(c), respectively.

Call/return dependencies. Recall from Section 3.6 that we must be mindful of call/re-

turn dependencies among the recursive invocations. In particular, after reevaluating a

subcomputation whose return value changes, the consumer of this return value (another

subcomputation) is affected and should be reevaluated (a3 in the example).

Our general approach for call/return dependencies has three parts. First, when proving

consistency (Section 4.4), we restrict our attention to programs whose subcomputations’

return values do not change, a crucial property of programs that we make precise in Sec-

tion 4.4. Second, in Section 4.5, we provide an automatic transformation of arbitrary

programs into ones that have this property. Third, in Section 5.8, we introduce one simple

way to refine this transformation to reduce the overhead that it adds to the transformed

programs. With more aggressive analysis, we expect that further efficiency improvements

are possible.

Contrasted with proving consistency for a semantics where a fixed approach for cal-

l/return dependencies is “baked in”, our consistency proof is more general. It stipulates

a property that can be guarenteed by either of the two transformations that we describe

(Sections 4.5 and 5.8). Furthermore, it leaves the possibility open for future work to

improve the currently proposed transformations, e.g., by employing more sophosticated

static analysis to further reduce the overhead that they introduce.

82

e : := eu Untraced expression
| et Traced expression

eu : := let fun f(x).e1 in e2 Function definition
| let x = ⊕(v) in e Primitive operation
| if x then e1 else e2 Conditional
| f (x) Function application

et : := let x = ι in e Store instruction
| memo e Memo point
| update e Update point
| push f do e Stack push
| pop x Stack pop

ι : := alloc(x) Allocate an array of size x
| read(x[y]) Read yth entry at x
| write(x[y],z) Write z as yth entry at x

v : := n | x Natural numbers, variables

Figure 4.3: IL syntax.

4.3 IL: a self-adjusting intermediate language

We present IL, a self-adjusting intermediate language, as well as two abstract machines

that evaluate IL syntax. We call these the reference machine and the tracing machine, re-

spectively. As its name suggests, we use the first machine as a reference when defining

and reasoning about the tracing machine. Each machine is defined by its own transition

relation over similar machine components. The tracing machine mirrors the reference ma-

chine, but includes additional machine state components and transition rules that work

together to generate and edit execution traces. This tracing behavior formalizes the notion

of IL as a self-adjusting language.

Abstract syntax of IL. Figure 4.3 shows the abstract syntax for IL. Programs in IL are

expressions, which we partition into traced et and untraced eu. This distinction does not

constrain the language; it merely streamlines the technical presentation. Expressions in

IL follow an administrative normal form (ANF) Flanagan et al. (1993) where (nearly) all

83

values are variables.

Expressions consist of function definitions, primitive operations, conditionals, func-

tion calls, store instructions (ι), memo points, update points, and operations for pushing

(push) and popping (pop) the stack. Store instructions (ι) consist of operations for al-

locating (alloc), reading (read) and writing (write) memory. Values v include natural

numbers and variables (but not function names). Each expression ends syntactically with

either a function call or a stack pop operation. Since the form for function calls is syntac-

tically in tail position, the IL program must explicitly push the stack to perform non-tail

calls. Expressions terminate when they pop on an empty stack—they yield the values of

this final pop.

Notice that IL programs are first-order: although functions can nest syntactically, they

are not values; moreover, function names f, g, h are syntactically distinct from variables x, y, z.

Supporting either first-class functions (functions as values) or function pointers is beyond

the scope of the current work, though we believe our semantics could be adapted for these

settings2.

In the remainder, we restrict our attention to programs (environments ρ and expres-

sions e) that are well-formed in the following sense:

1. They have a unique arity (the length of the value sequence they potentially return)

that can be determined syntactically.

2. All variable and function names therein are distinct. (This can easily be implemented

in a compiler targeting IL.) Consequently we don’t have to worry about the fact that

IL is actually dynamically scoped.

2. For example, to model function pointers, one could adapt this semantics to allow a function f to be
treated as a value if f is closed by its arguments; this restriction models the way that functions in C admit
function pointers, a kind of “function as a value”, even though C does not include features typically associated
with first-class functions (e.g. implicitly-created closures, partial application).

84

Machine configurations and transitions. In addition to sharing a common expression

language (viz. IL, Section 4.3), the reference and tracing machines share common machine

components; they also have related transition relations, which specify how these machines

change their components as they run IL programs.

Machine configurations. Each machine configuration consists of a handful of compo-

nents. Figure 4.4 defines the common components of two machines: a store (σ), a

stack (κ), an environment (ρ) and a command (αr for the reference machine, and αt

for the tracing machine). The tracing machine has an additional component—its trace—

which we describe in Sections 4.3 and 4.3.

A store σ maps each store entry (`[n]) to either uninitialized contents (written ⊥) or

a machine value ν. Each entry `[n] consists of a store location ` and a (natural number)

offset n. In addition, a store may mark a location as garbage, denoted as ` 7→ �, in

which case all store entries for ` are undefined. These garbage locations are not used in

the reference semantics; in the tracing machine, they help to define a notion of garbage

collection. A stack κ is a (possibly empty) sequence of frames, where each frame bρ, fc

saves an evaluation context that consists of an environment ρ and a function f (defined

in ρ). An environment ρ maps variables to machine values and function names to their

definitions.

In the case of the reference machine, a (reference) command αr is either an IL expres-

sion e or a sequence of machine values ν; for the tracing machine, a (tracing) command αt

is either e, ν, or an additional command prop, which indicates that the machine is per-

forming change propagation (i.e., replay of an existing trace).

Each machine value ν consists of a natural number n or a store location `. Intuitively,

we think of machine values as corresponding to machine words, and we think of the store

as mapping location-offset pairs (each of which is itself a machine word) to other machine

words.

85

For convenience, when we do not care about individual components of a machine

configuration (or some other syntactic object), we often use underscores () to avoid giving

them names. The quantification should always be clear from context.

Transition relations. In the reference machine, each machine configuration, written

σ, κ, ρ, αr, consists of four components: a store, a stack, an environment and a command,

as described above. In Section 4.3, we formalize the following stepping relation for the

reference machine:

σ, κ, ρ, αr
r

−→ σ ′, κ ′, ρ ′, αr ′

Intuitively, the command αr tells the reference machine what to do next. In the case of an

expression e, the machine proceeds by evaluating e, and in the case of machine values ν,

the machine proceeds by popping a stack frame bρ, fc and using it as the new evaluation

context. If the stack is empty, the machine terminates and the command ν can be viewed

as giving the machine’s results. Since these results may consist of store locations, the

complete extensional result of the machine must include the store (or at least, the portion

reachable from ν).

The tracing machine has similar machine configurations, though it also includes a

pair 〈Π, T〉 that represents the current trace, which may be in the midst of adjustment;

we describe this component separately in Sections 4.3 and 4.3. In Section 4.3, we formal-

ize the following stepping relation for the tracing machine:

〈Π, T〉, σ, κ, ρ, αt
t

−→ 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αt ′
At a high level, this transition relation accomplishes several things: (1) it “mirrors” the se-

mantics of the reference machine when evaluating IL expressions; (2) it traces this evalua-

tion, storing the generated trace within its trace component; and (3) it allows previously-

generated traces to be either reused (during change propagation), or discarded (when

86

Store σ : := ε | σ[`[n] 7→ ⊥] | σ[`[n] 7→ ν] | σ[` 7→ �]
Stack κ : := ε | κ·bρ, fc

Environment ρ : := ε | ρ[x 7→ ν] | ρ[f 7→ fun f(x).e]
Reference command αr : := e | ν

Tracing command αt : := αr | prop
Machine value ν : := n | `

Figure 4.4: Common machine components.

ρ ′ = ρ[f 7→ fun f(x).e1]

σ, κ, ρ, let fun f(x).e1 in e2
r

−→ σ, κ, ρ ′, e2
R.1

ρ(vi)
|v|
i=1 = ν ρ ′ = ρ[x 7→ primapp(⊕, ν)]

σ, κ, ρ, let x = ⊕(v) in e r
−→ σ, κ, ρ ′, e

R.2

ρ(x) 6= 0
σ, κ, ρ, if x then e1 else e2

r
−→ σ, κ, ρ, e1

R.3

ρ(x) = 0

σ, κ, ρ, if x then e1 else e2
r

−→ σ, κ, ρ, e2
R.4

ρ(f) = fun f(x).e ρ ′ = ρ[xi 7→ ρ(xi)]
|x|
i=1

σ, κ, ρ, f (x)
r

−→ σ, κ, ρ ′, e
R.5

σ, ρ, ι
s

−→ σ ′, ν

σ, κ, ρ, let x = ι in e r
−→ σ ′, κ, ρ[x 7→ ν], e

R.6
σ, κ, ρ,memo e r

−→ σ, κ, ρ, e
R.7

σ, κ, ρ,update e r
−→ σ, κ, ρ, e

R.8
σ, κ, ρ,push f do e r

−→ σ, κ·bρ, fc, ρ, e
R.9

ν = ρ(xi)
|x|
i=1

σ, κ, ρ,pop x r
−→ σ, κ, ε, ν

R.10
ρ(f) = fun f(x).e ρ ′ = ρ[xi 7→ νi]

|x|
i=1

σ, κ·bρ, fc, ε, ν r
−→ σ, κ, ρ ′, e

R.11

Figure 4.5: Stepping relation for reference machine (r
−→).

they cannot be reused). To accomplish these goals, the tracing machine distinguishes ma-

chine transitions for change propagation from those of normal execution by giving change

propagation the distinguished command prop.

87

` 6∈ dom(σ) σ ′ = σ[`[i] 7→ ⊥]ρ(x)i=1

σ, ρ, alloc(x) s
−→ σ ′, `

S.1
σ(ρ(x)[ρ(y)]) = ν

σ, ρ, read(x[y]) s
−→ σ, ν

S.2

σ ′ = σ[ρ(x)[ρ(y)] 7→ ρ(z)]

σ, ρ,write(x[y],z) s
−→ σ ′, 0

S.3

Figure 4.6: Stepping relation for store instructions (s
−→).

Reference machine transitions. Figure 4.5 specifies the transition relation for the refer-

ence machine, as introduced in Section 4.3. A function definition updates the environment,

binding the function name to its definition. A primitive operation first converts each value

argument vi into a machine value νi using the environment. Here we abuse notation and

write ρ(v) to mean ρ(x) when v = x and n when v = n. The machine binds the result of

the primitive operation (as defined by the abstract primapp function) to the given variable

in the current environment. A conditional steps to the branch specified by the scrutinee.

A function application steps to the body of the specified function after updating the envi-

ronment with the given arguments. A store instruction ι steps using an auxiliary judge-

ment (Figure 4.6) that allocates in, reads from and writes to the current store. An alloc

instruction allocates a fresh location ` for which each offset (from 1 to the specified size) is

marked as uninitialized. A read (resp. write) instruction reads (resp. writes) the store at

a particular location and offset. A push expression saves a return context in the form of a

stack frame bρ, fc and steps to the body of the push. A pop expression steps to a machine

value sequence ν, as specified by a sequence of variables. If the stack is non-empty, the

machine passes control to function f, as specified by the topmost stack frame bρ, fc, by ap-

plying f to ν; it recovers the environment ρ before discarding this frame. Otherwise, if the

stack is empty, the value sequence ν signals the termination of the machine with results ν.

88

Trace T : := t·T | ε

Trace action t : := A`,n | Rν
`[n] | Wν

`[n] | Mρ,e | Uρ,e | (T) | ν

Trace context Π : := ε | Π·t | Π·� | Π·�T | Π·�T

Figure 4.7: Traces, trace actions and trace contexts.

The structure of the trace. The structure of traces used by the tracing machine is speci-

fied by Figure 4.7. They each consist of a (possibly empty) sequence of zero or more trace

actions t. Each action records a transition for a corresponding traced expression et.

In the case of store instructions, the corresponding action indicates both the instruction

and each machine value involved in its evaluation. For allocs, the action A`,n records the

allocated location as well as its size (i.e., the range of offsets it defines). For reads (Rν
`[n])

and writes (Wν
`[n]) the action stores the location and offset being accessed, as well as

the machine value being read or written, respectively. For memo expressions, the trace

action Mρ,e records the body of the memo point, as well as the current environment at this

point; update expressions are traced analogously. For push expressions, the action (T)

records the trace of evaluating the push body; it is significant that in this case, the trace

action is not atomic: it consists of the arbitrarily large subtrace T . For pop expressions, the

action ν records the machine values being returned via the stack.

There is a close relationship between the syntax of traced expressions in IL and the

structure of their traces. For instance, in nearly all traced expressions, there is exactly one

subexpression, and hence their traces t·T contain exactly one subtrace, T . The exception

to this is push, which can be thought of as specifying two subexpressions: the first subex-

pression is given by the body of the push, and recorded within the push action as (T); the

second subexpression is the body of the function being pushed, which is evaluated when

the function is later popped. Hence, push expressions generate traces of the form (T)·T ′,

where T ′ is the trace generated by evaluating the pushed/popped function.

89

Π

T
T

T

�

T

()

Π

T2

�
T2

�
ε T2

Π

T2

ε

�

ε

T2

�

ε

T2

ε

T2

ε ε

ε

Evaluation

Undoing

Propagation

T2

�

()

()
()

t−→
(E.6)

t−→
∗

(E.0–8)

t−→
(E.8)

t−→
(P.6)

t−→
∗

(P.1–8)

t−→
(P.8)

t−→
(U.3)

t−→
∗

(U.1–4)

t−→
(U.4)

〈Π, T 〉 〈Π·�, T 〉 〈Π′, T 〉 〈Π·(T ′), T 〉

〈Π, (T1)·T2〉 〈Π·�T2
, T1〉 〈Π·�T2

, ε〉 〈Π, T2〉

〈Π, (T1)·T2〉 〈Π·�T2
, T1〉 〈Π′, ε〉 〈Π·(T1), T2〉

T1

Π

T ′

T1

Figure 4.8: Tracing transition modes, across push actions.

90

e prop

ν

E.0–6

U.1–4

P.1–6
P.E

E.P

E.7
E.8

P.7
P.8

U.1–4

Figure 4.9: Tracing machine: commands and transitions.

Trace contexts and the trace zipper. As described above, our traces are not strictly

sequential structures: they also consist of nested subtraces created by push. This fact poses

a technical challenge for transition semantics (and by extension, an implementation). For

instance, while generating such a subtrace, how should we maintain the context of the

trace that will eventually enclose it?

To address this, the machine augments the trace with a context (Figure 4.7), main-

taining in each configuration both a reuse trace T , which we say is in focus, as well as an

unfocused trace context Π. The trace context effectively records a path from the focus back

to the start of the trace. To move the focus in a consistent manner, the machine places ad-

ditional markings �, �, � into the context; two of these markings (viz. �, �) also carry a

subtrace. We describe these markings and their subtraces in more detail below.

This pair of components 〈Π, T〉 forms a kind of trace zipper. More generally, a zipper

augments a data structure with a focus (for zipper 〈Π, T〉, we say that T is in focus), the

ability to perform local edits at the focus and the ability to move this focus throughout the

structure (Huet, 1997; Abbott et al., 2004). A particularly attractive feature of zippers is

that the “edits” can be performed in a non-destructive, incremental fashion.

To characterize focus movement using trace zippers, we define the transition modes of

the tracing machine:

91

• Evaluation mirrors the transitions of the reference machine and generates new trace

actions, placing them behind the focus, i.e., 〈Π, T〉 becomes 〈Π·t, T〉.

• Propagation replays the actions of the reuse trace; it moves the focus through it

action by action, i.e., 〈Π, t·T〉 becomes 〈Π·t, T〉.

• Undoing removes actions from the reuse trace, just ahead of the focus, i.e., 〈Π, t·T〉

becomes 〈Π, T〉.

If we ignore push actions and their nested subtraces (T), the tracing machine moves the

focus in the manner just described, either generating, undoing or propagating at most one

trace action for each machine transition. However, since push actions consist of an entire

subtrace T , the machine cannot generate, undo or propagate them in a single step. Rather,

the machine must make a series of transitions, possibly interleaving transition modes.

When this process completes and the machine moves its focus out of the subtrace, it is

crucial that it does so in a manner consistent with its mode upon entering the subtrace. To

this end, the machine may extend the context Π with one of three possible markings, each

corresponding to a mode.

For each transition mode, Figure 4.8 gives both syntactic and pictorial representations

of the focused traces and illustrates how the machine moves its focus. The transitions

are labeled with corresponding (blue) transition rules from the tracing machine, but at

this time the reader can ignore them. For each configuration, the (initial) trace context

is illustrated with a vertical line, the focus is represented by a (red) filled circle and the

(initial) reuse trace is represented by a tree-shaped structure that hangs below the focus.

Evaluation (Figure 4.10). To generate a new subtrace in evaluation mode (via a push),

the machine extends the context Π to Π·�; this effectively marks the beginning of the new

subtrace. The machine then performs evaluation transitions that extend the context, per-

haps recursively generating nested subtraces in the process (drawn as smaller, unlabeled

92

triangles hanging to the left). After evaluating the pop matching the initial push, the

machine rewinds the current context Π ′, moving the focus back to the mark �, gathering

actions and building a completed subtrace T ′; it replaces the mark with a push action (T ′)

(consisting of the completed subtrace), and it keeps reuse trace T in focus. We specify

how this rewinding works in Section 4.3; intuitively, it simply moves the focus backwards,

towards the start of the trace.

Undoing (Figure 4.12). To undo a subtrace T1 of the reuse trace (T1) ·T2, the machine

extends the context Π to Π ·�T2; this effectively saves the remaining reuse trace T2 for

either further undo transitions or for eventual reuse. Assuming that the machine undoes

all of T1, it will eventually focus on an empty trace ε. In this case, the machine can move

the saved subtrace T2 into focus (again, for either further undo transitions or for reuse).

Propagation (Figure 4.11). Finally, to propagate a subtrace T1, the machine uses an

approach similar to undoing: it saves the remaining trace T2 in the context using a distin-

guished mark �T2 , moves the focus to the end of T1 and eventually places T2 into focus. In

contrast to the undo transitions, however, propagation transitions do not discard the reuse

trace, but only move the focus by moving trace actions from the reuse trace into the trace

context. Just as in evaluation mode, in propagation mode we rewind these actions from

the context and move the focus back to the propagation mark (�).

We note that while our semantics characterizes change propagation using a step-by-

step replay of the trace, this does not yield an efficient algorithm. In Chapter 6, we give an

efficient implementation that is faithful to this replay semantics, but in which the change

propagation transitions have zero cost.

Tracing machine transitions. We use the components and transitions of the reference

machine (Sections 4.3 and 4.3, respectively) as a basis for defining the transitions of the

93

Evaluation

E.0 〈Π, T〉, σ, κ, ρ, eu t
−→ 〈Π, T〉, σ, κ, ρ ′, e

when σ, κ, ρ, eu r
−→ σ, κ, ρ ′, e

E.1 〈Π, T〉, σ, κ, ρ, let x = alloc(y) in e t
−→ 〈Π·A`,ρ(y), T〉, σ ′, κ, ρ[x 7→ `], e

when σ, ρ, alloc(y) s
−→ σ ′, `

E.2 〈Π, T〉, σ, κ, ρ, let x = read(y[z]) in e t
−→ 〈Π·Rν

ρ(y)[ρ(z)], T〉, σ, κ, ρ[x 7→ ν], e

when σ, ρ, read(y[z]) s
−→ σ, ν

E.3 〈Π, T〉, σ, κ, ρ, let = write(x[y],z) in e t
−→ 〈Π·Wρ(z)

ρ(x)[ρ(y)]
, T〉, σ ′, κ, ρ, e

when σ, ρ,write(x[y],z) s
−→ σ ′, 0

E.4 〈Π, T〉, σ, κ, ρ,memo e t
−→ 〈Π·Mρ,e, T〉, σ, κ, ρ, e

E.5 〈Π, T〉, σ, κ, ρ,update e t
−→ 〈Π·Uρ,e, T〉, σ, κ, ρ, e

E.6 〈Π, T〉, σ, κ, ρ,push f do e t
−→ 〈Π·�, T〉, σ, κ·bρ, fc, ρ, e

E.7 〈Π, T〉, σ, κ, ρ,pop x t
−→ 〈Π·ν, T〉, σ, κ, ε, ν

when ν = ρ(xi)
|x|
i=1

E.8 〈Π, T2〉, σ, κ·bρ, fc, ε, ν
t

−→ 〈Π ′ ·(T1), T ′2〉, σ, κ, ρ
′, e

when 〈Π, T2〉 ; ε 	∗ 〈Π ′ ·�, T ′2〉 ; T1
and ρ(f) = fun f(x).e

and ρ ′ = ρ[xi 7→ νi]
|x|
i=1

Figure 4.10: Stepping relation for tracing machine (t
−→): Evaluation.

tracing machine. You may recall from Section 4.3 that the tracing machine extends the

reference machine in two important ways.

First, the machine configurations of the tracing machine extend the reference config-

urations with an extra component 〈Π, T〉, the trace zipper (Section 4.3), which augments

the trace structure T (Section 4.3) with a trace context and a movable focus.

Second, a tracing command αt consists of either a reference command αr or the ad-

ditional propagation command prop, which indicates that the machine is doing change

propagation. Using these two extensions of the reference machine, the tracing machine

generates traces of execution (during evaluation transitions), discards parts of previously-

generated traces (during undoing transitions), and reuses previously-generated traces

94

Reevaluation and reuse

P.E 〈Π,Uρ,e ·T〉, σ, κ, ε,prop t
−→ 〈Π·Uρ,e, T〉, σ, κ, ρ, e

E.P 〈Π,Mρ,e ·T〉, σ, κ, ρ,memo e t
−→ 〈Π·Mρ,e, T〉, σ, κ, ε,prop

Propagation

P.1 〈Π,A`,n ·T〉, σ, κ, ε,prop t
−→ 〈Π·A`,n, T〉, σ ′, κ, ε,prop

when σ, ε, alloc(n) s
−→ σ ′, `

P.2 〈Π,Rν
`[n] ·T〉, σ, κ, ε,prop t

−→ 〈Π·Rν
`[n], T〉, σ, κ, ε,prop

when σ, ε, read(`[n]) s
−→ σ, ν

P.3 〈Π,Wν
`[n] ·T〉, σ, κ, ε,prop t

−→ 〈Π·Wν
`[n], T〉, σ

′, κ, ε,prop
when σ, ε,write(`[n],ν) s

−→ σ ′, 0

P.4 〈Π,Mρ,e ·T〉, σ, κ, ε,prop t
−→ 〈Π·Mρ,e, T〉, σ, κ, ε,prop

P.5 〈Π,Uρ,e ·T〉, σ, κ, ε,prop t
−→ 〈Π·Uρ,e, T〉, σ, κ, ε,prop

P.6 〈Π, (T1)·T2〉, σ, κ, ε,prop t
−→ 〈Π·�T2 , T1〉, σ, κ, ε,prop

P.7 〈Π, ν〉, σ, κ, ε,prop t
−→ 〈Π·ν, ε〉, σ, κ, ε, ν

P.8 〈Π, ε〉, σ, κ, ε, ν t
−→ 〈Π ′ ·(T1), T2〉, σ, κ, ε,prop

when 〈Π, ε〉 ; ε 	∗ 〈Π ′ ·�T2 , ε〉 ; T1

Figure 4.11: Stepping relation for tracing machine (t
−→): Revaluation and propagation.

Undoing

U.1 〈Π,A`,n ·T〉, σ, κ, ρ, αr
t

−→ 〈Π, T〉, σ[` 7→ �], κ, ρ, αr
U.2 〈Π, t·T〉, σ, κ, ρ, αr

t
−→ 〈Π, T〉, σ, κ, ρ, αr

when (t = R [] | W [] | M , | U , | ν)

U.3 〈Π, (T1)·T2〉, σ, κ, ρ, αr
t

−→ 〈Π·�T2 , T1〉, σ, κ, ρ, αr
U.4 〈Π·�T , ε〉, σ, κ, ρ, αr

t
−→ 〈Π, T〉, σ, κ, ρ, αr

Figure 4.12: Stepping relation for tracing machine (t
−→): Undoing the trace.

95

(during propagation transitions).

These three transition modes (evaluation, undoing and propagation) can interact in

ways that are not straightforward. Figure 4.9 helps illustrate their interrelationships, giv-

ing us a guide for the transition rules of the tracing machine. The arcs indicate the ma-

chine command before and after the machine applies the indicated transition rule (written

in blue). Figures 4.10, 4.11 and 4.12 give the complete transition relation for the tracing

machine in three parts: Evaluation rules (Figure 4.10) and reevaluation and change prop-

agation rules (Figure 4.11) and undoing rules (Figure 4.12). Recall that each transition is

of the form:

〈Π, T〉, σ, κ, ρ, αt
t

−→ 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αt ′
We explain Figures 4.10, 4.11 and 4.12 using Figure 4.9 as a guide. Under an expression

command e, the machine can take both evaluation (E.0–6) and undo (U.1–4) transitions

while remaining in evaluation mode, as well as transitions E.P and E.7, which each change

to another command. Under the propagation command prop, the machine can take prop-

agation transitions (P.1–6) while remaining in propagation mode, as well as transitions

P.E and P.7, which each change to another command.

Propagation can transition into evaluation (P.E) when it’s focused on an update ac-

tion that it (non-deterministically) chooses to activate; it may also (non-deterministically)

choose to ignore this opportunity and continue propagation. Dually, evaluation can tran-

sition directly into propagation (E.P) when its command is a memo point that matches

a memo point currently focused in the reuse trace (and in particular, the environment ρ

must also match); it may also (non-deterministically) choose to ignore this opportunity

and continue evaluation. We describe a deterministic algorithms for change propagation

and memoization in Chapter 6.

Evaluation (respectively, propagation) transitions into a value sequence ν after evalu-

ating (respectively, propagating) a pop operation under E.7 (respectively, P.7). Under the

96

value sequence command, the machine can continue to undo the reuse trace (U.1–4). To

change commands, it rewinds its trace context and either resumes evaluation (E.8) upon

finding the mark �, or resumes propagation (P.8) upon finding the mark �. The machine

rewinds the trace using the following trace rewinding relation:

〈Π·t, T〉; T ′ 	 〈Π, T〉; t·T ′

〈Π·�T2 , ε〉; T
′ 	 〈Π, T2〉; T ′

〈Π·�T2 , t·T1〉; T
′ 	 〈Π, (t·T1)·T2〉; T ′

This relation simultaneously performs two functions. First, it moves the focus backwards

across actions (towards the start of the trace) while moving these actions into a new sub-

trace T ′; the first case captures this behavior. Second, when moving past a leftover undo

mark �T2, it moves the subtrace T2 back into the reuse trace; the second and third cases

capture this behavior. Note that unlike �, there is no way to rewind beyond either � or �

marks. This is intentional: rewinding is meant to stop when it encounters either of these

marks.

4.4 Consistency

In this section we formalize a notion of consistency between the reference machine and

tracing machine. As a first step, we show that when run from scratch (without a reuse

trace), the results of the tracing machine are consistent with the reference machine, i.e.,

the final machine values and stores coincide. To extend this property beyond from-scratch

runs, it is necessary to make an additional assumption: we require each IL program run in

the tracing machine to be compositionally store agnostic (CSA, see below). We then show

that, for CSA IL programs, the tracing machine reuses computations in a consistent way:

its final trace, store, and machine values are consistent with a from-scratch run of the

tracing machine, and hence, they are consistent with a run of the reference machine.

97

Finally, we discuss some interesting invariants of the tracing machine (Section 4.4) that

play a crucial role in the consistency proof.

Compositional store agnosticism (CSA). The property of compositional store agnosti-

cism characterizes the programs for which our tracing machine runs consistently. We build

this property from a less general property that we call store agnosticism. Intuitively, an

IL program is store agnostic iff, whenever an update instruction is performed during its

execution, then the value sequence that will eventually be popped is already determined

at this point and, moreover, independent of the current store.

Definition 4.4.1. Formally, we define SA(σ, ρ, e) to mean:

If σ, ε, ρ, e r
−→∗ , , ρ ′,update e ′, then there exists ν such thatw = νwhenever , ε, ρ ′, e ′ r

−→∗
, ε, ε,w.

To see why this property is significant, recall how the tracing machine deals with inter-

mediate results. In stepping rule E.8, the tracing machine mirrors the reference machine:

it passes the results to the function on the top of the control stack. However, in stepping

rule P.8, the tracing machine does not mirror the reference machine: it essentially discards

the intermediate results and continues to process the remaining reuse trace. This behavior

is not generally consistent with the reference machine: If P.8 is executed after switching to

evaluation mode (P.E) and performing some computation in order to adjust to a modified

store, then the corresponding intermediate result may be different. However, if the sub-

program that generated the reuse trace was store agnostic, then this new result will be the

same as the original one; consequently, it is then safe to continue processing the remaining

reuse trace.

Compositional store agnosticism is a generalization of store agnosticism that is pre-

served by execution.

98

Definition 4.4.2. We define CSA(σ, ρ, e) to mean:

If σ, ε, ρ, e r
−→∗ σ ′, κ, ρ ′, e ′, then SA(σ ′, ρ ′, e ′).

Lemma 4.4.1. If σ, ε, ρ, e r
−→∗ σ ′, κ ′, ρ ′, e ′ and CSA(σ, ρ, e), then CSA(σ ′, ρ ′, e ′).

Consistency of the tracing machine. The first correctness property says that, when run

from scratch (i.e. without a reuse trace), the tracing machine mirrors the reference ma-

chine.

Theorem 4.4.2 (Consistency of from-scratch runs).

If 〈ε, ε〉, σ, ε, ρ, αr
t

−→∗ 〈 , 〉, σ ′, ε, ε, ν
then σ, ε, ρ, αr

r
−→∗ σ ′, ε, ε, ν.

In the general case, the tracing machine does not run from scratch, but with a reuse

trace generated by a from-scratch run. To aid readability for such executions we introduce

some notation. We call a machine reduction balanced if the initial and final stacks are each

empty, and the initial and final trace contexts are related by the trace rewinding relation.

If know that the stack and trace context components of a machine reduction meet this

criteria, we can specify this (balanced) reduction more concisely.

Definition 4.4.3 (Balanced reductions).

〈ε, T〉, σ, ε, ρ, αr
t

−→∗ 〈Π, ε〉, σ ′, ε, ε, ν
〈Π, ε〉; ε 	∗ 〈ε, ε〉; T ′

T, σ, ρ, αr ⇓ T ′, σ ′, ν
〈ε, T〉, σ, ε, ε,prop t

−→∗ 〈Π, ε〉, σ ′, ε, ε, ν
〈Π, ε〉; ε 	∗ 〈ε, ε〉; T ′

T, σy T ′, σ ′, ν

We now state our second correctness result. It uses an auxiliary function that collects

garbage: σ|gc(`) = σ(`) for ` ∈ dom(σ|gc) = {` | ` ∈ dom(σ) and σ(`) 6= �}.

Theorem 4.4.3 (Consistency).

Suppose ε, σ1, ρ1, αr1 ⇓ T1, σ ′1, ν1 and CSA(σ1, ρ1, αr1).
99

1. If T1, σ2, ρ2, αr2 ⇓ T ′1, σ ′2, ν2
then ε, σ2|gc, ρ2, αr2 ⇓ T ′1, σ ′2|gc, ν2

2. If T1, σ2 y T ′1, σ
′
2, ν2

then ε, σ2|gc, ρ1, αr1 ⇓ T ′1, σ ′2|gc, ν2
The first statement says that, when run with an arbitrary from-scratch generated trace T1,

the tracing machine produces a final trace, store and return value sequence that are con-

sistent with a from-scratch run of the same program. The second statement is analogous,

except that it concerns change propagation: when run over an arbitrary from-scratch gen-

erated trace T1, the machine produces a result consistent with a from-scratch run of the

program that generated T1. Note that in each case the initial store may be totally different

from the one used to generate T1.

Finally, observe how each part of Theorem 4.4.3 can be composed with Theorem 4.4.2

to obtain a corresponding run of the reference machine.

Garbage collection. The tracing machine may undo portions of the reuse trace in order

to adjust it to a new store. Whenever it undoes an allocation (rule U.1), it marks the

corresponding location as garbage (` 7→ �).

In order for this to make sense we better be sure that these locations are not live in the

final result, i.e., they neither appear in T ′1 nor ν2 nor are referenced from the live portion

of σ ′2. In fact, this is a consequence of the consistency theorem: the from-scratch run in

the conclusion produces the same T ′1 and ν2. Moreover, since its final store is σ ′2|gc, it is

clear that these components and σ ′2|gc itself cannot refer to garbage.

Invariants. The proof of Theorem 4.4.3 is by induction on the length of the given from-

scratch run producing T1. It requires numerous lemmas and, moreover, the theorem state-

ment needs to be strengthened in several ways. In the remainder of this section, we explain

100

the main generalizations as they expose invariants of the tracing machine that are crucial

for its correct functioning3. Full details of this and all other proofs mentioned later on can

be found in the accompanying technical appendix.

Non-empty trace context and stack. Neither the trace context nor the stack will stay

empty during execution, so we need to account for that. In part 2 of the generalized

version of the theorem we therefore assume the following about the given from-scratch

run (see below for part 1):

a) CSA(σ1, ρ1, αr1)

b) 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π ′1, ε〉, σ ′1, κ1, ε, ν1
c) 〈Π ′1, ε〉; ε 	

∗ 〈Π1, ε〉; T1

d) Π1 contains neither undo (�) nor propagation (�) marks

When these conditions are all met, we say T1 fsc (“from-scratch consistent”). Condition

(a) is the same as in the theorem statement. Conditions (b) and (c) are similar to the

assumptions stated in the theorem, except more general: they allow a non-empty trace

context and a non-empty stack. The new condition (d), ensures that the trace context

mentioned in (b) and (c) only describes past evaluation steps, and not past or pending

undoing or propagating steps. Apart from the assumption, we also must generalize the

rest of part 2 accordingly but we omit the details here.

Reuse trace invariants. While it is intuitively clear that propagation (part 2) must run

with a from-scratch generated trace in order to generate one, this is not strictly necessary

for evaluation (part 1). In fact, here the property T1 fsc is not always preserved: Recall

3. To our knowledge, this is the first work that characterizes the entire trace (both in and out of focus),
in the midst of adjustment. Such characterizations may be useful, for example, to verify efficient implemen-
tations of the tracing machine.

101

that in evaluation mode the machine may undo steps in T1. Doing so may lead to a reuse

trace that is no longer from-scratch generated! In particular, if T1 = (t·T2)·T3, then, using

steps U.3, U.2 and eventually E.8, the machine may essentially transform this into (T2)·T3,

which in general may not have a corresponding from-scratch run.

In order for the induction to go through, we therefore introduce a weaker property,

T1 ok, for part 1. It is defined as follows:

ε ok

T fsc

T ok

T ok T ′ ok

(T)·T ′ ok

Note that if T1 = Mρ,e·T2 and T1 ok, then T1 fsc (and thus T2 fsc) follows by inversion. This

comes up in the proof precisely when in part 1 evaluation switches to propagation (step

E.P) and we therefore want to apply the inductive hypothesis of part 2, where we need to

know that the new reuse trace is fsc (not “just” ok).

Trace context invariant. In order for T1 ok and T1 fsc to be preserved by steps U.4 and

P.8, respectively, we also require Π1 ok, defined as follows:

ε ok

Π ok

Π·t ok

Π ok

Π·� ok

Π ok T fsc

Π·�T ok

Π ok T ok

Π·�T ok

Note the different assumptions about T in the last two rules. This corresponds exactly to

the different assumptions about T1 in part 1 and part 2.

102

[[let fun f(x).e1 in e2]]y = let fun f(x@ z).[[e1]]z in [[e2]]y
[[let x = ⊕(y) in e]]y = let x = ⊕(y) in [[e]]y
[[if x then e1 else e2]]y = if x then [[e1]]y else [[e2]]y
[[f (x)]]y = f (x@y)

[[let x = ι in e]]y = let x = ι in [[e]]y
[[memo e]]y = memo [[e]]y
[[update e]]y = update [[e]]y

[[push f do e]]y
when Arity(f) = n

= let fun f ′(z). update
let x1 = read(z[1]) in · · ·
let xn = read(z[n]) in
f (x1, . . . , xn, y)

in
push f ′ do memo

let z = alloc(n) in [[e]]z

[[pop x]]y
when |x| = n

= let = write(y[1],x1) in · · ·
let = write(y[n],xn) in
pop 〈y〉

[[ε]] = ε

[[ρ[x 7→ ν]]] = [[ρ]][x 7→ ν]
[[ρ[f 7→ fun f(x).e]]] = [[ρ]][f 7→ fun f(x@y).[[e]]y]

Figure 4.13: Destination-passing-style (DPS) conversion.

4.5 Destination-Passing Style

In Section 4.4, we defined the CSA property that the tracing machine requires of all pro-

grams for consistency. In this section, we describe a destination-passing-style transforma-

tion and show that it transforms arbitrary IL programs into CSA IL programs, while preserv-

ing their semantics. The idea is as follows: A DPS-converted program takes an additional

parameter x that acts as its destination. Rather than return its results directly, the program

then instead writes them to the memory specified by x.

Figure 4.13 defines the DPS transformation for an expression e and a destination vari-

able x, written [[e]]x. Naturally, to DPS-convert an expression closed by an environment ρ,

we must DPS-convert the environment as well, written [[ρ]]. In order to comply with our

103

assumption that all function and variable names are distinct, the conversion actually has to

thread through a set of already-used names. For the sake of readability we do not include

this here.

Most cases of the conversion are straightforward. The interesting ones include func-

tion definition, function application, push, and pop. For function definitions, the conver-

sion extends the function arguments with an additional destination parameter z (we write

x@ z to mean x appended with z). Correspondingly, for application of a function f, the

conversion additionally passes the current destination to f. For pushes, we allocate a fresh

destination z for the push body; we memoize this allocation with a memo point. When the

push body terminates, instead of directly passing control to f, the program calls a wrapper

function f ′ that reads the destination and finally passes the values to the actual function

f. Since these reads may become inconsistent in subsequent runs, we prepend them with

an update point. For pops, instead of directly returning its result, the converted program

writes it to its destination and then returns the latter.

As desired, the transformation yields CSA programs (here and later on we assume that

n is the arity of the program being transformed):

Theorem 4.5.1 (DPS programs are CSA).

CSA(σ, [[ρ]], let x = alloc(n) in [[e]]x)

Moreover, the transformation preserves the extensional semantics of the original pro-

gram:

Theorem 4.5.2 (DPS preserves extensional semantics).

If σ1, ε, ρ, e
r

−→∗ σ ′1, ε, ε, ν
then σ1, ε, [[ρ]], let x = alloc(n) in [[e]]x

r
−→∗ σ ′1] σ ′2, ε, ε, `

with σ ′2(`, i) = νi for all i.

Because it introduces destinations, the transformed program allocates additional store

locations σ ′2. These locations are disjoint from the original store σ ′1, whose contents are

104

preserved in the transformed program. If we follow one step of indirection, from the

returned location to the values it contains, we recover the original results ν.

A small example: composed function calls. As a simple illustrative example, consider

the source-level expression f(max(*p,*q)), which applies function f to the maximum of

two dereferenced pointers *p and *q. Our front end translates this expression into the

following:

push f do
update

let x = read(p[0]) in
let y = read(q[0]) in
if x > y then pop x else pop y

Notice that the body of this push is not store agnostic—when the memory contents

of either pointer is changed, the update body can evaluate to a different return value,

namely the new maximum of x and y. To address this, the DPS transformation converts

this fragment into the following:

let fun f ′(m). update
let m ′ = read(m[0]) in f(m ′, z)

in
push f ′ do memo

let m = alloc(1) in
update

let x = read(p[0]) in
let y = read(q[0]) in
if x > y then

let = write(m[0],x) in pop m
else

let = write(m[0],y) in pop m

Notice that instead of returning the value of either x or y as before, the body of the

push now returns the value of m, a pointer to the maximum of x and y. In this case, the

105

push body is indeed store agnostic—though x and y may change, the pointer value of m

remains fixed, since it is defined outside of the update body.

The astute reader may wonder why we place the allocation of m within the bodies of

the push and memo point, rather than “lift it” outside the definition of function f ′. After

all, by lifting it, we would not need to return m to f ′ via the stack pop—the scope of

variable m would include that of function f ′. We place the allocation of m where we do

to promote reuse of nondeterminism: by inserting this memo point, the DPS transforma-

tion effectively associates local input state (the values of p and q) with the local output

state (the value of m). Without this memo point, every push body will generate a fresh

destination each time it is reevaluated, and in general, this nondeterministic choice will

prevent reuse of any subcomputation, since this subcomputation’s local state includes a

distinct, previously chosen destination. To avoid this behavior and to allow these sub-

computations to instead be reused during change propagation, the DPS conversion inserts

memo points that enclose each (non-deterministic) allocation of a destination.

4.6 Cost Models

We define a generic framework for modeling various dynamic costs of our IL abstract

machines (both reference and tracing). By instantiating the framework with different

concrete cost models, we show several cost equivalences between the IL reference machine

and the IL tracing machine (Section 4.3), show that our DPS conversion (Section 4.5)

respects the intensional reference semantics of IL up to certain constant factors, and give

a cost model for our implementation (Chapters 5 and 6).

Cost Models A cost model is a triple M = 〈C,0, γ〉 where:

• Type C is the type of costs.

106

• The zero cost 0 ∈ C is the cost of an empty step sequence.

• The cost function γ : S→ C→ C assigns to each step s ∈ S, a function that maps the

cost before the step s is taken to the cost after s is taken.

• Given an execution sequence s = 〈s1, . . . , sn〉, we define the cost function of s under

M as the following composition of cost functions:

γ s = (γ sn) ◦ · · · ◦ (γ s1)

By assuming zero initial cost, we can evaluate this composition of cost functions to a

yield total cost for s as γ s 0 = c ∈ C.

Step Counts

• Cost model Ms = 〈Cs,0s, γs〉 counts total steps taken.

• Cs = N

• 0 = 0

• γs s n = n+ 1

Store Usage

• Cost modelMσ = 〈Cσ,0σ, γσ〉measures store usage as the number of allocations (a),

reads (r), and writes (w), respectively.

• Cσ = N 3

• 0 = 〈0, 0, 0〉

107

• Assuming that step salloc allocates in the store, that step sread reads from the store

and that step swrite writes to the store, we define the following cost function:

γσ salloc 〈a, r,w〉 = 〈a+ 1, r,w〉

γσ sread 〈a, r,w〉 = 〈a, r+ 1,w〉

γσ swrite 〈a, r,w〉 = 〈a, r,w+ 1〉

γσ snostore 〈a, r,w〉 = 〈a, r,w〉

• For the reference machine:

salloc = R.6/S.1, sread = R.6/S.2 and swrite = R.6/S.3.

• For the tracing machine:

salloc = E.1, sread = E.2 and swrite = E.3.

Stack Usage

• Cost model Mκ = 〈Cκ,0κ, γκ〉 measures the stack usage as the number of times the

stack is pushed (u) and popped (d), the current stack height (h), and the maximum

stack height (m).

• Cκ = N 4

• 0κ = 〈0, 0, 0, 0〉

• Assuming that step spush pushes the stack, step spop pops the stack and snostack does

neither, we define the following cost function:

γκ spush 〈u, d, h,m〉 = 〈u+ 1, d, h+ 1,max(m,h+ 1)〉

γκ spop 〈u, d, h,m〉 = 〈u, d+ 1, h− 1,m〉

γκ snostack 〈u, d, h,m〉 = 〈u, d, h,m〉

108

• For the reference machine:

spush = R.9 and spop = R.11

• For the tracing machine:

spush = E.6 and spop = E.8

Note that the stack is actually popped by R.11 rather than R.10, and E.8 rather than

E.7. The latter steps—which each evaluate a pop expression to a sequence of closed

values—always precede the actual stack pop by one step.

Reference versus Tracing Machines. The following result establishes several cost equiv-

alences between the reference machine and the tracing machine.

Theorem 4.6.1. Fix an initial machine state σ, ε, ρ, e. Run under the reference machine to

yield step sequence su. Run under the tracing machine with an empty reuse trace to yield step

sequence st. The following hold for su and st:

• The step counts under Ms are equal.

• The stack usage under Mσ is equal.

• The store usage under Mκ is equal.

DPS Costs. Recall that our DPS transformation (Section 4.5) ensures that programs are

compositionally store agnostic, a property that is needed to ensure the consistency of our

tracing machine. Below we bound the overhead introduced by this transformation in the

reference machine. However, since the two machines have the same intensional semantics

under Ms, Mσ and Mκ (as shown above) the result below applies equally well to the

tracing machine too.

Theorem 4.6.2 (Intensional semantics (mostly) preserved).

109

Consider the evaluations of expression e and [[e]]x as given in Theorem 4.5.2. The following

hold for their respective step sequences, s and s ′:

• The stack usage under Mκ is equal. Let d and u be the number of pushs and pops

performed in each, respectively.

• The number of allocations underMσ differ by exactly d, the number of reads and writes

under Mσ differ by at most n · d and n · u, respectively, where n is the maximum arity

of any pop taken in s.

• The number of steps taken under Ms differ by at most (n+ 4) · d+ n · u.

Realized costs. Realized costs closely resemble those of a real implementation. We

model them with Mt = 〈Ct,0t, γt〉, which partitions step counts of the tracing machine

into evaluation (e), undo (u) and propagation (p) step counts. As in previous work, our

implementation does not incur any cost for any propagation steps taken—these steps are

effectively skipped. Therefore, we define the realized cost of 〈e, p, u〉 ∈ Ct as (e+ u) ∈ N .

These realized costs are proportional to the actual work performed by IL programs com-

piled by our implementation (Chapters 5 and 6)4. Each cost is a triple:

Ct = N 3

0t = 〈0, 0, 0〉

γt seval 〈e, p, u〉 = 〈e+ 1, p, u〉

γt sprop 〈e, p, u〉 = 〈e, p+ 1, u〉

γt sundo 〈e, p, u〉 = 〈e, p, u+ 1〉

(Here seval matches steps E.0–8, sprop matches steps P.1–8, and sundo matches steps U.1–

4.)

4. The implementation cost may involve an additional logarithmic factor, e.g., to maintain a persistent
view of the store for every point in the trace.

110

CHAPTER 5

COMPILATION

This chapter describes a compilation strategy for self-adjusting machines. First, we give an

overview of the role of compilation as a bridge from the abstract machine (Chapter 4) to

the run-time system (Chapter 6) and outline the reminder of the chapter in greater detail

(Section 5.1). We describe how a C-based self-adjusting program consists of multiple levels

of control, which our compiler automatically separates (Section 5.2). We give a C-based

run-time library interface for constructing execution traces (Section 5.3). We represent

programs during compilation using IL and CL (Section 5.4). CL is a representation closely-

related to IL that augments programs with additional static control structure. We use static

analyses to inform both our basic compilation and our optimizations (Section 5.5). We

give a basic translation (from IL to CL) for basic compilation (Section 5.6). We give a

graph algorithm for normalization, which statically relocates certain CL blocks as top-level

functions (Section 5.7). To improve upon this compilation approach, we describe several

optimizations (Section 5.8). Finally, we give further notes and discussion (Section 5.9).

5.1 Overview

We give an overview of our compilation stategy for self-adjusting machines. The role of

compilation is to prepare an intermediate langauge program for interoperation with the C

runtime library, by translating and transforming it.

Requirements. Some work performed by the compiler is required, and some is optional

optimization. First, we outline the requirements:

• Requirement: Programs must be compositionally store agnostic (Section 4.4).

111

This requirement is imposed by our abstract machine semantics, and the run-time

system which implements it.

• Requirement: Primitives must be translated.

The self-adjusting primitives memo and update of IL must be replaced with gener-

ated C code that uses the interface provided by the run-time system. Similarly, the

traced instructions of IL must be translated into C, replacing these instructions with

calls to their C-based implementations.

• Requirement: IL expressions must be decomposed into globally-scoped functions.

Specifically, where we have update points, we want to create traces that store thunks

(suspended computations). Operationally, these thunks can reenter the program at

fine-grained control points that are not programmed as top-level level functions in

IL, but must be top-level functions in the target C program (as required by low-level

languages; see Section 1.6.4).

Transformations. We address the requirements above by transforming the program. In

doing so, we introduce a variant of IL that is somewhat closer to C, which we call CL,

for control langauge, since it lets us distinguish between local and non-local control flow

(Section 5.4). In Section 5.5, we use the additional control-flow structure of CL to statically

analyze our programs’ dynamic behavior.

Using CL as a target, we transform IL in a number of stages, listed below. At each stage,

we note the possibility for optmization (using the analyses mentioned above).

(a) The destination-passing style (DPS) transformation yeilds target programs that are

provably store agnostic. We refer to Section 4.5 for the basic definition.

112

(b) Translation of IL into CL lowers the self-adjusting primitives memo and update into

their C-based implementations. Similarly, we translate traced instructions into their

implementations. We describe this translation in Section 5.6.

(c) The normalization transformation of CL yields target programs where certain local

code blocks are lifted into a global scope as functions. We describe this transformation

in Section 5.7.

Optimizations. Based on the transformations above, we make several refinements to

mitigate and amortize the overhead of our approach.

We note that the normalization transformation comes with relatively little direct over-

head at run time: it changes some local control flow into non-local control flow (i.e.,

practically, this is the difference between mutating a stack frame versus replacing it).

However, by partitioning local blocks into distinct global functions, normalization reduces

statically-known information, which has consequences for later optimizations. Hence, the

normalization algorithm is designed to retain local (statically-known) control flow when-

ever possible.

Using this static information, we refine our translation and transformation with two

major optimizations:

• Optimization: Selective destination-passing style.

As described in Section 4.6, the basic DPS transformation comes with certain constant-

factor overheads, which can be reduced significantly with some simple static analysis.

• Optimization: Trace node layout and sharing.

In the basic translation, each primitive instance is traced independently, and its as-

sociated run-time overhead is not amortized across consecutive instances. We refine

this with an optimization that shares trace resources among the primitive instances.

113

5.2 Multiple levels

In Chapter 4 we study self-adjusting machines in isolation. In practice, however, a self-

adjusting machine does not exist in a vaccum: it is enclosed by an outer program, variously

referred to as the meta level or meta program in past literature. Hence, a fuller, more

practical picture of self-adjusting machines zooms back one step, and accounts for these

machines within the context of an enclosing environment that has code and data of its

own. Hence, there are (at least) two levels to account for: the outer (non-self-adjusting)

program, and the inner (self-adjusting) program.

In this section we describe these levels from the viewpoint of compilation and run-time

implementation. We describe how distinct levels can be viewed as distinct agents of con-

trol, whose interaction must observe certain restrictions (Section 5.2). We describe how we

implement each agent via coordinated compilation and run-time techniques (Section 5.2).

Multiple agents of control. Past approaches to self-adjusting computation impose the

dichotomy of the meta versus core on code and data (Hammer et al., 2009). Meta-level

programs are those programs that construct and update self-adjusting computations; core-

level programs are the programs whose traces are constructed and updated by change

propagation. This terminology extends from code to data: data allocated within the exe-

cution of core code is core data, and data allocated outside this execution is meta data. In

the context of a self-adjusting machine, we use the terms outer and inner, as opposed to

meta and core. The outer program (meta program) constructs and updates a self-adjusting

machine via change propagation; in turn, the self-adjusting machine executes an inner

program (core program), furnished by the outer program.

The inner data consists of all data allocated during the execution of the inner program.

The outer data consists of all global data shared by the outer and inner programs, as well

as all data dynamically allocated by the outer program, and all data that participates in

114

output-to-input feedback within the inner program. We return to these definitions when

we define the run-time system, in Chapter 6.

In addition to the outer and inner code, the CEAL compiler also accepts interleaving

foreign C code with CEAL code (Section 3.9). Since it does not require compilation, this

foreign C code is neither inner nor outer code. However, the foreign code can be called by

both inner and outer code, and can itself call outer code. After compilation, both the inner

and outer code become C code that use the run-time interface. Specifically, they use this

interface to construct self-adjusting machines and interact with their modifiable memory.

While doing this manually within CEAL via foreign C code is possible, compilation avoids

the burdens of doing so; it also allows the run-time system to reasonably demand that

additional static information be extracted and organized by the compiler for improved

run-time efficiently.

Compilation and run-time via separation. Our compiler seperates the levels described

above. A CEAL program consists of declarations of static information (viz. type definitions,

function prototypes and function definitions) as well as declarations of global storage (viz.

global variables and hidden library state). Unless explicitly marked as foreign C code,

all global storage is outer data1. Depending on a function’s calling context, many CEAL

functions can be interpreted as either inner code, or by ignoring certain keywords such

as memo, as outer code. When functions are used in multiple contexts, the compiler

duplicates and specializes them. In doing so, it strips out self-adjusting primitives (memo

and update) when functions are duplicated and used outside of the inner code.

To perform this separation and duplication, the compiler first performs an analysis that

computes three callgraphs of the source code, rooted at three distinct sets of entry points:

1. The header files of standard C libraries sometimes declare and use global state. According to its
configuration settings, our compiler distinguishes these header files containing foreign C code and data from
those that contain CEAL code and data.

115

• For foreign C code, it roots the graph such that every public (non-static) foreign C

function is a potential entry point.

• For outer code, it roots the graph such that every public (non-static) function is a

potential entry point.

• For inner code, it roots the graph such that the code block for each self-adjusting

machine is a potential entry point.

As mentioned above, the caller-callee relationships of the multi-level program have addi-

tional structure. Foreign code cannot directly call inner code, but it can directly call outer

code. In turn, outer code calls inner code each time it constructs a self-adjusting machine.

The outer code indirectly interacts with the inner code through shared memory structures

and change propagation. Both the outer and inner code can call foreign code.

In this chapter, we focus entirely on compiling the inner code, which is the most inter-

esting and complex of the different levels, from the viewpoint of compilation. The outer

programs require only a light translation to replace their use of certain operations with

appropriate calls to the run-time system; since they lack memo and update points, this

translation is entirely straightforward (Section 5.3). After this translation, the outer pro-

gram is equivalent to foreign C code. The foreign C code does not require any special

steps: It can be compiled directly by a standard C compiler.

The callgraph analysis is simplified by the assumption that the program is first-order,

which our implementation currently imposes. We do not foresee that support for function

pointers would be overly complex. Due to the uncertainty of statically predicting which

are required, higher-order functions will generally require that all possible versions be

generated for each function. When indirect calls (higher-order function applications) do

not preserve the caller’s level compared with that of the code being called, the programmer

would supply annotations to explicitly switch levels; for instance, from the inner level to

116

the foreign level. This level-switching can be implemented with as a projection from a

record that consists of all versions of the function (Chen et al., 2011, 2012).

5.3 Run-time interface

By translating IL programs to CL programs that use the run-time library interface, the

compiler generates code that constructs execution traces. We discuss central concepts in

the design of this interface: trace hook closures (Section 5.3), trace node attributes (Sec-

tion 5.3), trace nodes (Section 5.3) and in particular, their static descriptors (Section 5.3).

Trace hook closures. A trace hook closure (THC) is a record of a traced operation that

contains data and code used by the self-adjusting machine. Specifically, these records

store the trace information necessary for the machine to redo or undo the operation dur-

ing change propagation. In this section we discuss the general signature of a trace hook

closure, which is implemented by the run-time system library for each traced instruction

in IL.

THCs provide a general framework for defining and extending self-adjusting machines.

We express both built-in primitives as well as library-provided extensions as THCs, includ-

ing the allocation, reading and writing of modifiable memory ((Section B) gives listings

implementing modifiable references, in terms of the implementations’ THCs). In a sense,

the role of the compiler is to combine all the THCs of a program by combining their com-

ponent parts, and use these THC instances to customize a general-purpose run-time library

implemention of the self-adjusting machine semantics.

Figure 5.1 gives the signature of a trace hook closure for a hypothetical operation that

has one argument of type arg_t and the return type ret_t. This pattern can easily be

generalized to multiple arguments, variable-length arguments and so on. We explain the

THC components of this operation below.

117

Figure 5.1: The TRACE_HOOK_CLOSURE signature.

1 #module_begin TRACE_HOOK_CLOSURE
2 #imports
3 open [TRND_ATTRIBUTES] -- trace node attributes
4 type trnd_t -- trace node type
5 #exports
6 val atts : Atts.t -- attributes required of hooks below
7 type clos_t -- closure type for closing hooks below

9 val foreign : arg_t -> ret_t -- outside of machine
10 val invoke : trnd_t*, clos_t*, arg_t -> ret_t -- within the machine
11 val consis : trnd_t*, clos_t* -> bool_t -- callback: consistency
12 val revoke : trnd_t*, clos_t* -> void -- callback: undo
13 val revinv : trnd_t*, clos_t*, arg_t -> ret_t -- callback: redo
14 #module_end

The module that implements a trace hook closure consists of a statically-fixed attribute

set (atts), which we discuss further below. The rest of the module consists of a type

for closure records (clos_t), a function that gives the foreign behavior (foreign), and a

number of “hooks” that work in concert to give the machine behavior (invoke, consis,

revoke and revinv).

Most of the hooks act as callbacks: they are installed into the self-adjusting machine to

collectively provide the self-adjusting behavior of this operation, within the context of both

traced execution and the change propagation algorithm. However, every traced operation

can be invoked in (up to) two contexts. These contexts refer to the levels described in

Section 5.2:

Outer context: Untraced, outside the context of a self-adjusting machine’s execution

Inner context: Traced, within the context of a self-adjusting machine’s execution

Using space provided by the machine (of type clos_t), the invoke hook saves informa-

tion associated with the operation for use later by the other hooks. However, this closure

information is not saved when the operation is invoked within an untraced, foreign context

118

Figure 5.2: The TRACE_NODE_ATTRIBUTES signature.

1 #module_begin TRACE_NODE_ATTRIBUTES
2 type att_t = [MEMO | UDPATE -- self-adj primitives
3 | TIME | INTERVAL -- temporal ordering
4 | MEMOTBL | MACHINE | LIVE -- save/restore info
5 | BLK_ALLOC | DELAY_FREE] -- memory management

7 type att_off_t = { att : att_t ; -- attribute
8 off : unsigned int } -- offset of footprint in trace node

10 module Offs = List with hd_t := att_off_t -- opt: implement with pointer arith
11 module Atts = List with hd_t := att_t -- opt: implement as a bit field
12 #module_end

via foreign. The other hooks allow the machine to check the operation’s consistency dur-

ing change propagation (consis), for it to be undone (revoke) and for it to be undone and

redone (revinv). In addition to its own private closure space of type clos_t, the hooks

also get access to the trace node, which carries additional static and dynamic information.

Different THCs vary in what the features they require of the underlying self-adjusting

machine and its trace. As a few examples, consider the following:

• Some primitives require knowing about the global structure of the trace, (e.g., its

ordering or its nesting) and others do not.

• Some primitives may become inconsistent and require reexecution; others will never

become inconsistent.

• Some primitives require dynamic allocation, while others do not.

We categorize the run-time requirements of THCs using a system of attributes, given in

Figure 5.2. Trace node attributes signify that the THC’s trace node:

• has extra fields, for storing extra dynamic information

• provides additional operations to the closed hook code

119

Specifically, each THC definition provides a set of trace node attributes of type Atts.t.

Conceptually, this type is a list (or set) of attributes, but since it is statically-determined

and small in size, we can optimize its representation in several ways. First, we represent

the presence or absence of attributes on a trace node with boolean flags. Next, when these

features require that certain run-time system state be stored in the trace node, the footprint

of that data (i.e., its size and offset) is statically determined.

Below we consider the attributes that trace nodes may carry:

The memo attribute (MEMO) indicates that the local continuation should be guarded by a

memo point and that the trace node should contain a field of type memo_pt_t; it also

implies the MEMOTBL attribute, the INTERVAL attribute and the LIVE attribute.

The update attribute (UPDATE) indicates that the local continuation should be guarded by

an update point and that the trace node should contain a field of type update_pt_t.

The this field furnishes the node with the ability to be enqueued for reexecution

within the machine. This attribute implies the INTERVAL attribute and the LIVE at-

tribute.

Temporal attributes guide the machine’s use of dynamic time stamps.

• The TIME attribute indicates that the trace node should have a unique start time.

The trace node stores and furnishes access to this timestamp.

• The INTERVAL attribute indicates that the trace node should have a reference

to its time interval. The trace node stores and furnishes access to this interval,

which consists of a (unique) start time and a (shared) end time. This attribute

implies the TIME attribute.

Save & restore attributes indicate that certain information about the machine’s state should

be saved in the trace to supplement the information within the THC’s closure record.

120

• The MEMOTBL attribute indicates that the trace node should save a pointer to the

current memo table. The trace node furnishes access to this memo table.

• The MACHINE attribute indicates that the trace node should save a pointer to the

currently-executing machine. The trace node provides access to the machine.

• The LIVE attribute indicates that the trace node should save the local contina-

tion’s live variables. The trace node furnishes access to these live variables, as a

structure with one field per variable.

Allocation attributes guide memory management with respect to change propagation.

The BLK_ALLOC attribute indicates that the trace node performs dynamic allocations

in the trace. It furnishes the trace node with a list to keep track of these, and fur-

nishes the hooks with an allocation function for extending this list with new alloca-

tions. Like the space for the closure record, this memory is managed automatically

by change propagation. It can be used internally to enrich the (fixed-size) closure

record with additional dynamic structure. It need not remain only within the internal

representation of the machine; it can also be returned to the inner program.

The DELAY_FREE attribute indicates that the trace node should not be reclaimed until

change propagation is complete. This attribute must be used, for instance, if pointers

to memory allocated within the closure can escape into the inner program. For allo-

cation and reclamation to be sound with respect to change propagation, we must not

recycle memory until all traced references to it have been updated, when the trace is

consistent with a full reexecution. (See Sections 4.4 and 6.2).

Run-time system implementors choose a subset of the available attributes above, and

indicate that their trace hooks require them when they implement a trace hook closure.

They need not worry about the actual job of composing trace hook closures into trace

121

Figure 5.3: The TRACE_NODE_DESCRIPTOR signature.

1 #module TRACE_NODE_DESCRIPTOR
2 type desc_t = { -- trace node descriptor; compiler-generated.
3 atts : Atts.t ; -- flags: features required by the trace hooks
4 offs : Offs.t ; -- offsets: storage offsets for attribute data
5 size : size_t ; -- size of instances; includes THC closures
6 consis : trnd_t* -> bool_t ; -- hook: cheap, conservative consistency check
7 revinv : trnd_t* -> dst_t ; -- hook: rerun using space from a prior trace
8 revoke : trnd_t* -> void ; -- hook: undo prior trace
9 dbinfo : dbinfo_t ; -- source code file and line info

10 }
11 #module_end

nodes—this is the job of the compiler, and in particular, one of its optimization features

(Section 5.8).

Trace nodes. As a first cut, a trace node is a single trace hook closure (THC) instance.

However, by analyzing the CL program structure, we can group THC instances, putting

them into a single shared trace node to amortize their costs (Section 5.8). Since each THC

requires a different subset of run-time features, each grouping also requires a different

subset of run-time features. Since these extra fields can be shared among many THC

instances, their time and space costs are amortized across the grouped instances.

Figure 5.3 lists the structure of trace node descriptors, which contain (compiler-generated)

static information about trace nodes. The descriptor specifies what attributes the trace

node carries (atts), statically-computed offests for data associated with these attributes

(offs), a statically-computed size of trace node instances (size), including the space they

require for their trace hook closures, the composed trace hooks themselves (compiler-

generated code that composes the node’s hook code) (consis,revinv,revoke), and finally,

static debugging information (source code location, such as a file name and line number)

(dbinfo).

122

The descriptor’s attribute information can be represented in a number of ways. As two

obvious optimizations, the attribute flags can be encoded using a bit field (instead of a

list, or other aggregate structure) and the statically-computed offsets can be compiled into

pointer arithmetic in the generated code. Our compiler implements both of these basic

optimizations.

5.4 Program representation

We represent suface-level programs in CEAL and intermediate-level programs, those in-

ternal to the CEAL compiler, in IL. To facilitate the basic transformations listed above, and

particularly their optmizations, we also use additional static control-flow information, with

which we augment the program representation in IL. In particular, this augmented repre-

sentation consists of the IL program as well as local control-flow graph information. One

can safely think of IL syntax and its associated control-flow graph as distinct structures

with well-defined inter-translations; however, our implementation (Section 5.4) maintains

them as views of a common super-structure.

Once in our intermediate language IL, compilation performs the transformations out-

lined above. In doing so, we rely on properties of the CFG-like structure of CL programs,

and exploit standard techniques for extracting this structure from IL. Specifically, we rely

on the dominator relation (telling us about local control-flow structure) and the live vari-

able relation (telling us about local data-flow structure).

Control language: CL. We introduce a language closely to our intermediate language IL

called CL. The role of CL is to augment the structure of IL with some extra control flow

structure, namely:

• Control blocks that group code sharing a common trace node and stack frame.

123

Function names f, g ∈ FunId ⊂ VarId
Control block labels l ∈ LabelId
Local variables x, y, z ∈ VarId
Storage types A,B,C ∈ Type
Primitive operation o ∈ Prim

Programs P : := F.b Flat, recursive global scoping

Function definitions F : := f (x : A).b Globally-scoped, first-class block

Control blocks b, d, p, q : := let l.q in p Local block definitions
| {x← p} ;q Block sequencing (IL push)
| ret x Block return (IL pop)
| c ; b Command sequencing, single successor
| if x then p else q Conditional, multiple successors
| j Inter-block successor, via jump

Primitive commands c : := x← o (y) Primitive operation
| f← lift(x)(b) Lift block into function

Jumps j : := goto l Local jump to labeled block
| tail f (x) Non-local jump to function

Figure 5.4: The sytnax of CL

• A lift primitive that (statically) generates top-level functions from a control block.

Abstract syntax. We give abstract sytnax for CL in Figure 5.4. The sets VarId, FunId, Type

and Prim consist of different classes of unique identifiers, where function names can be

treated as variables (but, type names and primitive operation names cannot). Programs

consist of a set of globally-scoped, mutually recursive functions. Functions consist of for-

mal arguments (variables) and a body which consists of a control block.

Control blocks. Control blocks (or simply blocks when clear from context) are similar

to statements in C, except that they impose additional control structure. They consist

of nested, labeled block definitions (defined in a mutually-recursive fashion), sequenced

124

blocks, block return, command sequencing, intra-block conditionals and inter-block trans-

fers via indirect jumps (using labels or function names for named indirection).

Commands. Commands are more primitive than control blocks. A primitive operation

consists of a built-in C primitive (such as arithmetic or logical operation) or a primitive

provided by the run-time library or an extension. The lift command (statically) promotes

a control block into a globally-scoped function, which it names as a first-class value. The

variable parameters of the lift command specify the live variables of the promoted block2,

which become the formal arguments of the lifted function.

Jumps. Jumps facilitate indirect control-flow. A goto transfers control to a labeled block.

A tail call transfers control to a global function. We elaborate on the contrast between

functions and blocks below.

Execution semantics. A central design consideration of CL is to provide a idealized ver-

sion of C, where a distinction exists between the global control flow of top-level functions

and the local control flow of their bodies. In particular, CL stratifies control-flow into two

categories:

Functions are first-class; their name space is flat, and recursively-scoped.

Blocks are not first-class; their name space is nested, and lexically-scoped.

We explore the differences between blocks and functions in greater depth below. These

differences are analogous to (though not exactly the same as) the differences in C between

functions and statements.

Since CL is closely related to IL, we only give an informal account of its operational

semantics. We focus first on the contrast between blocks and functions, especially as they

2. The compiler computes this set using a standard live variable analysis.

125

Table 5.1: Functions versus blocks in CL

CL Blocks CL Functions

Language status Not a value First-class value

Static structure Nested, lexical scoping Flat, global scoping

Transfer patterns Comparatively static Highly dynamic

Transfer operation Mutates stack frame Replaces stack frame

Trace structure Trace node Recurring trace node pattern

relate to the ultimate target language of compilation, C. We also discuss the semantics of

CL’s additional command: lift.

Blocks versus functions. Table 5.1 contrasts blocks and functions tabularly. While func-

tions are first class, blocks are not. While blocks can nest, functions do not. Blocks transfer

control locally to other blocks, while functions can be treated like first-class data, making

their control-flow more difficult to analyze. In terms of the underlying C machine, a block

transfers control by changing the instruction pointer (i.e., the program counter); a func-

tion transfers control by changing the instruction pointer and replacing the current stack

frame with a new one. Due to having more static information about control flow, blocks

can share trace resources by sharing trace nodes; function invocations do not participate in

such sharing with each other.

Nesting and dominance. While it may be uncommon to think of (basic) blocks as having

a nested structure, Appel (1998b) points out this nested structure is indeed present, in both

the dominator tree of a control flow graph of basic blocks, as well as in the syntactic nesting

of their corresponding functional description. So, when we say that a block is nested within

another, we mean to say that a block is dominated by another in their corresponding control

126

flow graph, or nested within another in their syntactic (or pictorial) description. This

relation gives us static information about control flow, which helps us allocate machine

resources (e.g., the registers, stack and trace).

Laying out the call stack. Stack frames are an allocation strategy for a more general

structure—the structure of dynamic environments. Due to their not being first-class, the

control flow of basic blocks is easier to statically analyze than that of functions, and leads

to common optimizations in this layout. It is instructive to consider how C benefits from

this distinction between local and non-local control flow by using standard compiler tech-

nology. As one example, the compiler may perform register allocation, which is generally

a part of stack frame layout: when the registers are insufficient in number, excess live

data is “spilt” onto the stack. Typically, C compilers do such optimizations based on the

knowledge of local control and data flow (often summarized in control flow graphs) that

can often be readily extracted for local control flow, but which is not known statically for

global control flow (control flow at the level of functions).

Due to more precise contextual information, local control flow between basic blocks

is cheaper and easier to analyze than non-local control flow between functions. As a

result, resource allocation (such as registers and the call stack) are typically done intra-

procedurally, making local control dynamically cheaper than non-local control. The result

of these local analyses is that local variable assignment and variable access in C becomes

very economical: rather than consult a dynamic environment (as our abstract machine

does), the variable content is either allocated on the stack (at a fixed, statically-known

offset from the stack pointer) or better still, in a C machine register.

We note that in CL, as in IL (Section 4.3), we decompose function calls into tail calls

and separate stack operations, which save and restore the caller’s local state. Therefore,

when we consider the operational cost of function application, we are considering that

of only tail-recursive applications that lack this local saving step. Even so, the cost of

127

transfering control between basic blocks is cheaper still, since it generally requires a small

(not wholesale) change to the current stack frame, if any. By contrast, a tail call generally

requires replacing the current stack frame with a new one.

Laying out the trace. Beyond the stack, in the context of self-adjusting machines, we

have an additional resource to consider: the execution trace. Trace nodes provide an allo-

cation strategy for the trace. As with stack frames, trace nodes are applicable when certain

information is known statically. Specifically, this information consists of the sizes, offsets

and lifetimes of certain spatial resources (the trace storage required by each primitive op-

eration). When known, this information can be used to statically group traced primitives

and amortize their combined run-time tracing cost. As with stack frames, trace nodes are

statically allocated by considering static information about control and data flow.

In CL, we express this grouping syntactically by using the notion of a block. Blocks have

the right properties for such groupings: enough of their control-flow is known statically to

supply each of their instructions with a unique, statically-computed offset and footprint in

the trace node’s payload. By contrast, the trace of a function generally consists of dynam-

ically recurring patterns of the trace nodes, whose overall structure and size is statically

unknown and is generally undecidable. Where statically-known structure can be discov-

ered in the non-local control flow, it can be encoded (via function-inlining) into static

control flow, and thus exposed to our optimizations. For instance, the layout of code in

statically-structured control blocks leads to a statically-structured layout of its trace nodes.

Semantics of primitive operations. We give an informal account of CL primitive opera-

tions. The lift operation promotes a control block into a top-level function. In particular,

we translate the update points of IL by enclosing the guarded code with the lift primitive

of CL. When the lift primitive is expanded at compile time, this transformation lifts local

code guarded by an update point into the global scope, so that it can be used to construct

128

a function pointer and closure record. In Section 5.7, we give a normalization algorithm

that expands these compile-time lift operations and puts the program into a “fully-lifted”

normal form.

CFG representation. Our compiler is implemented as a series of tree walks, which take

advantage of tree shape of the program’s dominance structure. To implement this repre-

sentation, we use an applicative zipper interface inspired by Ramsey and Dias (2006). As

an instance of this tree-based approach, our normalization algorithm alters the dominance

structure in order to statically expand CL lift commands. See Section 5.7 for the graph

version of the algorithm. In the tree transformation, the units computed by the graph

algorithm correspond to subtrees of the dominator tree, and thus, subtrees of the syntac-

tic encoding. The tree transformation consists of relocating the unit subtrees as global

functions.

Our implementation as a tree transformation relies on the dominance structure be-

ing encoded syntactically in order to function correctly. In turn, through unifying the

dominator tree and the syntax tree of the program, the implementation of analyses and

transformations of our compiler can be expressed concisely.

5.5 Static analyses

Dominator and live variable analysis are needed to generate IL and CL programs in the

first place, since IL requires the static single-assignment property3 and both use syntax to

encode domination. We discuss these standard analyses within the context of our compi-

lation strategy. We give a simple but nonstandard analysis that we use to translate the IL

program and apply the DPS transformation; it statically analyzes the program’s placement

of update and memo points.

3. Recall that IL uses functional notation, which is closely related to the SSA form of a program.

129

Domination & post-domination. In the context of control-flow graphs, domination and

post-domination relations give us statically-known facts about a program’s dynamic control-

flow across time, and have been a standard part of compiler technology for decades (Appel,

1991; Muchnick, 1997; Appel, 1998a). From the viewpoint of a node in the control-flow

graph, the dominator relation tells us about the past; specifically, it tells us from where

we must have traveled. If block d dominates block b and control is currently at block b,

then we know that block d was executed in the past. This relation is built by analysing the

predecessor relation of the CFG, which tells us for each node, which other nodes precede

it.

Dually, the post-dominator relation is parameterized by the sucessor relation of the

CFG, and it gives a dual set of facts about the future: If block p post-dominates node b and

control is currently at node b, then we know that node p will be executed in the future.

In the context of constructing self-adjusting machines as C code, these properties of

domination and post-domination are useful throughout:

1. To statically layout trace nodes (Section 5.3).

2. To estimate the lifetime of local variables (Section 5.5)

3. To translate IL memo and update points into CL (Section 5.6)

4. To selectively apply destination-passing style to stack operations (Section 5.8).

5. To allocate registers and layout the stack frame (done by any standard C compiler).

In CL, domination is encoded syntactically: if a syntactically contains b then block b is

dominated by node a. The converse may not necessarily be true, but can be enforced as a

compiler-wide invariant (see below).

Post-domination is also encoded syntactically, in various forms. First, each CL command

is post-dominated by its body. In sequential composition of CL control blocks (b ; p), the

130

the second block of the sequence (p) is a post-dominator of the first (b). In terms of IL,

a similar pattern of post-domination is encoded by push operations: the pushed function

post-dominates the push body. In both CL and IL, post-domination can be encoded with

labeled blocks. If some block l contains the only return of a function with no other non-

local control flow, then block l post-dominates every block of the function. No matter what

control path is taken, control must reach l to return.

Some regions of code share a common dominator and post-dominator. These are

known as single-entry, single-exit (SESE) regions. The bodies of C functions are single-

entry, single-exit regions. For structured control flow (in the absence of labels and gotos),

C statements are also instances of single-entry, single-exit regions. By sharing a dominator

and post-dominator, these blocks of code have a common lifetime, allowing the possibility

for optimizations to exploit this shared lifetime to amortize run-time costs, such as tracing

overhead (Section 5.3).

Enforcing the dominance invariant. While syntactic containment always implies dom-

inance, the converse is not always true: syntactic independence does not imply the lack

of dominance. However, since it simplifies correspondances, we would like to tacitly as-

sume that the converse holds, that is to say, that when a block b is dominated by another

block d, then the dominated block b will be syntactically within the dominating block d.

However, strictly speaking this does not hold after arbitrary program transformations. As

an example, consider the destination-passing-style (DPS) transformation.

But we can remedy this. By recomputing the dominator tree of the control-flow graph,

this property can be restored: we transform the program syntactically (not semantically),

and renest domianted blocks under the blocks that dominate them. Our compiler performs

this transformation to maintain the syntactic encoding of the dominator tree. In turn, the

correspondance between syntax (tree structure) of the program and its dominator tree

131

simplifies transformations that rely on this information, since they can often be phrased as

tree walks (Section 5.4).

Live variable analysis. In the informal semantics of CL, as in the semantics of IL, the

local state maps variables to dynamic values. In IL, the environment is static single-

assignment: each local program variable is unique, and is only assigned once. In CL,

as in C, this environment is more like a mutable stack, and it may not observe the static

single assignment rule. In both cases, the purpose of live variable analysis is to give infor-

mation about the future use of this dynamic local environment, from the point of view of

each (static) control point.

At each block in the control-flow graph, live variable analysis gives us a set of local

variables that (conservatively) may be used in the future, upon entry to the block. If

a variable is missing from this set, then it will not be used, regardless of how program

data is changed. Most compiler texts give the formal and practical details, which we

straighforwardly adapt to IL and CL Appel (1991); Muchnick (1997); Appel (1998a).

In the context of self-adjusting machines, this live variable information is useful for

translating memo and update points, for determining which variables to save in the trace.

In our compilation strategy, this shows up in translating IL to CL (Section 5.6).

Analysis of memo and update points. To inform both our translation and selective

destination-passing style (DPS) transformation, we use a simple analysis for conservatively

determining the dependencies of return values upon the modifiable control-flow of memo

and update points.

First, the translation of memo points requires knowledge of the address of the re-

turned content (the memoized results, which are returned rather than recomputed); this

knowledge is easily satisfied through coding in a destination-passing style (DPS). Similarly,

132

update points require a destination-passing style as well, for the soundness of change prop-

agation. Meanwhile, Section 4.5 gives a DPS transformation for IL, but it converts all stack

operations without any selectivity.

Below, we give MU-analysis, which informs more a selective technique. Depending on

the placement of memo and update points, a return value is tranformed in up to three

ways:

• The identity transformation, where the return value is given directly on the stack.

This is possible when no memo or update points lie within the region.

• The DPS transformation, with indirection via stable (non-modifiable) memory;

• The DPS transformation, with indirection via modifiable memory.

In both cases of indirection, the memory is provided within and managed with the trace.

These cases only differ in whether the memory is traced as a modifiable or not. The

translation of update points (conservatively) requires modifiable memory, while memo

points do not.

MU-Analysis. We use a context-sensitive control-flow analysis to statically-estimate the

placement of memo and update points. The contexts and results of our analysis are both

drawn from simple lattices:

L2 = {0, 1}

Lmu = L2 × L2

The lattice Lmu consists of pairs of binary numbers, ordered such that (0, 0) is the bottom

element and (1, 1) is the top element. The first binary digit encodes whether there may

be a preceeding memo point. Similarly, the second digit encodes whether there may be a

preceeding update point. Both estimates are static, and hence conservative.

133

Based on these definitions, the analysis follows a standard lattice-based fixed point

formula: At each control block, for each possible context (an element of Lmu), we produce

a context for each successor, which we unify with the other predecessors of the successor

(via their join, i.e., least upper bound). Throughout the analysis, for each top-level CL

function, for each possible Lmu context, we have an associated Lmu element that indicates

(a conservative estimate of) its post condition. This lets us perform the analysis globally,

across the entire CL program. We continue updating the lattice elements at each control

block until we reach a fixed point, which is guaranteed by virtue of the finite height of the

lattice structures. Similarly, the small, finite size of the lattice structure means that there

are only a small number of possible contexts to consider for each function.

When complete, we inspect the Lmu element at each IL push and pop operation. De-

pending on the estimate of the analysis, we either apply the DPS conversion in one of the

two ways outlined above, with or without modifiable memory, or do nothing at all. Since

each function is analyzed with every possible calling context, we specialize functions with

up to three versions. Rather than use dynamic dispatch, we statically specialize call sites

according to this context4.

5.6 Translation

We translate the IL and its primitives into CL and primitives from the run-time library,

which gives a C-based implementation of self-adjusting machines. We give an overview

of the translation (Section 5.6). We describe the primitives provided in the target lan-

guage. We describe the cases for translating traced operations, control-flow constructs,

stack operations and the incremental operators memo and update. Finally, we describe

the generation of redo and undo code.

4. Our current implementation lacks support for indirect function application, i.e., function pointers. In
those cases, an explicit annotation (e.g., such as a qualified type for the function pointer) would guide the
analysis and translation.

134

Overview. The role of translation from IL to CL is to distinguish between local and non-

local control flow, to replace uses of traced operations with the bindings of their implemen-

tations as trace hook closures (Section 5.3), and to expand the other core primitives of the

machine—memo, update, push and pop—into CL constructs and with certain compile-

time and run-time primitives.

The forms memo and update each save and restore the local state of an IL program—

an environment ρ and an IL expression e. To compile these forms, the following questions

arise: How much of the environment ρ should be recorded in the runtime trace and/or

memo table? Once an IL expression e is translated into a target language, how do we

reevaluate it during change propagation?

Saving and restoring ρ. First, we address how we save the environment ρ. At every

incremental checkpoint operation (either memo or update) we use a liveness analysis

(Section 5.5) to approximate the live variables LV(e) at each such e, and then save not ρ,

but rather ρ|LV(e), i.e., ρ limited to LV(e). This analysis has two important consequences:

we save space by not storing dead variables in the trace, and we (monotonically) increase

the potential for memo matches, as non-matching values of dead variables do not cause a

potential match to fail.

Fine-grained reevaluation of (ρ, e). Second, we address the issue of fine-grained reeval-

uation. This poses a problem since languages such as C do not allow programs to jump to

arbitrary control points, e.g., into the middle of a procedure. We use a low-level λ-lifting

technique to flatten the program at these points. That is, we translate update points using

the lift operation of CL. The lift operation can be used to express the lifting of local code

guarded by update into the global scope, so that it can be used to construct a function

pointer and closure record. Separately, we give an algorithm that we call normalization,

135

which puts the program into a “fully-lifted” normal form and removes these compile-time

operations (Section 5.7).

Destinations as contextual information. The translation rules use the metavariable δ to

range over three cases that characterize the destination of the expression being translated:

d ∈ VarId

Destination δ : := ◦ | • | d

Translation [[·]] · : IL-Exp→ Dest→ CL-Block

[[e]] δ : CL-Block

The MU-analysis and destination-passing style guide the translation between these

cases. The first case δ = ◦ signifies that the expression has not been transformed into

destination-passing style. This case is possible if the expression contains no memo or

update points (neither syntactically, nor semantically). The next case δ = • signifies that

the expression has a destination, but that it has not yet been determined (i.e., has not yet

been allocated or otherwise bound to a variable). The final case δ = d signifies that the

expression has a destination and that it is bound to the variable d.

CL target primitives. The translation uses the primitives below. These primitives involve

run-time representations of traces, in terms of trace hook closures, trace nodes and trace

node descriptors. Section 5.3 discusses the run-time system interface in greater detail.

These primitives are statically-expanded at compile time, to code that is statically-

specialized for a trace node descriptor D:

desc is expanded at compile time. It is a meta-level operator that sends IL primitives, as

well as other traced operations provided by library extensions, to their statically-

generated trace node descriptors.

136

invokeD expands to the invoke function for the trace hook closure implementation, whose

trace node descriptor is D.

clos ofD is partially-expanded at compile time. It gives a static offset for the footprint of

the trace hook closure within the trace node footprint.

x← clos varsD is partially-expanded at compile time. It restores and rebinds live variable

values that are saved in the closure of the given trace node.

The primitives below are provided by the run-time library to build and manipulate

traces within the context of a self-adjusting machine. We refer the reader to Sections 6.4

and 6.5 for more details about this interface; below, we give a high-level description.

mkD dynamically instantiates (allocates and initializes) a trace node for a statically-determined

trace node descriptor D.

memo chkpt provides a memoization check-point: it searches for trace nodes in the cur-

rent memo table. It returns a reusable match, or NULL if none is found. If none is

found, it adds the trace node argument to the table for use in future cycles of change

propagation.

frame memo takes a trace node whose live variables and program text match the current

local state (as returned by memo chkpt). It edits the trace to reuse the given trace

node, and change-propagates the remaining trace for the current frame. The caller

provides the current destination is as a second argument, which is returned as a

result. In this style, this primitive is consistent with the run-time system techniques

(tracing, memoization and change propagation) being properly tail-recursive.

frame push takes stack-allocated space for the frame, and trace-allocated space for the time

stamp. It uses the frame space to store certain internal cursor information, and uses

the time stamp to create an interval and store its end time. When a region of code

137

Table 5.2: Translation of IL to CL: traced operations and control-flow

[[let x = o(x) in e]] δ =



t← mkD() ;

x← invokeD(t, clos ofD(t), x) ;

[[e]] δ

where D = desc(o)

[[let f(x).e1 in e2]] δ = let lf.[[e1]] δ in [[e2]] δ

[[f(y)]] δ =

 x← y ; goto lf when f is local

tail f(y) when f is global

[[if x then e1 else e2]] δ = if x then [[e1]] δ else [[e2]] δ

contains memo or update points, it is put into destination-passing style (DPS) by the

compiler, and the stack frame induces an interval that the translation traces using

this operation. When a region of code does not contain memo or update points, it

does not require an interval within the trace, and this operation can be avoided. As

mentioned above, the MU-analysis guides the translation between these cases.

frame pop is the complement to frame push. It marks the end of the lifetime of the machine

stack frame.

In addition to these operations, which concern trace nodes, the translation additionally

uses the following primitives provided by either the C language or the self-adjusting ma-

chine implementation:

alloca allocates space directly on the stack, rather than in the heap. The translation uses

it to signify that certain memory should be stack-allocated. The implementation of

this primitive is built directly into standard C compilers; here, we treat it abstractly.

138

Traced operations and control-flow. Table 5.2 gives the translation for traced oper-

ations and control-flow constructs (viz. function abstraction, function application and

conditionals).

For traced operations, the translation uses the trace node interface. The translation uses

mk to instantiate a trace node for the descriptor D, which consists of the static information

for the traced operation o. The translation invokes the traced operation according to the

trace node descriptor; the invocation receives the trace node, space within the trace node

reserved for its closure, and the operands x. The traced operation consists of all the hooks

associated with the operation, including the code necessary to redo and undo the operation

(Section 5.3).

For function abstraction and function application, the translation encodes control flow

in one of two ways: locally, as a control block; or globally, as a top-level function. Local

control blocks are possible when use of the function is not first-order 5; functions are

possible when the function is globally-scoped (not nested within the local scope of another

function). The translation of conditional control flow is the identity homomorphism (i.e.,

we use C conditionals in a straightforward manner).

Stack operations: push and pop. Table 5.3 gives the translation for stack operations.

The cases vary depending on how the selective destination-passing-style (DPS) transforma-

tion was applied to the program. Expressions that contain memo and/or update points

return their results indirectly, via a destination. For these expressions, we thread a • to

signify that a destination will be determined; for all other expressions, we thread a ◦ to

signify that there is no destination (nor any update or memo points). The destinations

are determined by the memo-guarded allocations that the DPS-transformation introduces.

The translation handles that case in Table 5.4, described below.

5. though, CL provides the compile-time operator lift to overcome this limitation.

139

Table 5.3: Translation of IL to CL: push and pop forms

[[let f(x).e2 in push f do e1]] δ =

 {x← [[e1]] ◦} ; [[e2]] δ

where e1 is update- and memo-free

[[pop x]] ◦ = ret x

[[let f(x).e2 in push f do e1]] δ =



t← mkD() ;

f← alloca(sizeof(frame t)) ;

frame push(f, clos ofD(t)) ;

{ x← [[e1]] • } ;

frame pop();

[[e2]] δ

where D = desc(alloc(Time.t))

[[pop d]] d = ret d

Incremental operators: memo and update. Table 5.4 gives the translation for the

memo and update points. The translation has two cases for memo points which vary

on whether the destination has been determined or not.

In the first memo case, the destination is not determined by the context of the memo

point. In these cases the memo point guards the allocation of the destination, which im-

mediately follows the memo point. This memo; alloc sequence is a pattern introduced

by the DPS transformation in order to encode the indexed allocation of destinations. The

translation handles this pattern specially (since the destination is being determined, not

predetermined); the rule given combines the memo point with the allocation of its desti-

nation. The trace descriptor (D) combines a descriptor the memo point (x.e) and with a

descriptor for the allocation of the destination. The memo trace node is introduced using

mk and is initialized with the values of the current set of live variables x.

140

Table 5.4: Translation of IL to CL: memo and update forms

[[memo let d= alloc(n) in e]] • =



m1 ← mkD(x) ;

m2 ← memo chkptD(m1) ;

if m2 then frame memo(m2)

else d← mkdesc(alloc(n))(); [[e]] d

where D = desc(memo(x.e))

and x = live(e)

[[memo e]] d =



m1 ← mkD(x) ;

m2 ← memo chkptD(m1) ;

if m2 then frame memo(m2) else [[e]] d

where D = desc(memo(x.e))

and x = live(e) with d ∈ x

[[update e]] d =



t← mkD(x)

f← lift(t)(x← clos varsD(t) ; [[e]] d)

[[e]] d

where D = desc(update(f ; x))

and x = live(e)

The memo point searches for a matching trace node using memo chkpt, passing the

trace node t as a key. If a match m is found, then we retrieve the destination from the

match using get and yield control to the self-adjusting machine using frame memo. Other-

wise, if t fails to match, then we bind the destination d using the space in trace node t.

When a destination is already variable-bound, we translate a memo point by using that

destination. Hence, the two cases of memo translation are very similar, but also crucially

141

distinct: In the first case the destination is being determined; in the second case, the

destination is already fixed.

To translate an update point, we use mk to allocate and initialize a trace node that

saves a redo function f for the expression and the values of the expression’s live variables x.

Using get, the lifted update function f restores the values of the live variables from the trace

node argument. We use the lift primitive to make the undo and redo thunk code accessible

to the run-time library, as function pointers. We discuss these details separately, below.

Redo and undo code generation. Above we present the invocation channel of the trans-

lation: for each traced operation, we translate its code into the code to invoke it. Specifi-

cally, we elide the details of code generation for the trace node’s redo and undo thunks. To

show how we translate the lifted code, we should also give the redo, undo or consistency-

check channels, where we use not invoke but instead the revinv, revoke or consis opera-

tions, respectively. Here, we describe our implementation of these thunks at from a high

level.

We use a tree traversal to perform the translation; upon a top-down and bottom-up

traversal of an IL term, we generate four CL terms. During translation, we refer to these

generated terms as the channels of the translation’s output:

1. The invocation channel consists of a CL term that gives the translation, as presented

above;

2. The normalized invocation channel consists of a CL term that gives a normalized trans-

lation which we generate as we traverse—we do so by precomputing the set of blocks

that must be lifted by the normalization algorithm (i.e., those lifted via lift), and by

generating seperate functions for these blocks as we traverse them;

3. The redo, undo and consistency-checking channels consists of a triple of CL terms that

gives the current redo, undo and consistency-check thunk bodies, i.e., the composed

142

revinv, revoke and consis calls for each traced operation being combined into a

trace node.

At some points during traversal, the last triple may be nonexistent—i.e., when no traced

operation is locally involved in the translation. When we emit a trace node descriptor,

we also emit code for its hooks: the final triple returned by the traversal provides this

code. The second channel of terms emitted by the traversal—the normalized version of the

program—is required since the hooks may require reentering the program’s functions at

arbitrary control points. We separately provide the first channel of terms—terms that have

not be normalized—to emphasize that normalized terms are only required for reexecution,

and not for initial trace execution and trace generation. We refer the reader to Section 5.4

for more information on our implementation’s internal representation of programs and

term transformations.

5.7 Normalization

We say that a CL program is in normal form if and only if every it is free of lift commands.

In this section, we describe an algorithm for normalization that represents programs with

control flow graphs and uses dominator trees to restructure them.

Rooted control-flow graphs. We represent CL programs with a particular form of rooted

control flow graphs, which we shortly refer to as a program graph or simply as a graph

when it is clear from the context.

The graph for a program P consists of nodes and edges, where each node represents

a top-level function definition, a control block, or a distinguished root node. The tag of

the node carries the information necessary to reconstruct the syntactic representation of

the node (as a function definition, control block or root node). As a matter of notational

convenience, we name the nodes with the label of the corresponding basic block or the

143

name of the function, e.g., ul or uf. For blocks that have no label, we create a unique label

based on the label of the block that contains it (or name of the function that contains it),

and its path within this contained block.

The edges of the graph represent block containment and control transfer. For each

function node uf whose first block is ul, we have an edge from uf to ul; similarly, for each

block ul contained with another block uk, we have an edge from ul to uk. For each goto

jump from block l to block k we have an edge from node ul to node uk, tagged as a goto.

For each tail jump from block l to function f we have an edge from node ul to node uf,

tagged as a tail.

Once lifted, a block can be entered as a top-level function. We call a node a entry node if

it corresponds to a block being lifted via a use of the lift primitive, or a top-level function.

In the rooted control-flow graph, we make the control flow of lifts graphically explicit: For

each entry node ul, we insert into the graph an edge from the root node to node ul. We

call this edge an entry edge.

There is a (efficiently) computable isomorphism between a program and its graph that

enables us to treat programs and graphs as a single object. In particular, by changing

the graph of a program, our normalization algorithm effectively restructures the program

itself.

Lemma 5.7.1 (Programs and Graphs). The program graph of a CL program with n blocks

can be constructed in expected O(n) time. Conversely, given a program graph with m nodes,

we can construct its program in O(m) time.

Proof. We construct the graph in two passes over the program. In the first pass, we create

a root node and create a node for each block. We insert the nodes for the blocks into a

hash table that maps the block label to the node. In the second pass, we insert the edges

by using the hash table to locate the source and the target nodes. Since hash tables require

144

expected constant time per operation, creating the program graph requires time in the

number of blocks of the graph.

To construct the program for a graph, we follow the outgoing edges of the root. By the

definition of the program graph, each function node is a target of an edge from the root.

For each such node, we create a function definition. We then generate the code for the

function by generating the code for each block that is reachable from the function node

via goto edges. Since nodes and edges are tagged with the CL blocks that they correspond

to, it is straightforward to generate the code for each node. Finally, the ordering of the

functions and the blocks in the functions can be arbitrary, because all control transfers are

explicit. Thus, we can generate the code for a program graph by performing a single pass

over the program code.

Dominator trees and units. Let G = (V, E) be a rooted program graph with root node

ur. Let uk, ul ∈ V be two nodes of G. We say that uk dominates ul if every path from ur

to ul in G passes through uk. By definition, every node dominates itself. We say that uk is

an immediate dominator of ul if uk 6= ul and uk is a dominator of ul such that every other

dominator of ul also dominates uk. It is easy to show that each node except for the root has

a unique immediate dominator. The immediate-dominator relation defines a tree, called a

dominator tree T = (V, EI) where by EI = {(uk, ul) | uk is an immediate dominator of ul}.

Let T be a dominator tree of a rooted program graph G = (V, E) with root ur. Note that

the root of G and T are both the same. Let ul be a child of ur in T . We define the unit of ul

as the vertex set consisting of ul and all the descendants of ul in T ; we call ul the defining

node of the unit.

Lemma 5.7.2 (Cross-Unit Edges). Let G = (V, E) be a rooted program graph and T be

its dominator tree. Let Uk and Um be two distinct units of T defined by vertices uk and um

145

respectively . Let ul ∈ Uk and un ∈ Um be any two vertices from Uk and Um. If (ul, un) ∈ E,

i.e., a cross-unit edge in the graph, then un = um.

Proof. Let ur be the root of both T and G. For a contradiction, suppose that (ul, un) ∈ E

and un 6= um. Since (ul, un) ∈ E there exists a path p = ur uk ul → un in G. Since

um is a dominator of un, this means that um is in p, and since um 6= un it must be the

case that either uk proceeds um in p or vice versa. We consider the two cases separately

and show that they each lead to a contradiction.

• If uk proceeds um in p then p = ur uk um ul → un. But this means that

ul can be reached from ur without going through uk (since ur → um ∈ G). This

contradicts the assumption that uk dominates ul.

• If um proceeds uk in p then p = ur um uk ul → un. But this means that

un can be reached from ur without going through um (since ur → uk ∈ G). This

contradicts the assumption that um dominates un.

Example. Normalization is made possible by an interesting property of units and cross-

unit edges. In particular, normalization lifts the units of the dominator tree that correspond

to the new unit-defining nodes, including the entry nodes marked by the lift commands.

We identify the new unit-defining nodes using the dominator tree; once identified, we

normalize the program by lifting the units of all new unit-defining nodes into top-level

functions, and redirecting cross-unit edges into tail calls.

Figure 5.5 shows a rooted control-flow graph (CFG) where the root node (labeled 0)

is connected to the nodes 1, 3, 11 and 12. Figure 5.6 shows the dominator tree for the

rooted CFG. The entry nodes (viz. 1, 3, 11 and 12) are top-level units; node 18 is also

a top-level unit, as it is required as a shared dependency by the other units. Figure 5.7

shows the normalized CFG, where new function nodes (viz a, b, c and d) are inserted for

146

2

1

64

3

7

15

8

10

9

12

11

13

0

18

Figure 5.5:
Rooted CFG.

2

1

6
4

3

7

15

8

11

9

12

13

0

18

10

tree
nontree

Figure 5.6: Dominator tree.

2

1

64

3

7

15

8

11

9

12

13

0

18

10

b c da

Figure 5.7: Normalized CFG.

each new top-level unit (whose critical nodes are highlighted), and existing edges into the

units are redirected from these critical nodes to instead target the new function nodes.

NORMALIZE: a graph algorithm. Figure 5.8 gives the pseudo-code for our normalization

algorithm, NORMALIZE. At a high level, the algorithm restructures the original program

by creating a function from each unit and by changing control transfers into these units to

tail jumps as necessary.

Given a program P, we start by computing the graph G of P and the dominator tree T

of G. Let ur be the root of the dominator tree and the graph. The algorithm computes the

normalized program graph G ′ = (V ′, E ′) by starting with a vertex set equal to that of the

graph V ′ = V and an empty edge set E ′ = ∅. It proceeds by considering each unit U of T .

Let U be a unit of T and let the node ul of T be the defining node of the unit. If ul is

a not a function node, then we call it and all the edges that target it critical. We consider

two cases to construct a set of edges EU that we insert into G ′ for U. If ul is not critical,

then EU consists of all the edges whose target is in U.

147

Figure 5.8: Pseudo-code for the NORMALIZE algorithm

let G = (V, E) = rooted-graph(P, ur) — graph rooted at ur
let T = dom-tree(G) — tree rooted at ur
G ′ ← (V ′, E ′), where V ′ ← V and E ′ ← ∅ — empty edge set
for each unit U of dominator tree T do — iterate over units of T

ul ← defining node of U — consider each defining node ul
if ul is a function node then — ul is not critical
EU ← {(ul, u) ∈ E | (u ∈ U)}

else — ul is critical
suppose f 6∈ P and x = live(l) — create a fresh function
V ′ ← V ′ ∪ {uf}

tag(uf)← f(x)

— add function edges, and intra-unit edges that do not target ul
EU ← {(ur, uf), (uf, ul)} ∪ {(u1, u2) ∈ E | u1, u2 ∈ U, u2 6= ul}
for each critical edge (uk, ul) ∈ E do — consider edges targeting ul

if uk 6∈ U then — case: cross-unit edge
EU ← EU ∪ {(uk, uf)} — redirect to f
tag((u, uf))← tail f(x) — args are the live variables x

else — case: intra-unit edge
EU ← EU ∪ {(uk, ul)} — do not redirect to f
E ′ ← E ′ ∪ EU

If ul is critical, then we define a function for it by giving it a fresh function name f

and computing the set of live variables x at block l in P. The set x becomes the formal

arguments to the function f.

We then insert a new node uf into the normalized graph and insert the edges (ur, uf)

and (uf, ul) into EU as well as all the edges internal to U that do not target ul. This creates

the new function f(x) whose body is defined by the control blocks of the unit U. Next, we

consider critical edges of the form (uk, ul). If the edge is a cross-unit edge, i.e., uk 6∈ U,

then we replace it with an edge into uf by inserting (uk, uf) into EU and tagging the edge

with a tail jump to the defined function f representingU. If the critical edge is an intra-unit

edge, i.e., uk ∈ U, we insert the edge into EU, effectively leaving it intact. Although the

algorithm only redirects critical edges Lemma 5.7.2 shows this is sufficient: all other edges

in the graph are contained within a single unit and hence do not need to be redirected.

148

Synopsis. At a high level, the algorithm computes the program graph and the units of the

graph. It processes each unit so that it can assign a function to each unit. If a unit’s defining

vertex is a function node, then no changes are required and all non-dominator-tree edges

incident on the vertices of the unit are inserted.

If the units defining vertex is not a function node, then the algorithm creates a function

for that unit by inserting a function node uf between the defining node and the node. It

then makes a function for each unit and replaces cross unit edges with tail-jump edge to

this function. Since all cross unit have the defining node of a unit as their target, this

replaces all cross-unit control transfers with tail jumps, ensuring that all control branches

(except for function calls, tail or not) remain local.

Analysis of NORMALIZE. We state and prove some properties about the normalization

algorithm and the (normal) programs it produces. The normalization algorithm uses a live

variable analysis to determine the formal and actual arguments for each fresh function. We

let TL(P) denote the time required for live variable analysis of a CL program P. The output

of this analysis for program P is a function live(·), where live(l) is the set variables which

are live at (the start of) block l ∈ P. We let ML(P) denote the maximum number of live

variables for any block in program P, i.e., maxl∈P |live(l)|. We assume that each variable,

function name, and block label require one word to represent.

We relate the size of a CL program before and after normalization (Theorem 5.7.3) and

bound the time required to perform normalization (Theorem 5.7.6). Using some simple

technical development, we show that NORMALIZE preserves certain semantic properties

of the graphs that it transforms (Theorem 5.7.6).

Theorem 5.7.3 (Size of Output Program). If CL program P has n blocks and P ′ = NORMALIZE(P),

then P ′ also has n blocks and at most n additional function definitions. Furthermore if it takes

m words to represent P, then it takes O(m+ n ·ML(P)) words to represent P ′.

149

Proof. Observe that the normalization algorithm creates no new blocks—just new function

nodes. Furthermore, since at most one function is created for each critical node, which is

a block, the algorithm creates at most one new function for each block of P. Thus, the first

bound follows.

For the second bound, note that since we create at most one new function for each

block, we can name each function using the block label followed by a marker (stored in

a word), thus requiring no more than 2n words. Since each fresh function has at most

ML(P) arguments, representing each function signature requires O(ML(P)) additional

words (note that we create no new variable names). Similarly, each call to a new func-

tion requires O(ML(P)) words to represent. Since the number of new functions and new

calls is bounded by n, the total number of additional words needed for the new function

signatures and the new function calls is bounded by O(m+ n ·ML(P)).

Theorem 5.7.4 (Time for Normalization). If CL program P has n blocks then running

NORMALIZE(P) takes O(n+ n ·ML(P) + TL(P)) time.

Proof. Computing the dominator tree takes linear time (Georgiadis and Tarjan, 2004). By

definition, computing the set of live variables for each node takes TL(P) time. We show

that the remaining work can be done in O(n + n ·ML(P)) time. To process each unit,

we check if its defining node is a function node. If so, we copy each incoming edge from

the original program. If not, we create a fresh function node, copy non-critical edges,

and process each incoming critical edge. Since each node has a constant out degree (at

most two), the total number of edges considered per node is constant. Since each defining

node has at most ML(P) live variables, it takes O(ML(P)) time to create a fresh function.

Replacing a critical edge with a tail jump edge requires creating a function call with at

most ML(P) arguments, requiring O(ML(P)) time. Thus, it takes O(n + n ·ML(P)) time

to process all the units.

150

To reason about the correctness of normalization, we first define the notions of safe

control and program dilation, which characterize two important guarantees that we prove

about our normalization algorithm: that it does not introduce invalid control-flow paths

(i.e., ones that jump into the middle of function bodies), and that it transforms control-flow

paths in a manner that preserves the program’s semantics.

The safe control property codifies a key invariant commonly used by many compil-

ers, including ours. In particular, our compiler assumes that control flow always enters a

function at its (unique) entry node.

Definition 5.7.1 (Safe control). We say that a program P has safe control if for all edges

u1 → u2 in P:

1. u1 → u2 is a tail-call edge to f and u2 is the entry node for f, or else

2. u1 → u2 is a goto edge, and u1 and u2 exist within the same function of P.

Intuitively, dilating a program simply consists of changing goto edges into equivalent

tail call edges, each of which may or may not preserve safe control.

Definition 5.7.2 (Program dilation). We define the dilation of program P1 to program P2

inductively using three cases:

Reflexivity. If P1 = P2, then P1 dilates to P2

Transitivity. If P1 dilates to P3, and P3 dilates to P2 then P1 dilates to P2.

Single-edge dilation. Suppose that the graphs of P1 and P2 are (V1, E1) and (V2, E2),

respectively. Then we have all of the following:

1. V2 = V1] {uf}, where uf is an entry for a function f not in P1.

2. V2] {u1 → u2} = E1] {u1 → uf, uf → u2}.

3. The formals of function f are x, the variables live upon entry to u2.

151

4. The edge u1 → uf in P2 is a tail call with arguments x.

Lemma 5.7.5 (Program dilation preserves program meaning). If program P1 is dilated to

program P2, then every control and data-flow path in P1 has a semantically-equivalent (albeit

longer) one in program P2.

Proof. By induction over the dilation of P1 into P2. The reflexive and transitive cases

are immediate. For the single-edge dilation case, we consider the control and data-flow

separately.

First consider the control flow. We note that the path/edge u1 → u2 in P1 is converted

to a path u1 → uf → u2 in P2. Since node uf unconditionally passes control to u2, these

two paths are control-flow equivalent.

Similarly, we next consider the data-flow. We note that node uf simply accepts (as

formal arguments) the data live at u2, its target. Hence, the data flow is also equivalent.

This completes the proof.

Finally, we show that our normalization algorithm has several correctness guarantees:

it preserves safe control, it preserves program meaning, and it preserves program running

time (up to a constant factor of two).

Theorem 5.7.6 (Correctness of Normalization). Suppose that P1 and P2 are CL programs

such that P2 = NORMALIZE(P1).

Dilated control: Program P2 is a dilation of program P1.

Safe control: If program P1 has safe control, then so does P2.

Control overhead: P1 contains edge u1 → u2, then P2 contains a path p = u1 u2 such

that |p| ≤ 2.

152

Proof. The first result (dilated control) follows because NORMALIZE is a program dilation:

Each time it lifts a unit to the top-level, it dilates all the incoming edges to this unit,

promoting local gotos into non-local tail jumps.

The second result (safe control) follows because we are dilating all cross-unit edges—

the only edges that can participate in control that is not safe.

The third result (control overhead) follows since the algorithm only dilates certain

edges, and only by a constant factor of two.

Corollary (Normalization preserves heap and stack space). Say P1 is a CL program and

P2 = NORMALIZE(P2). Then we have that P1 and P2 require the same amount of heap and

stack space.

Proof. We know the execution sequences of functions in P1 and P2 are the same, and in

particular, we know that they contain the same nodes, and hence, same push, pop and

and allocation operations. Because they contain the same allocation operations, the heap

space used by each is the same. Because they contain the same push and pop operations,

the stack space used by each is the same.

5.8 Optimizations

We refine the basic compilation strategy given above with two optimizations. Each uses

statically-analyzed information (Section 5.5).

Sharing trace nodes. Just as stack frame layout is a compiler feature meant to speed up

the program by using a machine’s registers and call stack more economically, trace node

layout has an analogous purpose: to mitigate and amortize certain storage costs associated

with the self-adjusting machine’s execution trace.

153

Figure 5.9: The Trace_action module.

1 #module_begin Trace_action
2 #body
3 type act_t = { trnd : trnd_t* } -- first field: a trnd pointer
4 val act_compare : act_t*, act_t* -> totord_t -- compare temporal ordering
5

6 totord_t act_compare(a, b) { -- temporal ordering
7 if(a->trnd != b->trnd) -- same trace node?
8 return Trnd.compare(a->trnd, b->trnd); -- ..no : compare trace nodes
9 else return ptr_compare(a, b); -- ..yes: compare storage offsets

10 }
11

12 #module_end

The basic translation (Section 5.6) assigns each traced operation to a distinct trace

node. Since each trace node brings some overhead, it is desirable if entire CL blocks (each

which consists of zero, one or more traced operations) can share a common trace node.

However, this optimization is complicated by a few issues.

First, how do we compare the temporal order of traced operations that share a single

trace node, and hence, a single time stamp? Below, we address this question. Second, how

do we avoid incrementally breaking apart the trace node representing the CL block when

the control flow of execution changes? This can happen in one of two ways:

• The machine reexecutes the node’s update point, but execution takes different branch

through the CL block than before.

• The machine attempts to match and reuse a node’s memo point, but this point resides

somewhere within the CL block for the node (not at its start).

We currently avoid these scenarios by assigning a CL block a single trace node only

when the following criteria are met: if it contains a memo point, then it appears first in

the block; if it contains an update point, then the code guarded by the point (its local

continuation) consits of straight-line code.

154

Trace actions. As described above, multiple traced operations can be grouped into trace

nodes, which allows them to share resources, such as time stamps and allocation lists.

This sharing is desirable from the standpoint of performance since time stamps are one

source of performance overhead. However, by sharing a time stamp, we introduce a new

problem: How do we order the THCs that occur at distinct times (distinct points during

execution), but which reside in the same trace node?

To address this, we use a trick that converts the problem of recalling a temporal order-

ing (in execution time) into the problem of recalling a spatial ordering (in trace memory).

The compiler lays out the footprint of each trace node so that its THCs are ordered mono-

tonically with respect to their (statically-known) invocation order. This way, we get the

best of both worlds. First, distinct THC invocations can share a common start time. Sec-

ond, the execution order of distinct THCs can be recovered from the trace, even if they do

not have distinct time stamps.

Figure 5.9 lists the simple declarations and code associated with this trick. To compare

their closure records temporally, the THC author first ensures that their closure record (an

extension of the record act_t type) contains a pointer back to the trace node. Such a

backpointer is needed by any THC that uses supplemental information stored by the trace

node, including temporal information about timestamps; this interface only requires that

the author place this field first, which is an arbitrary choice made for presentation purposes

here, but this choice should be uniform to all THC closures that are to be inter-comparable.

When it groups their THC closure records into a shared trace node, the compiler gives

the THC author a guarantee: Namely, the THC programmer can compare the temporal

orderings of their closure records even when these closure records share a common trace

node. In the case that distinct two closures share the same trace node, the closures’ ad-

dresses can be compared physically to order them.

155

Selective destination-passing style. The DPS conversion introduces extra IL code for

push and pop expressions: an extra alloc, update, memo, and some writes and reads

(Section 4.5). Since each of these expressions are traced, this can introduce considerable

overhead for subcomputations that do not interact with changing data. In fact, without

an update point, propagation over the trace of e will always yield the same return val-

ues (Lemma C.1.19, in Section C.1). Moreover, it is clear from the definition of store

agnosticism (Section 4.4) that any computation without an update point is trivially CSA,

hence, there is no need to DPS-convert it. By doing a conservative static analysis (viz.,

MU-analysis, Section 5.5), our compiler estimates whether each expression e appearing in

the form push f do e can reach an update point during evaluation. If not, we do not apply

the DPS conversion to push f do e. We refer to this refined transformation as selective DPS

conversion.

5.9 Notes

In this section, we provide discussions on topics related to the design of our compiler.

Keyed allocation. With our choice of self-adjusting machine primitives, we decompose

the keyed allocation primitive of earlier designs into smaller steps. We note that this

decomposition is possible since, unlike earlier compiler approaches, our self-adjusting ma-

chine primitives include (stack-delimited) memoization points, and (stack-based) data-

flow (i.e., returning values via the stack). The decomposition of an keyed allocation is

structured as follows: (1) push the stack; (2) perform a memo point that guardes the

local continuation (we shrink the local environment to contain only those variables that

live; i.e., the values that we use for initializing the allocation are the keys of the keyed

allocation); (3) allocate a fresh memory block; (4) initialize the block using the local envi-

ronment; and (5) return the address of the allocation, popping the pushed stack frame. We

156

note that this decomposition of a keyed allocation includes three resources (stack, memory

and trace), and hence cross-cuts the primitives of our self-adjusting machine model:

• It allocates a fresh block of non-local (modifiable) memory, or reuses an existing

allocation from the execution trace.

• It uses a memoization point, which implicitly keys this allocation by the local (non-

modifiable) state, determined and controlled by the programmer’s use of the stack.

• It returns this allocation to the allocator, either fresh or reused, via the stack.

In this dissertation, we only explore monotonic reuse of past traces (and their alloca-

tions) within the basic self-adjusting machine design6.

Semantics preservation. Self-adjusting programs have one extensional semantics (defin-

ing input and output relationships) and simultaneously encode two intensional semantics:

The first of these semantics corresponds to the program’s fresh evaluation (where work is

always performed fresh). The seccond semantics corresponds with its incremental behav-

ior, as defined jointly by the program and by the (general-purpose) change propagation

algorithm (where past work is reused). Hence, compilation of self-adjusting programs is

fundementally different than compilation of ordinary programs: The safe compilation of

self-adjusting programs requires optimizations and other transformations to respect not

only the from-scratch semantics of the program, but also the self-adjusting semantics. In-

formally speaking, it is okay to apply an optimization that always monotonically improves

the incremental behavior of a program (or leaves it unaffected), but it is not okay to im-

plicitly apply a transformation that may destabilize the self-adjusting behavior and inhibit

reuse during change propagation. We do not formally prove our compiler observes this

(informal) specification, we argue this point informally, below.

6. In Section 8.1, we explore a relaxation of this requirement: non-monotonic reuse.

157

First, our compiler performs some limited forms of function inlining. We note that if

inlining functions alters the stack profile of the program, then it also generally changes the

self-adjusting behavior of this program. To avoid doing this, our machine model separates

stack operations from function calls, which are treated orthogonally. When code is inlined,

the program text is copied and specialized, but the stack operations that delimit this code

are retained.

Next, in a naive DPS conversion (one without consideration for memoization), new

non-determinisitic choices are inserted into the program (viz., the choice of non-local des-

tinations); we can use a memo point to guard the allocation of the destination locations,

thus guarding these non-deterministic choices (Section 4.5). Without this inserted memo

point, the use of fresh, non-determinisitically-chosen allocations will generally prevent

reuse, since they never appear in the trace checkpoints of past computations.

Finally, our selective DPS transformation (Section 5.8) must be conservative when es-

timating the program’s (dynamic) use of update points, lest it violates the compositional

store agnostic property required of our model of change propagation (Section 4.4). We

stress that this property hinges on the placement of update points, which have no exten-

sional meaning.

Dominators. The dominator relation has common use in compilers that perform pro-

gram analysis and optimization (Aho et al., 1986; Cytron et al., 1991; Fluet and Weeks,

2001). There are a number of asymptotically efficient algorithms for computing domina-

tors (Lengauer and Tarjan, 1979; Georgiadis and Tarjan, 2004). In practice simple but

asymptotically inefficient algorithms also perform reasonably well (Cooper, Harvey, and

Kennedy, Cooper et al.). Our implementation uses the simple algorithm described in many

compiler books, e.g., Muchnick (1997).

158

Tail-recursion. In the past, we used a trampolining approach to support tail calls in a

portable manner (Section 7.3 surveys our past implementations). Several other proposals

to supporting tail calls in C exists (Tarditi et al., 1992; Peyton Jones, 1992; Baker, 1995;

Guy L. Steele, 1978). Peyton Jones summarizes some of these techniques (Peyton Jones,

1998) and discusses the tradeoffs. The primary advantage of trampolining is that it is fully

portable; the disadvantage is its cost. Most recently, proper support for tail-recursion in C

has become a much less esoteric feature. Increasingly, this support is something that folks

outside the functional language community have come to appreciate and value (Lattner

and Adve, 2004). Our current compilation approach assumes a C compiler backend that

supports proper tail recursion.

Single-entry, single-exit regions. Single-entry, single-exit regions are subgraphs of a

control-flow graph that have a single entry node and a single exit node. Because of this

structure, the entry node dominates the region, while the exit node post-dominates the

region. The functions of CL are almost single-entry, single-exit regions: their entry nodes

are the blocks that define them; they may have multiple exit nodes: their returns and tail

calls. The stack frames in IL and CL correspond to control being within certain single-entry,

single-exit regions that are parenthesized by stack operations.

Intra-procedural normalization. While presented as a whole-program transformation,

normalization can actually be easily performed on a per-function basis. This fact follows

from it being based on the dominator tree of the program graph (Section 5.7), in which

functions are always indepedent units.

159

CHAPTER 6

RUN-TIME SYSTEM

This chapter describes a run-time system design for self-adjusting machines. First, we

present an overview of the run-time system’s role in the design of the larger system, and

in particular, its role vis-à-vis the compiler; we also review the challenges inherent to low-

level memory and stack management (Section 6.1). Within the context of memory man-

agement, we give a detailed discussion of our run-time system’s interaction in memory as

implemented with an abstraction we call the trace arena (Section 6.2). Based on certain

assumptions and restrictions, we describe the basic data structures and memory manage-

ment techniques for an efficient run-time implementation of self-adjusting machines in C

(Section 6.3). With detailed code listings, we describe the design and implementation of

the two central abstractions in our run-time system design: trace nodes and self-adjusting

machines (Sections 6.4 and 6.5). In doing so, we pay careful attention to how memory and

stack resources are created and destroyed, within the context of subtle internal invariants

and state changes.

Notation. In this chapter (and others) we write implementation code in C, but for clearer

specification of module boundaries, we use a pseudocode syntax to write modules. In

doing so, we alter the syntax for types and global declarations from that of C. Our psuedo

syntax improves clarity of exposition for readers familar with ML-like languages (e.g.,

Haskell, OCaml, or SML). We can derive corresponding C code using a straightforward

macro-based rewriting.

6.1 Overview

Our run-time system design gives an efficient, practical account of self-adjusting machines

for low-level languages. However, the compiler and run-time system each have a role

160

to play in constructing these machines. Generally speaking, the compiler focuses on the

static aspects whereas the run-time library focuses on the dynamic aspects: The role of

the compiler is to build, given a fixed program text, a translated program that exposes

the static structure of the program’s trace to the run-time library interface; the role of

the run-time library is to manage the dynamic structure of the trace, within the context

of an executing self-adjusting machine. Below, we further describe these roles and their

interrelationships.

Role of the compiler. from the viewpoint of the run-time system, we review the role

of the compiler. The compiler extracts and organizes certain static information from the

program, and in doing so, translates its primitives into uses of the run-time interface.

Our run-time interface design is based around the abstraction of a trace node. First, the

compiler seperates inner self-adjusting code that generates traces from the outer non-self-

adjusting code that does not. Next, the compiler statically analyses the traced operations

of the inner code and organizes the trace of these operations into trace nodes. Finally,

it generates trace node descriptors that describe the static structure and behavior of each

such trace node. It emits compiled code that combines the run-time interface with these

descriptors.

The gensis of trace node descriptors by the compiler exploits the static structure of

the program text, and uses this information to compose library extensions that implement

each traced operation. By analysing how traced operations are used in the program, the

compiler groups instances that have similar trace lifetimes (i.e., those operations with a

shared dominator and post-dominator in the control-flow graph). Chapter 5 introduces

trace hook closures (Section 5.3), trace nodes (Section 5.3) and trace node descriptors

(Section 5.3) in the context of compilation.

We review these abstractions from the standpoint of run-time behavior. Each traced

operation is implemented by a trace hook closure (THC), which augments the trace with

161

custom run-time behavior and storage. The new behavior is defined via functions that we

refer to as hooks; the new storage is defined by a type that we refer to as a closure type.

Trace nodes are formed by sequential compositions of trace hook closures. Each trace

node consists of space for shared dynamic information (indicated by their THC attributes),

a combination of the individual closure records, and the combined hook code. The hook

code provides the behavior of redoing and undoing the traced operations as well as check-

ing their consistency.

Role of the run-time library. The role of the run-time system (or run-time for short) is

dual to that of the compiler: Whereas the compiler extracts the static structure of the self-

adjusting machine (in terms of static trace node descriptors), the run-time manages the

dynamic semantics of these machines (in terms of their traces, which consist of trace node

instances). In doing so, it uses the static information furnished by compilation to give an

efficient, operational account of self-adjusting computation in a low-level setting. Below,

we review the central techniques of the self-adjusting computation stated in terms of trace

nodes. See Section 1.6.2 for a general introduction to these concepts:

Trace generation creates trace node intances based on static descriptors.

Change propagation updates trace nodes that are inconsistent, via selective reexecution.

Memoization caches and reuses trace nodes from prior executions.

In particular, when a trace interval is reused via memoization, change propagation

updates any inconsistencies that it contains. The change propagation algorithm consists of

a loop that reexecutes (the update points of) inconsistent trace nodes, including their local

continuations. Change propagation reexecutes the inconsistent trace nodes monotonically

with respect to their original execution order.

162

Challenges. Generally, the efficient implementation of self-adjusting computation tech-

niques in a run-time library requires special data structures and algorithms, to represent

and update traces, respectively. We refer to Section 1.6.2 for a general introduction to

existing techniques, which we briefly review above. Additional challenges that are unique

to a low-level setting (as opposed to a high-level one) include the following:

Stack management is complicated by the need to conserve stack space. In particular,

this management task is introduced by the existing techniques not being properly

tail-recursive; the complexity of this task is compounded by the operational knot of

self-adjusting computation, in which run-time techniques are applied recursively to

the trace (Section 1.6.2).

Making existing run-time techniques tail-recursive requires changes to the approach,

including the construction and representation of traces. For instance, nested intervals

in the trace have distinct, staggered ending times; but when tail-recursive, these

nested intervals share a common ending time. For intervals to share this ending

point without backtracking through the trace to assign it1, we must allocate this

shared end time before it occurs—i.e., before beginning the execution of the nested

intervals that it terminates. Sharing trace resources in this way is further complicated

by issues surrounding memory management.

Memory management is complicated by the interaction of self-adjusting computation

with low-level languages. In particular, this management task is introduced by the ex-

isting techniques relying on automatic garbage collection; the complexity of the task

is compounded by the spatial knot of self-adjusting computation, in which run-time

1. It is interesting to note that the end-time assignment step shows up in our formal machine semantics,
albeit only abstractly. Namely, the trace rewinding relation () is used by the machine semantics whenever
the end of a sub-trace is generated or encountered (Section 4.3). This relation models the process of back-
tracking through the prefix of the trace; one can also think of it as assigning end times to the intervals in
this prefix that lack them. By pre-allocating an end time to be shared among the nested intervals in the trace
prefix, our run-time design accomplishes this end-time assignment task in O(1) time.

163

techniques give rise to heavily cyclic, imperative, higher-order memory structures

(Section 1.6.2). In low-level languages, a module client and module implementa-

tion explictly coordinate to manage memory cooperatively. However, in the presence

of traces and incremental reexecution, the client lacks the knowledge to determine

when an allocation becomes unreachable.

Hence, this coordination must exploit the knowledge that is unique to the change

propagation algorithm. Meanwhile, the change propagation algorithm sometimes

has incomplete information, since outside of the trace, it is unaware of the structure

of memory. Therefore, the change propagation algorithm’s management of memory

must in some cases be programmable, i.e., readily extensible by the programmer.

6.2 Memory management

In a low-level setting, we must coordinate dynamic memory management among the

agents involved. In Section 5.2, we describe the agents involved from the viewpoint of

compilation. Below, we describe how these agents are involved from the viewpoint of the

run-time system (Section 6.2). In this context, we introduce memory management tech-

niques to address different classes of inter-agent interaction. A central notion in the solu-

tion of this problem is that of a trace arena, which exploits temporal and causal structures

inherent to the trace to guide the self-adjusting machine in reclaiming unused memory

automatically during change propagation (Section 6.2). However, certain memory must

exist outside the trace arena; we define this memory—and specifically modifiable mem-

ory in output-to-input feedback—and outline a unified plan for the incorporation of its

memory management into an ecosystem of self-adjusting machines (Section 6.2).

Run-time agents and levels. Our run-time setting of self-adjusting machines consists of

several interacting agents, organized by levels. Each level is represented by a different

164

body of code, which the compiler seperates, transforms and recombines. Ordered from

innermost to outermost, these levels of agency consist of:

• the self-adjusting machine (the run-time library and its extensions, written in C);

• the inner self-adjusting program (written in CEAL, compiled to C);

• the outer non-self-adjusting program (written in CEAL, compiled to C); and,

• the foreign, non-self-adjusting program (written in C).

Since the outer and foreign non-self-adjusting programs are closely related (the former

becomes the later through compilation), we focus on the interaction between the compiled

inner code, the compiled outer code and the run-time library code implementing the self-

adjusting machine. Each agent may have cause to allocate memory. Moreover, agents

may share allocated memory with eachother. Our memory management protocol must

systematize how this memory is managed.

Memory management within the self-adjusting machine. At the innermost level, within

the self-adjusting machine implementation, our run-time library uses a standard approach

to implement an internal, base memory manager (Section 6.3). The interface of this man-

ager is consistent with that of the standard C library (malloc and free), which abstract

away the details of managing a space of free (unallocated) addresses, but require clients to

explicitly free memory before it becomes unreachable. When an agent allocates a block is

using malloc and returns this resource to a client agent (or itself), the protocol stipulates

that the client is responsible for calling free, lest they leak memory.

However, this convention is so complicated by tracing and incremental reexecution that

it is only directly applicable in the setting of the run-time library itself, via internal knowl-

edge of change propagation. Due to incremental tracing and reexecution, this protocol

165

becomes intractable for code at the inner level of the self-adjusting program and all outer

levels that interact with this incremental, inner level.

Memory management within the trace arena. As mentioned above, the knowledge of

when to reclaim memory can be spread between up to three agents. To formulate a robust

management protocol, there are several cases to consider that vary depending on which

agents are involved.

When only the machine and the inner program are involved, and when output-to-input

feedback is absent, we say that a machine’s allocation is confined to its trace arena. This

arena consists of the trace, as an ordered timeline of trace nodes; it includes all inner data

allocated by the inner code, subject to certain restrictions below.

Allocations in the trace arena have temporal positions in the trace with a special struc-

ture that is useful for memory management. At the conclusion of propagation, we exploit

the consistency proven for the self-adjusting machine semantics: Because the trace is con-

sistent with that of a full reevaluation, allocations whose trace nodes are revoked (undone)

during change propagation must be garbage (Section 4.4). Based on this semantic reason-

ing, the trace arena is managed automatically by change propagation; two subcases below

vary depending on whether the trace node can be reclaimed eagerly or not.

When the outer program is involved, or when the allocation participates in output-

to-input feedback, an allocation escapes the boundary of the trace arena. These escaped

allocations are powerful and complementary to trace arena: By escaping the trace arena,

they increase the expressive power of the combined system. However, in doing so, they

forgo memoization-based reuse (a la the trace arena); but in its place, they furnish the

machine with fedback structures, where the output structure of one change propagation

cycle becomes the input structure of the next cycle. Generally speaking, feedback is an

interesting feature for incremental computations, as it can express incrementally-evolving

166

fixed-point computations, such as simulations and interactive systems (Demetrescu et al.,

2011; Burckhardt et al., 2011).

In the presence of feedback, the structure of memory does not respect the temporal

structure of the trace arena (Section 6.2). As a result, change propagation cannot collect

the locations outside of the trace arena using the same semantic reasoning principles it

uses to collect locations that remain within it. Instead, the machine manages this memory

with the help of the programmer or library extension writer.

We review the three cases of management protocol in detail below:

Trace arena, eager subcase: when the allocation is hidden within the machine.

The location is internal to the machine (as defined by the base run-time library), or

one of its traced operations (via a library extension). It does not escape into either

the inner program nor the outer program.

In this case, the allocation is within the trace arena of memory, and we do not need

to delay the reclamation of this allocation until the end of change propagation; it can

be recycled (reclaimed and reallocated) in the middle of a change propagation cycle.

Trace arena, lazy subcase: when the allocation escapes from the machine into the inner

program, but does not escape as feedback nor into the outer program.

In this case, the allocation is within the trace arena of memory, but until change

propagation completes, there may remain references in the suffix of the arena; i.e.,

in the temporal future of the trace, but for that of the prior execution.

Consequently, such allocations must not be recycled until propagation completes, lest

we create dangling pointers in the arena’s suffix. After competing change propaga-

tion, from-scratch consistency states that all references will have been replaced.

Escaped case: when the allocation escapes the boundary of the trace arena.

167

Allocations escape the trace arena when they escape into either the outer program

and/or into the modified input of the inner program, as fedback data.

When the outer program maintains pointers to these allocations, the outer program

must participate in their management. Even when not referenced by the outer pro-

gram, the possibility of locations being fedback requires that change propagation be

given additional knowledge in order to soundly manage this memory.

While the trace arena can reference outer data, the trace arena should not be referenced

from outside its boundary. This means that neither outer data nor fedback data can ad-

dress structures within the trace arena, including reused allocations in the trace. A related

restriction between inner and outer data applies to all implementations of self-adjusting

computations, in both high- and low-level languages; we discuss it below (Section 6.2).

Our run-time implementation exploits the restrictions of the trace arena to perform mem-

ory management during change propagation. From this memory management viewpoint,

the outer data should not reference the trace arena, lest the trace changes and this leaves

dangling pointers in the outer data.

Modifiable feedback. Feedback in a self-adjusting machine means that there are two

notions of execution time, which are related but distinct: First, there is execution from the

viewpoint of the inner program, which is consistent with that of a from-scratch run; and

second, there is execution from the viewpoint of the outer program, which has a bigger

frame of reference.

To see how these viewpoints differ, consider how a single trace arena allocation can

appear differently at each level. From the inner viewpoint, allocations in the trace arena

are always observably fresh, even if reused via memoization or keyed allocation. From the

viewpoint of the outer program, reused allocations can be distinguished from truely fresh

ones. In particular, by inspecting the memory of the trace arena before and after a cycle

168

of change propagation, the outer program can inspect the structure of the inner program’s

input and output and witness this reuse (lack of freshness). However, by contrast, from the

vantage point of the inner program, this is not possible, due to from-scratch consistency

(Section 4.4). These two distinct vantage points create a schism in the memory structure,

which we describe below.

As a primary consquence of the trace arena’s temporal structure, the feedback restriction

says that the memory in the trace arena must not be fed back as modified input by the

outer program. Though often not made explicit, this restriction is tacit in all prior work on

self-adjusting computation2.

From the viewpoint of the inner program, feedback in the trace arena can invalidate the

causality of traced allocation effects, and when traces are acausal, they are not consistent

with a from-scratch execution. In particular, for a trace to be from-scratch consistent, the

trace of an allocation should always preceede the trace of its accesses (reads or writes).

Specifically, to be causal, the traced access of an address must not occur before the trace

of this address’s allocation. However, when data allocated in one run is read as new input,

such acausal patterns generally arise.

To prevent the casual problems above, fedback structures must be considered to be in

distinct space from the trace arena. To preserve the consistency of the inner program, the

interaction across this boundary must observe certain rules, listed below.

• Fedback memory does not reach the trace arena.

• Traced allocations of fedback memory are perpetually inconsistent.

The first rule says that fedback memory should be topologically distinct from the trace

memory; i.e., that the transitive closure of fedback memory across pointer links is disjoint

2. Ley-Wild (2010) considers an extension to escape this limitation, based on the abstraction of persistent
modifiables.

169

from the trace arena (though the converse need not hold). So, while the trace can ref-

erence fedback data, the fedback data should not (ever) reference the trace. This rule is

needed for a certain kind of transitive consistency, i.e., consistency that is preserved across

successive change propagation cycles and modifiable updates.

The second rule says that the traced allocation of fedback data must be freshed upon

every cycle of change propagation. This behavior is demanded by the semantics of our self-

adjusting machines: In the propagation of an allocation, the allocated location must not

already be present in the current view of store (it must be fresh). We refer the reader to the

freshness side condition of the reference semantics; rule S.1 in Section 4.3. Meanwhile, by

definition, any fedback data is reachable within every store view, and hence, its allocation

in the trace cannot be further change-propagated and must be replaced.

For allocations within the trace arena, we sidestep this freshness requirement using

a trick: Since the allocations within the arena are not fedback, we exploit this fact to

simulate a fresh allocation with a reused one. In the absence of feedback and incoming

pointers from the outer level, the inner level cannot witness this internal trick. In fact,

the reuse of traced modifiable reference allocations is central to all current approaches of

self-adjusting computation, in both high- and low-level languages. To achieve the combi-

nation of efficiency and semantic consistency (with respect to non-determinisitic, dynamic

memory allocation), these techniques always rely on playing some version of this trick,

and hence all introduce a schism in memory analogous to that of the trace arena.

Since fedback memory is distinct from the trace arena, the question arises as to how

to best manage its reclamation. For some structures, this memory may not require com-

plex reclamation reasoning, and can be manually coded in the outer level. To manage

more complex memory of outer fedback structures that incrementally change, we propose

using more self-adjusting machines. We leave the exploration of this idea to future work

(Section 8.1).

170

Figure 6.1: The BASEMM signature.

1 #module_begin BASE_MEMORY_MANAGER
2 val malloc : size_t -> void* -- malloc given size; no header is used
3 val free : size_t, void* -> void -- reclaim allocation of given size
4 #module_end

6.3 Basic structures

We describe our base memory manager and the basic structures that efficiently implement

the self-adjusting machine and its memory management of the trace arena.

Base memory manager. The run-time uses a custom base memory manager with a

malloc/free-like interface, given in Figure 6.1. Unlike the standard implementation, how-

ever, this manager does not consume space to store a run-time header; to avoid this, free

takes as an additional argument: the size of the block being reclaimed.

Among the static information that the compiler extracts for a trace node, it compiles

a total size of a node instance, including the footprint for each THC closure record. This

means that by storing a pointer to a trace node’s static descriptor, we also store the size

required to free its instances. Hence, the trace node descriptors store enough information

to make additional allocation headers redundant and unnecessary. However, if the size of

the allocation is unknown statically, this size must be stored by the allocating client and

returned to the manager upon reclamation. In the trace arena, this size and a pointer

to the dynamic allocation is stored in a linked structure associated with each trace node

(the presence of which is indicated by the BLK_ALLOC attribute); the machine takes care to

automatically reclaim these locations with their associated trace node. Outside the trace

arena, the allocated size must be supplied by the client to later explicitly free the allocation.

171

Collection data structures. The run-time library uses the following collection-like data

structures to implement self-adjusting machines and trace nodes. Here and throughout,

efficient means either O(logn) or O(1) time, depending on context.

• Sets, with and without order, implemented as lists and trees. These structures pro-

vide in-order, bi-directional iteration, efficient unordered insertion and efficient re-

moval. Additionally, tree-based representations provide an efficient, O(logn)-time

search and ordered-insertion.

• Hash tables provide three basic operations, all in expected constant time: insert a

new entry with a given hash value, find the first entry with a given hash value, delete

an entry. To handle collisions gracefully, the hash tables use chaining (via lists or

trees). To handle resizing, the tables grow and shrink in amortized O(1) time (i.e.,

by doubling or halving in size to grow or shrink).

• Priority queues provide O(logn)-time insertion, and O(logn)-time removal of the

minimum element.

• Order-maintenance data structures provide an implementation of time stamps. As

such, we refer this structure as a timeline. It provides three operations, all in amor-

tized constant time (Dietz and Sleator, 1987; Bender et al., 2002): insert a new

timestamp after an existing one, delete a timestamp, compare the ordering of two

inserted timestamps.

Usage patterns and memory management. In our internal implementation of the self-

adjusting machine, the space required by the machine consists of two components: a small,

fixed-size footprint (initially consisting of an uninitialized machine) and the trace arena of

the machine. The trace arena, in turn, consists of a temporally-ordered, causally-connected

172

collection of trace nodes. The structures above are primarily used to furnish the trace arena

of a self-adjusting machine with the data structures of an efficient implementation.

To sketch our memory management strategy of these internal structures, we review

their usage patterns within the trace arena:

• For all insertions (into ordered lists, trees, hashtables, priority queues or the time-

line), the space allocated for the insertion is of a small, statically-known size3.

• Once removed, the structures do not maintain any reference to the inserted entry.

In all cases, these conditions allow the memory required by the insertion to be allocated

in an unboxed fashion, within its trace node (again, assuming that the allocation is within

the trace arena). Since all of the machine’s internal state resides in the trace arena, this

allows the automatic memory management of trace nodes via change propagation to han-

dle the reclaimation of all the internal structures listed above. Moreover, it amortizes the

run-time overhead of this management across potentially large blocks of code (viz. those

that share a trace node).

6.4 Trace nodes

Figure 6.2 lists the interface of trace nodes exposed for the for library writers to implement

traced operations (as trace hook closures) and the self-adjusting machine. It doubles as

an interface used by the target of compilation. A number of features are optional (i.e., not

furnished by every trace node); trace hook closures use attributes to indicate when certain

features are required of their trace node (Section 5.3).

The functions mk and memo_chkpt are used in the target of compilation (Section 5.6).

They instansiate and perform memo-lookups for trace nodes, respectively. Beyond the stor-

age provided by a THC’s fixed-size closure record, the trace node provides the blk_alloc

3. This rule excludes the hashtable’s array of buckets; this array is the a minor exception to the rule.

173

Figure 6.2: The TRACE_NODE signature.

1 #module_begin TRACE_NODE
2 #imports
3 type machine_t -- self-adjusting machine
4 type desc_t -- trace node descriptor
5 type update_pt_t -- update point of trace node

7 #exports
8 type trnd_t -- trace node
9 type memo_pt_t -- memo point of trace node

10 type memotbl_t -- memo table (a hash table of trace nodes)
11 type dst_t -- destination type (i.e., a pointer type)

13 face Inner_target
14 val mk : desc_t* -> trnd_t* -- new node instance from descriptor
15 val memo_chkpt : trnd_t* -> trnd_t* -- requires: MEMO. does lookup / add

17 val blk_alloc : trnd_t*, size_t -> Blks.nd_t* -- requires: BLK_ALLOC

19 val compare : trnd_t*, trnd_t* -> totord_t -- requires: TIME
20 val compare_time : trnd_t*, Time.t* -> totord_t -- requires: TIME

22 val machine_of : trnd_t* -> machine_t* -- requires: MACHINE
23 val start_time_of : trnd_t* -> Time.t* -- requires: TIME
24 val trnd_of_time : Time.t* -> trnd_t* -- requires: TIME
25 val end_time_of : trnd_t* -> Time.t* -- requires: INTERVAL
26 val memotbl_of : trnd_t* -> memotbl_t* -- requires: MEMOTBL
27 val memo_pt_of : trnd_t* -> memo_pt_t* -- requires: MEMO
28 val update_pt_of : trnd_t* -> update_pt_t* -- requires: UPDATE

30 face Machine
31 val consis : trnd_t* -> bool_t -- compiled THC hook: consis
32 val revinv : trnd_t* -> dst_t -- compiled THC hook: revinv
33 val revoke : trnd_t* -> void -- compiled THC hook: revoke
34 val has_att : trnd_t*, att_t -> bool_t -- test: true if node has given att
35 val is_enq : trnd_t* -> bool_t -- test: true if node is enqueued
36 val as_blks : trnd_t* -> Blks.nd_t* -- restructure node into blks & sizes
37 #module_end

function to allocate memory within the trace arena, associated with the given trace node.

By exploiting the structure of the trace arena, this memory is reclaimed when its trace node

is revoked. The trace node supports this allocation operation when the BLK_ALLOC attribute

is present; this attribute furnishes the trace node with storage space for an additional field

to hold its list of dynamically-sized allocations.

174

For implementations of traced operations, trace nodes expose a number of additional

(optional) features. The trace node can be enqueued for update via change propagation

(update), and it can save and later provide access to its machine (machine_of). The

compare function uses the the timeline data structure to efficiently compare start times of

two trace nodes, within the temporal order of their common trace arena (it is an error

to compare trace nodes from distinct machines). The compare_time function compares a

trace node with a timestamp. The start_time_of function accesses the start timestamp

of a node; the trnd_of_time function uses pointer arithmetic to recover the trace node

that occurs at given timestamp. All features above involving the start time require the

TIME attribute. The end_time_of function accesses the end timestamp of a node; it re-

quires the INTERVAL attribute. Likewise, the memotbl_of function and the update_pt_of

function access the memo table and update points of a trace node; they require the at-

tributes MEMOTBL attribute and UPDATE attribute, respectively. The trace node provides a

thin wrapper around the compiled hook code emitted for each trace descriptor. These

hooks augment the behavior of self-adjusting machine, allowing it to test the trace node’s

consistency (the consis function), redo it (the revinv function) or undo it (the revoke

function). The as_blks function coerces the trace node into a list of memory blocks that

are ready to be enlisted for reclamation; it overwrites its original header with a new one

that consists of its static size and pointers to the allocated blocks associated with the trace

node, if any.

6.5 Self-adjusting machine

We describe concrete self-adjusting machines, by describing a C-based implementation.

175

Figure 6.3: The SELF_ADJUSTING_MACHINE signature.

1 #module_begin SELF_ADJUSTING_MACHINE
2 #imports
3 type trnd_t -- trace node
4 type desc_t -- trace node descriptor
5 type memo_pt_t -- memo point of trace node
6 type memotbl_t -- memo table (a hash table of trace nodes)
7 type dst_t -- destination type (i.e., a pointer type)

9 #exports
10 type update_pt_t -- update point field of trace node (to schedule updates)
11 type frame_t -- stack frame of machine (with trace node cursor)
12 type machine_t -- self-adjusting machine (with root of trace arena)

14 face Outer_target
15 val create : machine_t* -> void -- initialize an empty machine
16 val set_machine : machine_t* -> void -- set machine, a hidden global var
17 val get_machine : void -> machine_t* -- get machine

19 val cycle : void -> void -- change-propagate trace, one full cycle
20 val destroy : void -> void -- reclaims space used by internals & trace

22 face Inner_target
23 val ins_trnd : trnd_t* -> void -- insert new trace node; advance cursor
24 val get_trnd : void -> trnd_t* -- get the current trace node at cursor

26 val frame_push : frame_t*, Time.t* -> void -- begins new trace interval
27 val frame_pop : void -> void -- pops stack; ends interval

29 val set_memotbl : memotbl_t* -> void -- set memo table, a hidden stack var
30 val get_memotbl : void -> memotbl_t* -- get memo table

32 val frame_memo : trnd_t*, dst_t -> dst_t -- reuse node’s interval
33 val sched_update : trnd_t* -> void -- schedule node for update

35 face Machine
36 val the_machine : machine_t* -- hidden global variable
37 val load_root : frame_t* -> void -- load an empty stack w/ root of trace
38 val revoke_until : Time.t* -> void -- undo from cursor to time
39 val free_revoked : void -> void -- reclaim mem. blocks of revoked trace
40 val frame_prop : dst_t -> dst_t -- change-propagate remaining frame
41 val frame_load : frame_t*, trnd_t* -> void -- push a reloaded frame
42 val frame_jump : frame_t*, trnd_t* -> void -- overwrite frame with trnd
43 #module_end

6.5.1 Interfaces

Figure 6.3 gives the interface of the run-time machine, the SELF_ADJUSTING_MACHINE sig-

nature. We first discuss the types mentioned in the interface. The interface imports a
176

number of abstract types from other parts of the run-time system; these include types for

the following: trace nodes, trace node descriptors, memo points, update points, memo

tables and destinations. The interface exports types for stack frames and machines. These

types are both of a small, fixed-size; they both reference the trace arena, but neither type

provides storage for any portion of the trace arena itself, which conists entirely of trace

nodes. Stack frames are stack-allocated; machines are allocated and managed explicitly

by the outer program.

We divide the operations of the interface into three sub-interfaces: one for the tar-

get code of the outer level (Outer_target), one for the target code of the inner level

(Inner_target), and one for the machine’s implementation to use internally (Machine).

The outer target interface consists of operations for managing a machine from the

outside; these operations include the following: Create a new, empty machine (create);

set and get the current machine, a hidden global variable (set_machine and get_machine

); change-propagate the machine’s trace one full cycle (cycle); and, destroy the machine

and reclaim the space for its trace arena (destroy).

The inner target interface consists of operations for managing a machine from the

inside, during traced execution. All operations make reference to the trace cursor, an

internal stack-allocated finger that points into the trace arena at the currently-focused

trace node. The operations consist of the following: insert a new trace node and advance

the trace cursor, placing the inserted node under focus (ins_trnd); get the trace node at

the trace cursor position (get_trnd); push a new stack frame, creating a new interval for

the frame in the trace (frame_push); pop the current stack frame, marking the end of the

frame’s interval in the trace (frame_pop); set the current memo table, a stack-allocated

variable (set_memotbl); get the current memo table (get_memotbl); memo-match the

frame of an existing trace node, and give up control to the machine to update this interval

(frame_memo); and, finally, mark a trace node as inconsistent and schedule its update point

177

for reexecution via change propagation (sched_update).

As explained in Chapter 5, the compiler transforms the inner program into destination-

passing style (DPS). To interoperate with this DPS-converted inner program while respect-

ing its stack profile, the machine provides the frame_memo function in a compatible DPS

form: The frame_memo function accepts and returns the current frame’s destination, of

dst_t type. This destination is a pointer whose memory content (viz., the frame’s return

result) is accessed by the inner program, but not the machine’s internal mechanics, which

never directly dereferences or stores it. Rather, the machine simply passes this pointer

around as an opaque object.

The internal machine interface consists of machine operations necessary to implement

the other operations listed above, as well as a global variable holding the current ma-

chine. Every operation either directly or indirectly references this global variable, with

the notable exception of (create), which operates only on the machine given as its ar-

gument. The internal operations consist of the following: load the root trace interval

into the (empty) stack of the machine (load_root); revoke trace nodes from the cursor

to a given time, moving the cursor to the given time (revoke_until); free all previously-

revoked blocks (free_revoked); change-propagate the current stack frame’s interval in

the trace (frame_prop); reload a stack frame from a trace node, pusing as the top-most

frame (frame_load); and, jump within the current frame, moving the cursor ahead to the

given trace node (frame_jump). As with frame_memo function, the frame_prop function

operations in destination-passing style.

6.5.2 Internal structures

Figure 6.4 gives the internal structure of the run-time machine, specifying the internal

fields of the machine and its stack frames. Priority queues consist of inconsistent trace

nodes, ordered by their start times. We describe these further below.

178

Figure 6.4: The Self_adj_machine module.

1 #module Pq = [Priority_queue] -- for enqueueing inconsistent trace nodes
2 with key_t := Trnd.t* -- opt: don’t store ptr; use ptr arithmetic
3 and key_compare := Trnd.compare -- ordering based on trace node start time

5 #type interval_t = { start : Time.t* ; -- interval of timeline
6 end : Time.t* ; } -- .. (represents a subtree of trace)

8 #type frame_t = { -- stack frame: the local state of the machine
9 cur : interval_t ; -- trace cursor; an interval

10 trnd : trnd_t* ; -- current trace node
11 memotbl : memotbl_t* ; -- current memo table
12 outer_fr : frame_t* ; -- next outer frame (end time may be uninit’d)
13 endtm_fr : frame_t* ; -- next outer frame with an init’d end time
14 }

16 #type machine_t = { -- self-adjusting machine:
17 fr : frame_t* ; -- current stack frame / trace interval
18 pq_past : Pq.t* ; -- the priority queue holding nodes _before_ cur
19 pq_future : Pq.t* ; -- the priority queue holding nodes _after_ cur
20 revoked : Blks.t ; -- blocks to be reclaimed when next cycle completes
21 pqs : Pq.t [2] ; -- space for double-buffering priority queues
22 tr_root : Time.t [2] ; -- outermost interval / root of trace tree
23 }

A stack frames consists of the following fields: the trace interval currently under focus

(cur); the trace node currently udner focus (trnd); the current memo table (memotbl);

the next outermost frame, whose end time may not yet be established (outer_fr); and the

nearest outer frame whose end time is established (endtm_fr);

Machines internally consist the following fields: the topmost stack frame (fr); the

priority queue of inconsistencies in the trace prefix (pq_past); the priority queue of in-

consistencies in the trace suffix (pq_future); the set of revoked trace nodes that require

reclamation (revoked); storage for the footprints of two empty priority queues (pqs); and,

finally, storage for the time stamps for the root interval (tr_root);

Two queues of inconsistencies. As mentioned above, each machine uses two priority

queues, whose content is temporally partitioned by the trace cursor. The pq_past field

stores inconsistencies in the trace prefix (the past, temporally); the pq_future field stores

179

inconsistencies in the trace suffix (the future, temporally). In the absense of modifiable

feedback, the trace prefix is always consistent (implying that pq_past is always empty);

the suffix contains inconsistencies that have yet to be updated via change propagation. In

the presense of modifiable feedback, however, the trace prefix may contain inconsistencies

due to the feedback of modifiable write effects; these inconsistencies are stored for later in

pq_past.

During change propagation, the pq_past field is inactive, and the pq_future field is

active. That is to say, change propagation always dequeues from pq_future, and never

from pq_past. In this way, we always change-propagate monotonically, moving the trace

cursor into the future, through the trace suffix; however, when the change propagation

cycle completes, we swap the role of the two queues. For this purpose, we use an extra

level of indirection for their representation within the machine.

Trace nodes furnish the storage required to be inserted into a priority queue. They

furnish this storage at a fixed-offset using a field of Pq.nd_t type, whose presence is indi-

cated by the UPDATE attribute). As an optimization, from this fixed-offset storage within

the trace node one can recover a pointer to the trace node itself using simple pointer arith-

metic; this means that the priority queue nodes need not store an explicit backpointer to

their corresponding trace nodes.

6.5.3 Outer-level target code

We describe the machine interface used by the target code of the outer level.

The create function. Figure 6.5 lists the code for creating a new, empty machine with

no trace. Being empty, this machine has no stack, its priority queues are both empty, its

list of revoked blocks is empty, and the root interval is empty. That is, the root interval

consists of only the initial and final sentinel time stamps, whose storage is provided within

180

Figure 6.5: The create function.

1 #val create : machine_t* -> void -- create empty machine; no trace
2

3 void create (m) {
4 m->fr = NULL; -- empty means no stack
5 m->pq_past = m->pqs[0]; -- indirection allows swapping queues, after cycle
6 m->pq_future = m->pqs[1]; -- ’’
7 Pq.init(& m->pq_past); -- initially empty; no inconsistencies
8 Pq.init(& m->pq_future); -- ’’
9 Blks.init(& m->revoked); -- initially empty; no reclaimable blocks

10 Time.init(& tr_root[0]); -- init first time stamp; an initial sentinel
11 Time.insert(& tr_root[0], -- insert final stamp; a final sentinel
12 & tr_root[1]);
13 }

Figure 6.6: The cycle function.

1 #val cycle : void -> void -- one complete cycle of change propagation
2

3 void cycle () {
4 frame_t root_fr ; -- space for root stack frame
5 load_root (& root_fr); -- load the root interval of trace
6 frame_prop (NULL); -- propagate the entire trace
7 frame_pop (); -- pop the root frame, doing final revocations
8 free_revoked (); -- free all garbage (delayed revocations)
9 swap_ptrs(& m->pq_past, -- change propagation cycle ends with rebirth:

10 & m->pq_future); -- ..past queue becomes future queue
11 }

the machine. We create a timeline with the initial sentinel; we insert after this, the final

sentinel. Initially, the trace contains no other timestamps.

The cycle function. Figure 6.6 lists the code for performing a full cycle of change prop-

agation. These steps are abstracted by other operations, defined below. The machine

stack-allocates space for the root stack frame. It loads the root interval of the trace onto

(the empty) machine stack. The machine propagates the root interval. The machine frees

all the revoked trace nodes whose reclaimation may have been delayed until the end of

change propagation. Finally, it swaps the roles of the past and future queues.

181

Figure 6.7: The destroy function.

1 #val destroy : void -> void -- reclaim the trace of the machine
2

3 void destroy () {
4 frame_t root_fr ; -- space for root stack frame
5 load_root (& root_fr); -- load the root interval of trace
6 revoke_until(root_fr.end); -- revoke the entire trace
7 free_revoked (); -- reclaim the entire trace
8 }

Figure 6.8: The frame_push function.

1 #val frame_push : frame_t*, Time.t* -> void -- push a fresh frame, new end time
2

3 void frame_push (fr, end_time) {
4 frame_t* outer = get_machine()->fr; -- top frame becomes outer frame
5 fr->outer_fr = outer -- link to outer frame
6 get_machine()->fr = fr; -- insert new frame
7 fr->trnd = outer->trnd; -- copy
8 fr->cur.start = outer->cur.start; -- copy
9 fr->cur.end = end_time; -- allocated; not inserted

10 fr->memotbl = outer->memotbl; -- copy
11 fr->endtm_fr = outer->endtm_fr; -- copy
12 }

The destroy function. Figure 6.7 lists the code for reclaiming the trace arena of a ma-

chine. This step is the primary step in disposing of a machine; the other step consists of

simply freeing the space for the fixed-size machine footprint (of machine_t type). The

machine loads the root interval of the trace onto its (empty) stack. The machine revokes

the entire root interval of the trace. Finally, the frees all the revoked trace nodes.

6.5.4 Inner-level target code

We describe the machine interface used by the target code of the inner level.

The frame_push function. Figure 6.8 gives pseudocode for pushing a new frame. The

client provides pointers for storing two records: a stack frame and a timestamp. To allocate

the frame, the calling client can use space stored on the C call stack. To allocate the

182

Figure 6.9: The frame_pop function.

1 #val frame_pop : void -> void -- pop the top-most stack frame
2

3 void frame_pop () {
4 frame_t* fr = get_machine ()->fr; -- the topmost frame of stack
5 assert(fr->outer_fr != NULL); -- assert: top frame has an outer frame
6 if(fr == fr->endtm_fr) -- frame cases: reloaded or fresh
7 revoke_until (fr->cur.end); -- case 1: reloaded; revoke interval suffix
8 else -- case 2: fresh ..
9 Time.insert (fr->cur.start, -- after current time insert ..

10 fr->cur.end) ; -- .. previously-uninitialized end time
11 fr = (m->fr = m->fr->outer_fr); -- both cases: pop the frame ..
12 fr->cur.start = fr->cur.end ; -- .. and advance outer cursor
13 }

end timestamp, the client should find space in the trace arena, within a trace node. The

machine initializes the provided frame space, inserting it as the new top-most stack frame.

The machine saves a pointer to the timestamp provided by the client; once this pushed

frame is later popped, this timestamp will mark the end time of the frame.

The machine delays insertion of the end time to respect the monotonicity of the trace

timeline. Specifically, it delays the initialization and insertion of this end timestamp to

the frame_pop function, when the pushed frame is popped from the machine stack. While

the machine knows that the frame’s end time will come in the future (after the cursor),

until the frame is popped, the machine does not know the ordering of this end time with

respect to the suffix of the trace. This uncertaintly is due to reuse: trace actions that follow

the cursor may be reused while running within the pushed frame. Recall that the client

indicates this reuse by passing control to the frame_memo function, when and if it matches

a trace node. The insertion of this end time must follow the time stamps reused by such

matches.

The frame_pop function. Figure 6.9 shows the detailed psuedocode for popping a frame.

There are two cases to consider. In the first case, the frame is reloaded from an existing

183

trace via frame_load, e.g., from within change propagation. In the second case, the frame

is fresh via frame_push, and its end time has yet to be initialized.

We differentiate between these cases by comparing the frame to its endtm_fr field; this

field is setup to mark the end of the next outermost frame that has an end time that is

initialized and inserted, in which case this field creates a reference to its own frame. These

frames are reloaded, via frame_load.

If reloaded, then the end time already exists in the timeline. Moreover, there may

be trace nodes still inserted between that point and the current one. As such, we revoke

whatever remaining trace nodes were not reused, in the interval between the current time,

and the end time of the reloaded frame. In the reloaded case, control returns to the change

propagation algorithm (i.e., to either reload the next inconsistent frame, monotonically, or

complete a full cycle of trace).

If fresh, we initialize and insert the end timestamp into the timeline. We advance time,

moving the outer frame’s cursor to the end of the popped frame.

In both cases, we unlink the machine from top-most frame, effectively popping it. The

memory management protocol used for this space is that it is client-provided, and client-

reclaimed. In our compiler’s translation, we use the native C stack space for this purpose.

Hence, we need not worry about explicitly reclaiming this frame memory.

The frame_memo function. Figure 6.10 lists the code for memo-matching an existing

trace node. The interval of the matching trace node is reused as the continuation of the

current frame. For this to make sense, the interval of the matching trace node should fall

in the current interval on the stack. For illustrative purposes, we make this sanity check

explicit: We test that the start time of the matching trace node occurs after the cursor;

and, we test the end time of the matching trace node occurs before the nearest-enclosing

end time that has been defined, i.e., the end time of the stack frame held in endtm_fr

184

Figure 6.10: The frame_memo function.

1 #val frame_memo : Trnd.t*, dst_t -> dst_t -- memo-match the given trace node
2

3 void frame_memo (m, d) {
4 { -- sanity check that matching node is valid, temporally:
5 frame_t* fr = get_machine()->fr ; -- the topmost stack frame
6 Time.t* m_start = Trnd.start_time_of (m); -- the start of the match
7 Time.t* m_end = Trnd.end_time_of (m); -- the end of the match
8 totord_t ord_start = Time.compare(fr->cur.start , m_start);
9 totord_t ord_end = Time.compare(m_end, fr->endtm_fr->cur.end);

10 assert ((ord_start == LESS || ord_start == EQUAL) && -- cursor <= match
11 (ord_end == LESS || ord_end == EQUAL)); -- match <= end time
12 }
13 revoke_until (m_start); -- revoke prefix; reuse begins at memo-match
14 return frame_prop (d); -- change-propagation, in tail-position
15 }

field. These two checks ensure that reuse in the trace arena is monotone with respect to

the ordering of time stamps.

To handle the match, the machine revokes the interval between the cursor and the

start of the matching node (via revoke_until). Afterward, the trace cursor is left with

the matching trace node under focus. In tail-position, the machine finishes processing the

match by switching modes, into change propagation (via frame_prop).

6.5.5 Internal machine operations

We describe operations internal to the machine.

The load_root function. Figure 6.11 gives the code for loading the root interval of the

trace into the machine stack. It is an error to load the root frame if the stack of the machine

is not empty. The root frame reflects the stack of an empty machine, as created by create,

except that the trace of the machine is not generally empty. Namely, the root frame has no

trace node under focus, consists of the intitial and final sentinels of the timeline, has no

current memo table. The root frame itself contains the outermost end time, and hence its

endtm_fr field is a backpointer. There is no frame outside of the root frame.

185

Figure 6.11: The load_root function.

1 #val load_root : frame_t* -> void -- load frame for root of trace
2

3 void load_root (fr) {
4 machine_t* m = get_machine ();
5 assert(m->fr == NULL); -- machine should have no stack
6 m->fr = & fr; -- load the frame as root; initialize it:
7 fr->trnd = NULL; -- .. no trace node
8 fr->cur->start = m->tr_root [0]; -- .. start is initial sentinel
9 fr->cur->end = m->tr_root [1]; -- .. end is final sentinel

10 fr->memotbl = NULL; -- .. no memo table
11 fr->endtm_fr = & fr; -- .. a backpointer to root frame
12 fr->outer_fr = NULL; -- .. no outer frame
13 }

Figure 6.12: The revoke_until function.

1 #val revoke_until : Time.t* -> void -- revoke trace until given time
2

3 void revoke_until (stop) {
4 machine_t* m = get_machine (); -- get current machine
5 Time.t* cur = m->frame->cur.start; -- get its trace cursor
6 while(cur != stop) { -- loop until given end time
7 Trnd.t* trnd = Trnd.of_time(cur); -- trace node at time (ptr arith.)
8 cur = Time.next(cur); -- move cursor
9 Trnd.revoke(trnd); -- revoke trace node / time stamp

10 Blks.nd_t* blks = Trnd.as_blks(trnd); -- reorganize into list of blocks
11 if(Trnd.has_att(trnd , DELAY_FREE) -- cases: free trace node now?
12 || Trnd.is_enq(trnd)) -- .. check if node is enqueued
13 Blks.insert (& m->revoked, blks) ; -- case: delay, references remain
14 else Blks.free (blks); -- case: now, no references remain
15 } -- loop finished:
16 m->frame->cur = stop; -- move cursor to stopping time
17 }

The revoke_until function. Figure 6.12 gives the code for revoking an interval of the

trace. The function consists of a loop that iterates until the cursor reaches the specified

stopping time (stop), provided by the client. For each time within the revocation inter-

val, the machine retrieves the associated trace node (trnd). As an optimization, the trace

node with a particular start time can be recovered using pointer arithmetic; this start time

occupies storage at a fixed-offset within its associated trace node, as specified by the TIME

attribute. The machine revokes the trace node and removes it from the timeline (via Trnd

186

.revoke), and restructures the trace node into a list of the memory blocks that had stored

it (via Trnd.as_blks). Whether the machine can free the trace node immediately depends

on whether they may exist remaining references to it. The machine checks for this by

checking if the trace node is currently enqueued in either priority queue (see below), or if

it carries the DELAY_FREE attribute; in either case, it enlists the blocks for reclaimation later.

Otherwise, the machine reclaims the trace node immediately using the base memory man-

ager (via Blks.free). This loop continues until the machine reaches the stopping time.

Once the stopping time is reached, the machine moves its trace cursor to this stopping

time.

We chooose a slightly more complex revocation logic in favor of a simpler priority

queue implementation—i.e., one that does not require removing entries other than the

minimum. Rather than remove trace nodes from the queue when they are revoked, we

delay this step, and wait until they are popped as the minimum. Towards this end, when

the machine revokes a trace node (via Trnd.revoke), the machine overwrites and nullifies

the node’s timestamps. When nullified, these timestamps do not contain dangling pointers,

and they compare minimally against all non-null time stamps. This ensures that they still

respect the structure of the priority queue (no reorderings of priority queue entries are

required for this nullification step).

The frame_prop function. Figure 6.13 lists the code for propagating the current trace

interval. To be supportive of tail-recursive patterns, the function takes a destination argu-

ment of dst_t type, which consists of a pointer to the current frame’s return results, stored

within the trace arena. The frame_prop function conists of a loop that iterates until either

no inconsistencies remain, or they remain but all are beyond the the current frame. Within

the body of the loop, the machine dequeues the next inconsistent trace node. There are

several cases and subcases to check.

187

Figure 6.13: The frame_prop function.

1 #val frame_prop : dst_t -> dst_t -- change-propagate frame
2

3 void frame_prop (d) {
4 machine_t* m = get_machine (); -- current machine
5 Time.t* end = m->cur->end ; -- end of current frame
6 trnd_t* trnd = Pq.peek_min(m->pq_future); -- next trace inconsistency
7 while(Trnd.start_time_of(trnd) && -- does it exist in trace?
8 Trnd.compare_time(trnd, end) == LESS) { -- is it in current frame?
9 Pq.dequeue_min(machine->pq_future); -- pop it from queue.

10 if(Trnd.start_time_of(trnd) != NULL && -- still live?
11 ! Trnd.consis(trnd)) { -- still inconsistent?
12 if(Trnd.end_time_of(trnd) == end) { -- cases: in tail-pos.?
13 frame_jump (machine->fr, trnd); -- case: yes, in tail-pos.
14 return Trnd.revinv (trnd); -- reexecute the rest
15 } else { -- case: no, non-tail pos.
16 frame_t fr; -- rspace to reload frame
17 frame_load (&fr, trnd); -- ..reload traced interval
18 Trnd.revinv (trnd); -- reexecute the interval
19 frame_pop (); -- pop the reloaded frame
20 } } } -- no more inconsistencies
21 return d ; -- return the destination
22 }

In the first case, the trace node is already revoked; this is indicated by it having a

nullified start time (via Trnd.revoke). In this case, the trace node does not belong to the

current interval; rather, it was revoked from the trace prefix, but left in the queue since

the dangling reference from the queue still remained. Now popped, the trace node is no

longer referenced by the queue, and is only referenced by the machines list of revocations

(i.e., the list held by its revoked field).

In the next case, the trace node is no longer inconsistent; this can occur when invalidat-

ing operations make a node inconsistent, but then before its reexecution, other operations

counterbalance the invalidating operations. The machine checks for this case by querying

and checking the trace node’s consistency (via Trnnd.consis). This function is conser-

vative; for many traced operations it always returns FALSE. Unlike the abstract machine

semantics of change propagation (Section 4.3), the run-time system’s machine does not

traverse the trace blindly, checking every traced operation for its consistency. Rather, it

188

only performs consistency checks on trace nodes that have been explicitly scheduled for

an update.

In the final case, the trace node is still in the trace arena and moreover, it is also within

the interval of the current frame. Two subcases remain to be distinguished. In the first

reexecution subcase, the inconsistent trace node is in tail-position within the interval of

the current frame; the machine checks this by checking its end time, comparing against

the end time of the current frame. If equal, then change propagation should proceed by

passing control in tail-position, lest it grows the stack and consequently alters the stack

profile of its self-adjusting program. To perform the control transfer, the machine places

the inconsistent trace node under focus (via frame_jump); it reexecutes this trace node in

tail position (via Trnd.revinv).

In this subcase, the machine does not return destination d directly, but only indirectly.

To do so, it relies on two facts: that the trace node trnd is already closed on the value of d,

and that Trnd.revinv will return this value as its result. As it turns out, these facts follow

from the reexecuted program being compositionally store agnostic (CSA), a property that

we enforce by statically transforming it during compilation (Section 5.1).

In the second reexecution subcase, the inconsistent trace node is not in tail-position

within the interval of the current farm; rather, the node is within a strictly-smaller subin-

terval, with a distinct end time, occuring before the end of the current interval. To propa-

gate this case, we perform a similar jumping step as in the tail-position case above, except

that we do so in a distinct stack frame that we push (via frame_load). Within this reloaded

stack frame, we revoke, then invoke the trace node to make it consistent (via Trnd.revinv

); this generally consists of also reexecuting the local contination of the trace node. When

this completes, the reloaded stack frame is popped (via frame_pop), revoking whatever

trace suffix within local continuation was not reused. As in the first subcase, in this sub-

case we also rely on the program being CSA: The machine does not propagate the return

189

Figure 6.14: The frame_load function.

1 #val frame_load : frame_t*, Trnd.t* -> void -- reload frame from trace node
2

3 void frame_load (fr, trnd) {
4 fr->endtm_fr = fr ; -- indicates frame is reloaded
5 machine_t* m = get_machine (); -- get current machine
6 fr->outer_fr = m->fr; -- save outer frame
7 m->fr = fr; -- push reloaded frame
8 frame_jump (fr , trnd); -- set the trnd info in frame
9 }

Figure 6.15: The frame_jump function.

1 #val frame_jump : frame_t*, Trnd.t* -> void -- set frame info from trace node
2

3 void frame_jump (fr, trnd) {
4 fr->trnd = trnd; -- restore saved trace node
5 fr->cur.start = Trnd.get_start_of(trnd); -- .. saved start time
6 fr->cur.end = Trnd.get_end_of(trnd); -- .. saved end time
7 fr->memotbl = Trnd.get_memotbl_of(trnd); -- .. saved memo table
8 }

value of Trnd.revinv, but rather ignores it. The CSA structure of the program guarantees

that this return value will not be affected by changes to modifiable state, and hence can be

safely ignored in this way during change propagation.

The frame_load function. Figure 6.14 lists the code for pushing a stack frame that con-

sists of reloaded information from the trace. The arguments consist of a trace node and

temporal space for a frame to push; the allocation of this frame argument follows the

same guidelines as that of frame_push (Section 6.5.4). Unlike in frame_push, however, all

reloaded frames indicate this status by containing a backpointer in their endtm_fr field:

This indicates that the reloaded frame ends the reloaded interval, just as with the root

frame, as pushed by load_root (Section 6.5.5). To reload the other stack fields from the

trace node, the machine uses frame_jump, defined below.

190

The frame_jump function. Figure 6.15 lists the code for fast-forwarding the trace cursor

to a given trace node. Frst, The machine sets the trace node to the given one. Next, the

machine sets the current interval to be that of the trace node, and the current memotable

to be that of the trace node.

6.5.6 Cost analysis

The inner-level operations performed by the run-time implementation of the self-adjusting

machine consist of those functions discussed in Sections 6.5.4, 6.5.3 and 6.5.5. These cor-

respond to the concrete realizations of the transition rules described in Chapter 4, with the

cost model described in Section 4.6; in this model, reevaluation steps have unit cost, undo-

ing steps have unit cost, and change propagation steps have zero cost. Based on this inten-

sional cost model, it is straightforward to verify that these operations can be implemented

with (ammortized, expected) O(1) overhead in space, and in time, as defined within the

run-time implementation of the machine semantics (Sections 6.5.4, 6.5.3 and 6.5.5). To

argue this, we assume that various measures are constant sized. In particular, we assume

all of the following:

• The size of the priority queue is constant bounded.

• The number of effects on any one modifiable reference is constant bounded.

• The number of memoization keys in any one equivalence class is constant bounded.

By using standard structures to implement the basic data structures described in Sec-

tion 6.3, one can implement each inner-level primitive with (ammortized, expected) O(1)

overhead in space and time.

Sometimes one or more of the assumptions above do not hold, i.e., when certain sizes

are not constants. In these cases, the overhead factor of O(1) is increased to be a loga-

rithmic factor O(logn), where n is the non-constant size or number. We explain how to

191

apply this reasoning, case by case. First, as the number of inconsistent operations in the

trace grows, the operations on the priority queue also become a logrithmic factor. Second,

for modifiable operations (viz., reading and writing) on modifiable references that can be

written arbitrarily many times, additional logrithmic factors are associated with searching

(e.g., within a splay tree) for the value associated with the current time. Finally, non-

unique memoization keys can be distinguished and ordered by their temporal position in

the execution trace (e.g., by a splay tree).

192

CHAPTER 7

EMPIRICAL EVALUATION

We study the performance of our current and past implementations. We evaluate our

current compiler for self-adjusting computation, based on the theory and practice of self-

adjusting machines. We empirically evaluate our current system by considering a number

of benchmarks written in the current version of CEAL, and compiled with our current com-

piler. Our experiments are very encouraging, showing that our latest approach still yields

asymptotic speedups, resulting in orders of magnitude speedups in practice; it does this

while incurring only moderate overhead (in space and time) when not reusing past com-

putations. We evaluate our compiler and runtime optimizations (Section 5.8), showing

that they improve performance of both from-scratch evaluation as well as of change prop-

agation. Comparisons with previous work, including our own and the DeltaML language

shows that our approach performs competitively. Finally, we briefly survey our current and

past implementions Section 7.3.

7.1 Experimental setup

We describe the setup of our empirical experiemnts, including the measurements, bench-

marks, compilation targets and machine configuration used.

Measurements. For each benchmark described below, we consider self-adjusting and con-

ventional versions. All versions are derived from a single source program. We generate the

conventional version by replacing modifiable references with conventional references. Un-

like modifiable references, the operations on conventional references are not traced—the

code that uses them acts as ordinary, non-self-adjusting C code. The resulting conventional

versions are essentially the same as the static C code that a programmer would write for

that benchmark.

193

For each self-adjusting benchmark we measure the time required for propagating a

small modification by using a special test mutator. Invoked after an initial run of the

self-adjusting version, the test mutator performs two modifications for each element of

the input: it deletes the element and performs change propagation, it inserts the element

back and performs change propagation. We report the average time for a modification as

the total running time of the test mutator divided by the number of updates performed

(usually two times the input size).

For each benchmark we measure the from-scratch running time of the conventional

and the self-adjusting versions; we define the overhead as the ratio of the latter to the for-

mer. The overhead measures the slowdown caused by the dependence-tracking techniques

employed by self-adjusting computation. We measure the speedup for a benchmark as the

ratio of the from-scratch running time of the conventional version divided by the average

modification time computed by running the test mutator.

Benchmarks. Our benchmarks consist of expression tree evaluation, some list primitives,

two sorting algorithms and several computational geometry algorithms.

For each benchmark, we measure the from-scratch time, the time to run the benchmark

from-scratch on a particular input, and the average update time, the average time required

by change propagation to update the output after inserting or deleting an element from its

input. We compute this average by using the test mutator described above: It iterates over

the initial input, deletes each input element, updates the output by change propagation,

re-inserts the element and updates the output by change propagation.

List primitives. These benchmarks include filter, map, reverse, minimum (integer compar-

ison), and sum (integer addition), and the sorting algorithms quicksort (string comparison)

and mergesort (string comparison). We generate lists of n (uniformly) random integers as

input for the list primitives. For filter and map, the filtering and mapping function consists

194

of a small number of integer operations (three integer divisions and two integer additions).

For sorting algorithms, we generate lists of n (uniformly) random, 32-character strings. We

implement each list benchmark mentioned above by using an external C library for lists,

which our compiler links against the self-adjusting code after compilation.

Computational geometry. These benchmarks include quickhull, diameter, and distance;

quickhull computes the convex hull of a point set using the standard quickhull algorithm;

diameter computes the diameter, i.e., the maximum distance between any two points of

a point set; distance computes the minimum distance between two sets of points. Our

implementations of diameter and distance use quickhull to compute first the convex hull and

then compute the diameter and the distance of the points on the hull (the furthest away

points lie on the convex hull). For quickhull and distance, input points are selected from

a uniform distribution over the unit square in R2. For distance, we select equal numbers

of points from two non-overlapping unit squares in R2. We represent real numbers with

double-precision floating-point numbers. As with the list benchmarks, each computational

geometry benchmark uses an external C library; in this case, the external library provides

geometric primitives for creating points and lines, and computing simple properties about

them (e.g., line-point distance).

Benchmark targets. In order to study the effectiveness of the compiler and runtime

optimizations (Section 5.8), for each benchmark we generate several targets. Each target

is the result of choosing to use some subset of our optimizations. Table 7.1 lists and

describes each target that we consider. Before measuring the performance of these targets,

we use regression tests to verify that their self-adjusting semantics are consistent with

conventional (non-self-adjusting) versions. These tests empirically verify our consistency

theorem (Theorem 4.4.3).

195

Target Optimizations used

no-opt Our optimizations are not applied.
(however, C target code is still optimized by “gcc -O3”)

share Like no-opt, but with trace node sharing (Section 5.8).
seldps Like no-opt, but with selective DPS transformation (Section 5.8).
opt Both seldps and share are used.

Table 7.1: Targets and their optimizations (Section 5.8).

Benchmark N Conv FS Overhead Ave. Update Speed-up
(sec) (sec) (FS / Conv) (sec) (Conv / AU)

exptrees 106 0.18 1.53 8.5 1.3× 10−5 1.4× 104
map 106 0.10 1.87 18.4 3.4× 10−6 3.0× 104
reverse 106 0.10 1.81 18.4 2.6× 10−6 3.8× 104
filter 106 0.13 1.42 10.7 2.7× 10−6 4.9× 104
sum 106 0.14 1.35 9.6 9.3× 10−5 1.5× 103
minimum 106 0.18 1.36 7.7 1.3× 10−5 1.4× 104
quicksort 105 0.40 3.30 8.2 5.8× 10−4 6.9× 102
mergesort 105 0.74 5.31 7.2 9.5× 10−4 7.8× 102
quickhull 105 0.26 0.97 3.7 1.2× 10−4 2.2× 103
diameter 105 0.26 0.90 3.4 1.5× 10−4 1.8× 103
distance 105 0.24 0.81 3.4 3.0× 10−4 7.9× 102

Table 7.2: Summary of benchmark results, opt targets

Machine configuration. We used a machine with four eight-core Intel Xeon X7550 pro-

cessors running at 2.0GHz. Though our machine has many cores, all of our experiments

are sequential. Each core has 32Kb each of L1 instruction and data cache and 256 Kb of L2

cache. Each processor has an 18Mb L3 cache that is shared by all eight cores. The system

has 1Tb of RAM. It runs Debian Linux (kernel version 2.6.32.22.1.amd64-smp).

As our standard C compiler, we use GNU GCC, version 4.3.2. We compile all targets

using gcc -O3 after translation to C. When evaluating our compiler optimizations, we vary

only those of our compiler, not those of GCC. That is to say, we use gcc -O3 uniformly for

all compilation targets (e.g., even for code that our compiler does not optimize).

196

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

ex
pt

re
es

m
ap

re
ve

rs
e

fil
te

r

su
m

m
in

im
um

qu
ic

ks
or

t

qu
ic

kh
ul

l

di
am

et
er

di
st

an
ce

m
ea

n

F
ro

m
−S

cr
at

ch
 T

im
e

(n
or

m
. b

y
no

−o
pt

)

no−opt
share
seldps
opt

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

ex
pt

re
es

m
ap

re
ve

rs
e

fil
te

r

su
m

m
in

im
um

qu
ic

ks
or

t

qu
ic

kh
ul

l

di
am

et
er

di
st

an
ce

m
ea

n

U
pd

at
e

T
im

e
(n

or
m

. b
y

no
−o

pt
)

no−opt
share
seldps
opt

Figure 7.1: Comparison of benchmark targets.

7.2 Experimental results

Given the setup above, we discuss the results from our experimental evaluation.

Summary of results. Table 7.2 summarizes the self-adjusting performance of the bench-

marks by comparing them to conventional, non-self-adjusting C code. From left to right,

the columns show the benchmark name, the input size we considered (N), the time to

run the conventional (non-self-adjusting) version (Conv), the from-scratch time of the self-

adjusting version (FS), the preprocessing overhead associated with the self-adjusting ver-

sion (Overhead is the ratio FS/Conv), the average update time for the self-adjusting version

(Ave. Update) and the speed-up gained by using change propagation to update the output

versus rerunning the conventional version (Speed-up is the ratio Conv/Ave. Update). All

197

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 250K 500K 750K 1M

T
im

e
(s

)

Input Size

Minimum From-Scratch

DeltaML
SASM
CEAL
Conv

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

250K 500K 750K 1M

T
im

e
(s

)

Input Size

Minimum Ave Update

DeltaML
SASM
CEAL

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

0 25K 50K 75K 100K

T
im

e
(s

)

Input Size

Quickhull From-Scratch

DeltaML
SASM
CEAL
Conv

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

25K 50K 75K 100K

T
im

e
(s

)

Input Size

Quickhull Ave Update

DeltaML
SASM
CEAL

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

0 25K 50K 75K 100K

T
im

e
(s

)

Input Size

Quicksort From-Scratch

DeltaML
SASM
CEAL
Conv

0.0000

0.0004

0.0008

0.0012

0.0016

25K 50K 75K 100K

T
im

e
(s

)

Input Size

Quicksort Ave Update

DeltaML
SASM
CEAL

Figure 7.2: DeltaML versus stages two and three (“CEAL” and “SASM”).

198

reported times are in seconds. For the self-adjusting versions, we use the optimized (opt)

target of each benchmark.

The preprocessing overheads of most benchmarks are less than a factor of ten; for

simpler list primitives benchmarks, this overhead is about 18 or less. However, even at

these only moderate input sizes (viz. 105 and 106), the self-adjusting versions deliver

speed-ups of two, three or four orders of magnitude. Moreover, as we illustrate in the

example above (Section 7.2), these speedups increase with input size.

Comparison of optimizations. Figure 7.1 compares our targets’ from-scratch running

time and average update time. Each bar is normalized to the no-opt target. The rightmost

column in each bar graph shows the mean over all benchmarks. To estimate the efficacy

of an optimization X, we can compare target no-opt with the target where X is turned on.

In the mean, the fully optimized targets (opt) are nearly 30% faster from-scratch, and

nearly 50% faster during automatic updates (via change propagation), when compared to

the unoptimized versions (no-opt). These results demonstrate that our optimizations, while

conceptually straightforward, are also practically effective: they significantly improve the

performance of the self-adjusting targets, especially during change propagation.

Comparison to past work. To illustrate how our implementation compares with past

systems, Figure 7.2 gives representative examples. It compares the from-scratch and av-

erage update times for three self-adjusting benchmarks across three different implementa-

tions: one in DeltaML (Ley-Wild et al., 2008a), one in the original CEAL compiler (Hammer

et al., 2009) and the opt target of our current implementation. To distinguish results of

the current system from those of the original CEAL work—we use the labels “SASM” and

“CEAL”, respectively. These labels consist are contractions of the original paper titles in

which these systems were first published, in Hammer et al. (2009) and Hammer et al.

199

(2011), respectively. In the from-scratch graphs, we also compare with the conventional

(non-self-adjusting) C implementations of each benchmark (labeled Conv).

The three benchmarks shown (viz. minimum, quickhull and quicksort) illustrate a general

trend. First, in from-scratch runs, the SASM implementations are only slightly slower than

that of CEAL, while the DeltaML implementations are considerably slower than both. For

instance, in the case of quicksort, the DeltaML implementation is a factor of ten slower

than our own. While updating the computation via change propagation, the performance

of the SASM implementations lies somewhere between that of DeltaML and CEAL, with

CEAL consistently being either faster than the others, or comparable to SASM. Although

not reported here, we obtain similar results with other benchmarks.

7.3 Implementation

In this section we describe the implementation of our self-adjusting language system,

based the theory and practice of self-adjusting machines, as described in this disserta-

tion. Compared with earlier systems that we built, our current implementation is highly

programmable: It can be readily used as is, or extended with new abstractions. In addition

to change propagation, the core programming primitives of our current stack-based design

consist of only update points, memo points and stack operations push and pop. Other

self-adjusting primitives (such as those for modifiable references) are provided as library

extensions. Similarly, other traceable data types (Acar et al., 2010) are instances of li-

brary extensions, as are other memory management protocols, including keyed allocation

(Section 5.9).

Below, we give details about our current implementation, details about its current lim-

itations, and details about its lineage in past systems that we built. Our system’s evolution

consists of two previous implementations, whose usability and choices of core primitives

differ greatly from those of the present system.

200

Implementation details. Our current implementation consists of a compiler and an as-

sociated runtime system, as outlined in Chapters 5 and 6. After compiling and optimizing

IL, our implementation translates it to C, which we can compile using any standard C com-

piler (currently, we use GNU GCC). In all, our compiler consists of a 11k line extension to

CIL and our runtime system consists of about 8k lines of C code.

As a front-end to IL, we support a C-like source language, CEAL (Chapter 3). We use

CIL (Necula et al., 2002) to parse CEAL source into a control-flow graph representation. To

bridge the gap between this representation and IL, we utilize a known relationship between

static single assignment (SSA) form and lexically-scoped, functional programming (Appel,

1998b). Before this translation, we move CEAL variables to the heap if either they are

globally-scoped, aliased by a pointer (via CEAL address-of operator, &), or are larger than

a single machine word. When such variables come into scope, we allocate space for them

in the heap (via alloc); for global variables, this allocation only happens once, at the start

of execution. As part of the translation to IL, we automatically place update points before

each read (or consecutive sequence of reads). Though in principle we can automatically

place memo points anywhere, we currently leave their placement to the programmer by

providing a memo keyword in CEAL; this keyword can be used as a CEAL statement, as

well as a wrapper around arbitrary CEAL expressions.

Current limitations. Our source language CEAL is more restricted than C in a few ways,

though most of these restrictions are merely for technical reasons and could be solved with

further compiler engineering. First, while CEAL programs may use variadic functions pro-

vided by external libraries (e.g., printf), CEAL does not currently support the definition of

new variadic functions. Furthermore, function argument and return types must be scalar

(pointer or base types) and not composite types (struct and union types). Removing

these restrictions may pose engineering challenges, but should not require a fundamental

change to our approach.

201

Second, our CEAL front-end assumes that the program’s memory accesses are word

aligned. This assumption greatly simplifies the translation of pointer dereferencing and

assignment in CEAL into the read and write instructions in IL, respectively. To lift this

restriction, we could dynamically check the alignment of each pointer before doing the

access, and decompose those accesses that are not word-aligned into one (or two) that

are.

Third, as a more fundamental challenge, CEAL does not currently support features of

C that change the stack discipline of the language, such as setjmp/longjmp. In C, these

functions are often used to mimic the control operators and/or exception handling found in

higher-level languages. Supporting these features is beyond the scope of this dissertation,

but remains of interest for future work.

Finally, to improve efficiency, programs written in CEAL can be mixed with foreign C

code (e.g., from a standard C library). Since foreign C code is not traced, it allows those

parts of the program to run faster, as they do not incur the tracing overhead that would

otherwise be incurred within CEAL. However, mixing of CEAL and foreign C code results

in a programming setting that is not generally sound, and contains potential pitfalls. In

particular, in this setting, meta-level programs must adhere to the correct usage restrictions

defined in Section 6.2.

Evolution of the system. We compare our past implementations’ designs qualitatively

based on:

• their choice of core programming primitives—i.e., the primitives that are needed to

program basic self-adjusting computations (e.g., common benchmarks); and,

• the compiler support (or lack thereof) for working with these primitives.

We categorize our past implementations into three stages, which successively build on

one another:

202

Stage one: our first run-time system gives a proof-of-concept for implementing tracing,

change propagation and memory management of C programs (Section 7.3). The

design and evaluation of this system was published in Hammer and Acar (2008).

Stage two: our first compiler design gives analysis and compilation techniques making

the primitives of stage one less burdensome for the programmer (Section 7.3). The

design and evaluation of this system was published in Hammer et al. (2009).

Stage three: guided by our abstract machine model, our current compiler and run-time

system design are more programmable (usable and extensible) than earlier systems.

(Section 7.3). The design and evaluation of this system was published in Hammer

et al. (2011).

We survey details of this evolution below.

First run-time system. In the first run-time system, the core primitives consist of keyed

allocation of non-modifiable memory, modifiable reference primitives (allocation, writing

and reading).

This run-time system provides no compiler support. Rather, we program it using a

collection of C macros that provide the programming primitives listed above, as well as

forms for declaring static information and performing traced function calls.

Through these macros, the static structure of the trace is declared manually by the

programmer, including the layout of each type of closure record. Keyed allocation also re-

quires explicit, top-level declaration of initialization code, and is treated as a core feature,

as are the operations on modifiable references (such as their allocation, reading and writ-

ing). Modifiables may only be accessed at certain function call sites, which are specially

annotated; these call sites serve as memoization points. The programmer reorganizes the

program so that function-call sites correspond to modifiable accesses, and all live data is

explicitly made into plumbing. Moreover, functions must not return a value.

203

From this first evoluationary step, basic elements of the run-time system have sur-

vived essentially unchanged into the current system, most notably, our implementations of

certain data structures (Deitz-Sleator order-maintanence data structure, priority queues,

etc.). Other parts have changed significantly between each version, most notably the rep-

resentation of the trace, its closures, its memoization points and its recorded operations

on modifiable data.

First compiler design. At this stage, we provide the same primitives as the first run-

time system (Section 7.3), but through compilation techniques, we provide these in a

more usable form. At a conceptual level, the run-time of this stage adapts the design

of the run-time system above, except that we use certain compilation steps (static analy-

ses and transformations) to automatically produce the declarations that the programmer

would otherwise produce by hand. As a result, a programmer using this compiler need not

manually declare run-time closure layout, or decompose their program based on where

modifiables are accessed.

Afforded by having a compiler, we experiment with simple optimizations in the trace

representation, such as attempting to group reads that occur simultaneously when the

programmer uses certain forms (viz., when reads occur in the argument positions of a

multi-argument function call). Using the compiler, we also specialize the trace structure

using static information (e.g., the statically-known arity, type and size of traced closures).

Current system design. The evolution from the first compiler to the current one changes

the core programming primitives, offers a more programmable interface, and creates op-

portunities for further static analysis and optimizations. At this stage in design, we are

semantically guided by a new machine model (self-adjusting machines). These machines

suggest different core primitives, namely, the core programming primitives listed above

204

(viz. memo,update,push and pop). These core primitives are supplemented with library

extensions which provide, among other abstractions, that of modifible references.

205

CHAPTER 8

CONCLUSION

At a mechanical level, a self-adjusting computation is a spatial structure that represents

a dynamically-evolving computation. It evolves according to general-purpose rules of

self-adjustment (i.e., change propagation) along with the rules of a specific program. By

evolving its computational structure, the program responds efficiently to its incrementally-

changing environment.

At a low-level of abstraction, we address the following questions:

• What does this self-adjusting structure consist of?

• By what operational rules does the structure adjust?

That is to say, we give the parts and mechanics that define a low-level self-adjusting

computation. In doing so, we take into account the machine resources that are hidden

at higher levels of abstraction, but exposed at a low level of abstraction. In particular,

our self-adjusting machines provide an account of how change propagation interacts with

stack-based evaluation and automatic memory management of the heap.

We describe a sound abstract machine semantics for self-adjusting computation based

on a low-level intermediate language. We implemented this language by presenting compi-

lation and optimization techniques, including a C-like front end. Our experiments confirm

that the self-adjusting programs produced with our approach often perform asymptoti-

cally faster than full reevaluation, resulting in orders of magnitude speedups in practice.

We also confirmed that our approach is highly-competitive, often using machine resources

much more efficiently than competing approaches in high-level languages.

8.1 Future directions

We discuss the future direction of self-adjusting machines.

206

Incremental memory management outside the trace. For structures that reside out-

side of the trace arena, self-adjusting machines can conceivably mark and collect memory

by using a programmer-provided reference-counting traversal of heap data. Within this

traversal, the programmer counts references using an abstraction provided by a run-time

library extension (Section 5.3). This (automatically incrementalized) traversal can be re-

peated whenever the programmer wishes to collect garbage. When and if a traversed block

becomes “untraversed” (i.e., unreached by the traversal), the library extension marks this

block as garbage; if it is reused, it is unmarked; at the conclusion of change propagation,

all marked blocks are collected.

Cycles in memory are traditionally problematic for collectors based on reference count-

ing. By virtue of having the programmer specify how to traverse their data structures,

orphaned cycles can always be detected: Once the trace associated with traversing the

cycle is absent in the trace (i.e., when this traversal is revoked), the cycle can be collected.

Opting-out of update points. As described in (Section 6.5.4), memo points are “opt-in”:

programmers explicitly insert them where they want. A future language feature consists

of letting programmers “opt-out” of update points in the following way: Programmers

would insert an explicit update point and forgo update points in the remainder of the local

continuation using a (hypothetical) 1 freeze statement primitive: S1; freeze;S2. Exten-

sionally, the meaning of this statement sequence is equivalent to S1;S2; intensionally, the

freeze primitive guards statement S2 with an update point, and ensures that if any update

points within S2 be redirected to the inserted update point rather than any explicitly or

implicitly-determined ones. Intuitively, the freeze primitive has the intensional semantics

of associating with its local continuation a frozen (coarse-grained) trace that cannot be

incrementally modified. Since the trace of S2 is frozen, time can only be distinguished

1. This feature is not implemented as a primitive, but is a conceivable extension to the current compiler
and language via the extensible run-time framework that we present in Chapter 6.

207

as being either before, during or after S2; within S2, no incremental events are possible.

Hence, the fine-grained temporal structure of S2 can be collapsed to a point, treating all

the effects of S2 as occuring within an instant of time, rather than an interval of distinct

time instants. The flattening of time intervals into instants suggests interesting space-time

performance tradeoffs when these intervals are bound by a small factor of the total input

size (e.g., a constant or logarithmic factor). We leave this primitive for future work.

Semantics preservation. As pointed out in Section 5.9, compilation of self-adjusting

programs is different than compilation of ordinary programs. Ordinary programs typi-

cally have one intensional semantics realized by their compilers. In self-adjusting com-

putation, however, the compiler realizes two intensional semantics: One for conventional

evaluation, and one for incremental, self-adjusting evaluation (interposed with a run-time

library for self-adjusting computation). The difference between these is witnessed by a

cost model. In future work, compilers for self-adjusting machines should prove (either on

paper, or via verified compilation) that the machines that they produce always improve

the costs of the program (with respect to the cost model) compared with the costs of the

program as written by the programmer.

Non-monotonic reuse. Our abstraction of a THC can be used to implement keyed allo-

cations that steal from the trace in a non-monotonic way, as optimizations, when desired.

Previous work explores non-monotonic reuse of keyed allocations (Ley-Wild et al., 2008b;

Hammer and Acar, 2008). In a pure setting, Ley-Wild et al. (2011) explores non-monotonic

reuse of larger pieces of execution traces (i.e., traces containing only a limited class of ef-

fects on modifiable references, which always have a corresponding pure execution). In

future work, we suggest an additional approach to non-monotone reuse: decompose in-

cremental tasks into multiple self-adjusting machines.

208

Self-adjusting machine ecosystems. Complex incremental systems should not be lim-

ited to being embodied by a single monolithic self-adjusting machine. Rather they should

consist of an ecosystem of machines that communicate with one another through a shared,

external space, e.g., global memory, external to all machines and owned by the outer pro-

gram (or by the collective of machines, or some combination of both, etc.). Since each

machine maintains its trace internally, each machine can reuse its trace independently of

the reuse within other machines. It is conceivable that each machine in the ecosystem

could spawn other machines, allowing dynamic (external) inter-dependency structures of

incrementally-updating machines; juxtaposed with this inter-machine dependency struc-

ture, each machine has its own intra-machine dependencies, and its own internal trace.

The concept of a self-adjusting machine ecosystem, wherein incremental machine agents

cooperate and react to one another, suggests a role for self-adjusting machines in the pur-

suit creating larger, compositional self-adjusting ecosystems.

209

References

Abadi, M., B. W. Lampson, and J.-J. Lévy (1996). Analysis and caching of dependencies.
In International Conference on Functional Programming, pp. 83–91.

Abbott, M., T. Altenkirch, C. McBride, and N. Ghani (2004). D for data: Differentiating
data structures. Fundam. Inf. 65(1-2), 1–28.

Acar, U. A. (2005, May). Self-Adjusting Computation. Ph. D. thesis, Department of Com-
puter Science, Carnegie Mellon University.

Acar, U. A., A. Ahmed, and M. Blume (2008). Imperative self-adjusting computation. In
Proceedings of the 25th Annual ACM Symposium on Principles of Programming Languages.

Acar, U. A., G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan (2006). A library for
self-adjusting computation. Electronic Notes in Theoretical Computer Science 148(2).

Acar, U. A., G. E. Blelloch, M. Blume, R. Harper, and K. Tangwongsan (2009). An ex-
perimental analysis of self-adjusting computation. ACM Trans. Prog. Lang. Sys. 32(1),
3:1–53.

Acar, U. A., G. E. Blelloch, M. Blume, and K. Tangwongsan (2006). An experimental analy-
sis of self-adjusting computation. In Proceedings of the ACM Conference on Programming
Language Design and Implementation.

Acar, U. A., G. E. Blelloch, and R. Harper (2002). Adaptive functional programming. In
Proceedings of the 29th Annual ACM Symposium on Principles of Programming Languages,
pp. 247–259.

Acar, U. A., G. E. Blelloch, and R. Harper (2004, November). Adaptive memoization.
Technical Report CMU-CS-03-208, Department of Computer Science, Carnegie Mellon
University.

Acar, U. A., G. E. Blelloch, R. Ley-Wild, K. Tangwongsan, and D. Türkoğlu (2010). Trace-
able data types for self-adjusting computation. In Programming Language Design and
Implementation.

Acar, U. A., G. E. Blelloch, K. Tangwongsan, and D. Türkoğlu (2008, September). Robust
kinetic convex hulls in 3D. In Proceedings of the 16th Annual European Symposium on
Algorithms.

Acar, U. A., M. Blume, and J. Donham (2007). A consistent semantics of self-adjusting
computation. In European Symposium on Programming.

Acar, U. A., A. Cotter, B. Hudson, and D. Türkoğlu (2010). Dynamic well-spaced point sets.
In Symposium on Computational Geometry.

210

Acar, U. A., A. Cotter, B. Hudson, and D. Türkoğlu (2011). Parallelism in dynamic well-
spaced point sets. In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms
and Architectures.

Acar, U. A., A. Ihler, R. Mettu, and O. Sümer (2007). Adaptive Bayesian inference. In
Neural Information Processing Systems (NIPS).

Aftandilian, E. E. and S. Z. Guyer (2009). Gc assertions: using the garbage collector to
check heap properties. In Proceedings of the 2009 ACM SIGPLAN conference on Program-
ming language design and implementation, PLDI ’09, New York, NY, USA, pp. 235–244.
ACM.

Agarwal, P. K., L. J. Guibas, H. Edelsbrunner, J. Erickson, M. Isard, S. Har-Peled, J. Her-
shberger, C. Jensen, L. Kavraki, P. Koehl, M. Lin, D. Manocha, D. Metaxas, B. Mirtich,
D. Mount, S. Muthukrishnan, D. Pai, E. Sacks, J. Snoeyink, S. Suri, and O. Wolfson
(2002). Algorithmic issues in modeling motion. ACM Comput. Surv. 34(4), 550–572.

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers: principles, techniques, and tools.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Appel, A. W. (1991). Compiling with Continuations. Cambridge University Press.

Appel, A. W. (1998a). Modern compiler implementation in ML. Cambridge University Press.

Appel, A. W. (1998b). SSA is functional programming. SIGPLAN Notices 33(4), 17–20.

Appel, A. W. and D. B. MacQueen (1991). Standard ML of New Jersey. In PLILP, pp. 1–13.

Baker, H. G. (1978). List processing in real-time on a serial computer. Communications of
the ACM 21(4), 280–94. Also AI Laboratory Working Paper 139, 1977.

Baker, H. G. (1995). Cons should not cons its arguments, part II: Cheney on the MTA.
SIGPLAN Not. 30(9), 17–20.

Bellman, R. (1957). Dynamic Programming. Princeton Univ. Press.

Bender, M. A., R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito (2002). Two simplified
algorithms for maintaining order in a list. In Lecture Notes in Computer Science, pp. 152–
164.

Berger, E. D., B. G. Zorn, and K. S. McKinley (2002, November). Reconsidering custom
memory allocation. In OOPSLA’02 ACM Conference on Object-Oriented Systems, Languages
and Applications, ACM SIGPLAN Notices, Seattle, WA. ACM Press.

Bhatotia, P., A. Wieder, R. Rodrigues, U. A. Acar, and R. Pasquini (2011). Incoop: MapRe-
duce for incremental computations. In ACM Symposium on Cloud Computing.

Brodal, G. S. and R. Jacob (2002). Dynamic planar convex hull. In Proceedings of the 43rd
Annual IEEE Symposium on Foundations of Computer Science, pp. 617–626.

211

Burckhardt, S. and D. Leijen (2011). Semantics of concurrent revisions. In ESOP, pp.
116–135.

Burckhardt, S., D. Leijen, C. Sadowski, J. Yi, and T. Ball (2011). Two for the price of
one: A model for parallel and incremental computation. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications.

Carlsson, M. (2002). Monads for incremental computing. In International Conference on
Functional Programming, pp. 26–35.

Chen, Y., J. Dunfield, and U. A. Acar (2012, Jun). Type-directed automatic incrementaliza-
tion. In ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). to appear.

Chen, Y., J. Dunfield, M. A. Hammer, and U. A. Acar (2011, September). Implicit self-
adjusting computation for purely functional programs. In Int’l Conference on Functional
Programming (ICFP ’11), pp. 129–141.

Chiang, Y.-J. and R. Tamassia (1992). Dynamic algorithms in computational geometry.
Proceedings of the IEEE 80(9), 1412–1434.

Cohen, J. (1981, September). Garbage collection of linked data structures. Computing
Surveys 13(3), 341–367.

Collins, G. E. (1960, December). A method for overlapping and erasure of lists. Commu-
nications of the ACM 3(12), 655–657.

Cooper, K. D., T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck (1991). Efficiently
computing static single assignment form and the control dependence graph. ACM Trans-
actions on Programming Languages and Systems 13(4), 451–490.

Danvy, O. and J. Hatcliff (1993). On the transformation between direct and continua-
tion semantics. In Proceedings of the Ninth Conference on Mathematical Foundations of
Programming Semantics (MFPS), pp. 627–648.

Demers, A., T. Reps, and T. Teitelbaum (1981). Incremental evaluation of attribute gram-
mars with application to syntax-directed editors. In Principles of Programming Languages,
pp. 105–116.

Demetrescu, C., I. Finocchi, and A. Ribichini (2011). Reactive imperative programming
with dataflow constraints. In Proceedings of ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA).

Dietz, P. F. and D. D. Sleator (1987). Two algorithms for maintaining order in a list. In
Proceedings of the 19th ACM Symposium on Theory of Computing, pp. 365–372.

212

Diwan, A., D. Tarditi, and J. E. B. Moss (1993, December). Memory subsystem perfor-
mance of programs with intensive heap allocation. Technical Report CMU-CS-93-227,
Computer Science Department, Carnegie-Mellon University. Also appears as Fox Memo-
randum CMU-CS-FOX-93-07.

Efremidis, S. G., K. A. Mughal, and J. H. Reppy (1993, December). Attribute grammars in
ML. Technical report.

Eppstein, D., Z. Galil, and G. F. Italiano (1999). Dynamic graph algorithms. In M. J. Atallah
(Ed.), Algorithms and Theory of Computation Handbook, Chapter 8. CRC Press.

Field, J. and T. Teitelbaum (1990). Incremental reduction in the lambda calculus. In ACM
Conf. LISP and Functional Programming, pp. 307–322.

Flanagan, C., A. Sabry, B. Duba, and M. Felleisen (1993). The essence of compiling with
continuations. In Proceedings of the 20th Annual ACM Symposium on Principles of Pro-
gramming Languages, pp. 237–247.

Fluet, M. and S. Weeks (2001). Contification using dominators. In Proceedings of the
International Conference on Functional Programming, pp. 2–13.

Friedman, D. P., C. Haynes, and E. Kohlbecker (1984, January). Programming with con-
tinuations. In P. Pepper (Ed.), Program Transformation and Programming Environments,
Berlin, Heidelberg, pp. 263–274. Springer-Verlag.

Georgiadis, L. and R. E. Tarjan (2004). Finding dominators revisited: extended abstract.
In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 869–
878.

Grossman, D., G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney (2002, June). Region-
based memory management in Cyclone. See PLDI (2002), pp. 282–293.

Guo, P. J. and D. Engler (2011). Using automatic persistent memoization to facilitate
data analysis scripting. In Proceedings of the 2011 International Symposium on Software
Testing and Analysis, ISSTA ’11, New York, NY, USA, pp. 287–297. ACM.

Guy L. Steele, J. (1978). Rabbit: A compiler for scheme. Technical report, Cambridge,
MA, USA.

Hallenberg, N., M. Elsman, and M. Tofte (2002, June). Combining region inference and
garbage collection. See PLDI (2002), pp. 141–152.

Hammer, M. and U. A. Acar (2008). Memory management for self-adjusting computation.
In International Symposium on Memory Management, pp. 51–60.

Hammer, M., U. A. Acar, M. Rajagopalan, and A. Ghuloum (2007). A proposal for parallel
self-adjusting computation. In DAMP ’07: Declarative Aspects of Multicore Programming.

213

Hammer, M., G. Neis, Y. Chen, and U. A. Acar (2011). Self-adjusting stack machines.
In ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA).

Hammer, M. A., U. A. Acar, and Y. Chen (2009). CEAL: a C-based language for self-
adjusting computation. In ACM SIGPLAN Conference on Programming Language Design
and Implementation.

Heydon, A., R. Levin, and Y. Yu (2000). Caching function calls using precise dependencies.
In Programming Language Design and Implementation, pp. 311–320.

Hoover, R. (1987, May). Incremental Graph Evaluation. Ph. D. thesis, Department of
Computer Science, Cornell University.

Hudak, P., S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel, M. M. Guzmán,
K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz, R. S. Nikhil, W. Partain, and
J. Peterson (1992). Report on the programming language haskell, a non-strict, purely
functional language. SIGPLAN Notices 27(5), 1–.

Huet, G. (1997). The zipper. Journal of Functional Programming 7(5), 549–554.

Ingerman, P. Z. (1961, January). Thunks: a way of compiling procedure statements with
some comments on procedure declarations. Commun. ACM 4(1), 55–58.

Jacob, R. (2002). Dynamic Planar Convex Hull. Ph. D. thesis, Department of Computer
Science, University of Aarhus.

Jones, R. E. (1996, July). Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. Chichester: Wiley. With a chapter on Distributed Garbage Collection by R.
Lins.

Kernighan, B. W. and D. M. Ritchie (1988). The C Programming Language, Second Edition.
Englewood Cliffs, New Jersey: Prentice-Hall.

Knuth, D. E. (1968, June). Semantics of context-free languages. Theory of Computing
Systems 2(2), 127–145.

Lattner, C. and V. Adve (2004, March). LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04), Palo Alto, California.

Lengauer, T. and R. E. Tarjan (1979). A fast algorithm for finding dominators in a flow-
graph. ACM Transactions on Programming Languages and Systems 1(1), 121–141.

Ley-Wild, R. (2010, October). Programmable Self-Adjusting Computation. Ph. D. thesis,
Computer Science Department, Carnegie Mellon University.

214

Ley-Wild, R., U. A. Acar, and G. Blelloch (2011). Non-monotonic self-adjusting computa-
tion. Submitted for publication.

Ley-Wild, R., U. A. Acar, and M. Fluet (2008, July). A cost semantics for self-adjusting com-
putation. Technical Report CMU-CS-08-141, Department of Computer Science, Carnegie
Mellon University.

Ley-Wild, R., U. A. Acar, and M. Fluet (2009). A cost semantics for self-adjusting compu-
tation. In Proceedings of the 26th Annual ACM Symposium on Principles of Programming
Languages.

Ley-Wild, R., M. Fluet, and U. A. Acar (2008a). Compiling self-adjusting programs with
continuations. In Int’l Conference on Functional Programming.

Ley-Wild, R., M. Fluet, and U. A. Acar (2008b). Compiling self-adjusting programs with
continuations. In Proceedings of the International Conference on Functional Programming
(ICFP).

Lieberman, H., C. Hewitt, and D. Hillis (1983). A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM 26, 419–429.

Liu, Y. A. and T. Teitelbaum (1995). Systematic derivation of incremental programs. Sci.
Comput. Program. 24(1), 1–39.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM 3, 184–195.

McCarthy, J. (1963). A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg (Eds.), Computer Programming and Formal Systems, pp. 33–70. North-
Holland, Amsterdam.

Michie, D. (1968). “Memo” functions and machine learning. Nature 218, 19–22.

Milner, R., M. Tofte, and R. Harper (1990a). Definition of standard ML. MIT Press.

Milner, R., M. Tofte, and R. Harper (1990b). Definition of standard ML. MIT Press.

Muchnick, S. S. (1997). Advanced Compiler Design and Implementation. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Necula, G. C., S. McPeak, S. P. Rahul, and W. Weimer (2002). CIL: Intermediate language
and tools for analysis and transformation of C programs. In Int’l Conference on Compiler
Construction, pp. 213–228.

Norrish, M. (1998). C formalised in HOL. Ph. D. thesis, University of Cambridge.

O’Neill, M. E. and F. W. Burton (2006). Smarter garbage collection with simplifiers. In
MSPC ’06: Proceedings of the 2006 workshop on Memory system performance and correct-
ness, New York, NY, USA, pp. 19–30. ACM.

215

Overmars, M. H. and J. van Leeuwen (1981). Maintenance of configurations in the plane.
Journal of Computer and System Sciences 23, 166–204.

Peyton Jones, S. (1998). C- -: A portable assembly language. In Proceedings of the 1997
Workshop on Implementing Functional Languages. Springer Verlag.

Peyton Jones, S. L. (1992). Implementing lazy functional languages on stock hardware:
The spineless tagless g-machine. Journal of Functional Programming 2, 127–202.

Pilato, M. (2004). Version Control With Subversion. Sebastopol, CA, USA: O’Reilly & Asso-
ciates, Inc.

PLDI (2002, June). Proceedings of SIGPLAN 2002 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, Berlin. ACM Press.

Pugh, W. and T. Teitelbaum (1989). Incremental computation via function caching. In
Principles of Programming Languages, pp. 315–328.

Ramalingam, G. and T. Reps (1993). A categorized bibliography on incremental computa-
tion. In Principles of Programming Languages, pp. 502–510.

Ramsey, N. and J. Dias (2006). An applicative control-flow graph based on Huet’s zipper.
Electron. Notes Theor. Comput. Sci. 148(2), 105–126.

Reichenbach, C., N. Immerman, Y. Smaragdakis, E. E. Aftandilian, and S. Z. Guyer (2010,
October). What can the gc compute efficiently?: a language for heap assertions at gc
time. SIGPLAN Not. 45(10), 256–269.

Reps, T. (1982a, August). Generating Language-Based Environments. Ph. D. thesis, Depart-
ment of Computer Science, Cornell University.

Reps, T. (1982b). Optimal-time incremental semantic analysis for syntax-directed editors.
In Proceedings of the 9th Annual Symposium on Principles of Programming Languages, pp.
169–176.

Reps, T. W. and T. Teitelbaum (1984). The synthesizer generator. In Software Development
Environments (SDE), pp. 42–48.

Reps, T. W. and T. Teitelbaum (1989). The synthesizer generator - a system for constructing
language-based editors. Texts and monographs in computer science. Springer.

Rudiak-Gould, B., A. Mycroft, and S. L. P. Jones (2006). Haskell is not not ml. In ESOP,
pp. 38–53.

Ruggieri, C. and T. P. Murtagh (1988). Lifetime analysis of dynamically allocated objects.
In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’88, New York, NY, USA, pp. 285–293. ACM.

216

Shankar, A. and R. Bodik (2007). DITTO: Automatic incrementalization of data structure
invariant checks (in Java). In Programming Language Design and Implementation.

Sleator, D. D. and R. E. Tarjan (1985). Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686.

Sümer, O., U. A. Acar, A. Ihler, and R. Mettu (2011). Fast parallel and adaptive updates for
dual-decomposition solvers. In Conference on Artificial Intelligence (AAAI).

Sundaresh, R. S. and P. Hudak (1991). Incremental compilation via partial evaluation.
In Conference Record of the 18th Annual ACM Symposium on Principles of Programming
Languages, pp. 1–13.

Tarditi, D. and A. Diwan (1994). Measuring the cost of storage management. In Lisp and
Symbolic Computation, pp. 323–342.

Tarditi, D., P. Lee, and A. Acharya (1992). No assembly required: compiling Standard ML
to C. ACM Letters on Programming Languages and Systems 1(2), 161–177.

Tarjan, R. E. (1987, March). Algorithm design. Communications of the ACM 30(3).

Tofte, M., L. Birkedal, M. Elsman, and N. Hallenberg (2004, September). A retrospective
on region-based memory management. Higher-Order and Symbolic Computation 17(3).

Tofte, M. and J.-P. Talpin (1997, February). Region-based memory management. Informa-
tion and Computation.

Vesperman, J. (2003). Essential CVS - version control and source code management. O’Reilly.

Wadler, P. (1995). Monads for functional programming. In J. Jeuring and E. Meijer (Eds.),
Advanced Functional Programming, Volume 925 of Lecture Notes in Computer Science, pp.
24–52. Springer Berlin / Heidelberg.

Weeks, S. (2006). Whole-program compilation in mlton. In ML ’06: Proceedings of the
2006 workshop on ML, pp. 1–1. ACM.

Wilson, P. R. (1992, 16–18 September). Uniprocessor garbage collection techniques. In
Y. Bekkers and J. Cohen (Eds.), Proceedings of International Workshop on Memory Man-
agement, Volume 637 of Lecture Notes in Computer Science, University of Texas, USA.
Springer-Verlag.

Yellin, D. M. and R. E. Strom (1991, April). INC: a language for incremental computations.
ACM Transactions on Programming Languages and Systems 13(2), 211–236.

Zorn, B. (1993). The measured cost of conservative garbage collection. Software Practice
and Experience 23, 733–756.

217

APPENDIX A
SURFACE LANGUAGE CODE LISTINGS

218

Figure A.1: The List module.

1 #module_begin List
2 #imports
3 type hd_t -- parametric head type
4 qual ptr_q -- qualifier for internal pointers
5 #body
6 type cons_t -- abstract cons cell
7 type t = cons_t* ptr_q ; -- a list is a qualified cons_t pointer
8 type cons_t = { hd : hd_t ; -- the cons head
9 tl : t ; } -- the cons tail

10 val nil : t -- defined as NULL
11 val cons : void -> t -- allocates new cons; no init.
12 val consh : hd_t -> t -- like cons, but with head init
13 val consht : hd_t, t -> t -- like consh, but with tail init.
14 val mcp : cons_t* -> t -- memoized copy of cons cell
15 val tlx : t*, cons_t* -> t* -- tail-extend a list, rets extended tl ptr
16 #module_end

219

Figure A.2: The List_map module.

1 #module_begin List_map
2 #imports
3 module A = [List]
4 module B = [List]
5 val fn : A.hd_t -> B.hd_t
6 #body
7 val map : A.t -> B.t
8 val mapt : A.t, B.t* -> void
9

10 B.t map (in) {
11 if(in) {
12 memo;
13 hd_t hd = fn(in->hd); -- 1. map hd
14 B.t tl = map(in->tl); -- 2. map tl
15 return B.consht(hd , tl); -- 3. allocate cons; write hd and tl
16 }
17 else
18 return B.nil;
19 }

21 B.t mapt (in, d) { -- tail-recursive version of map, uses destination arg d
22 if(in) {
23 B.t c; -- key diff: we allocate the cons cell before recurring, not after
24 memo { hd_t hd = fn(in->hd); -- 1. map hd
25 c = B.cons(hd); } -- 2. allocate cons, write hd
26 *d = c; -- write prev tl: cons case.
27 memo;
28 mapt(in->tl, & c->tl); -- 3. map tl
29 }
30 else *d = B.nil; -- write prev tl: nil case.
31 }

33

34 #module_end

220

Figure A.3: The List_util module.

1 #module_begin List_util
2 #imports
3 module L = [LIST]
4 #body
5 val len : L.t -> size_t -- compute list length
6 val len_lte : L.t, size_t -> bool_t -- test list length
7 val rev : L.t -> L.t -- list reversal
8 val rev_r : L.t, L.t -> L.t -- recursive accumulator-based def.
9

10 size_t len (in) {
11 size_t a = 0; -- initialize accumulator
12 while(in) { a++; in = in->tl; } -- walk the list
13 return a; } -- return accumulated value

15 bool_t len_lte (in, n) {
16 if (in == L.nil) return TRUE; -- basecase 1: empty list
17 else if (n == 0) return FALSE; -- basecase 2: not(len <= 0)
18 else memo; len_lte (in->tl, n-1); } -- recur; both args decrease

20 L.t rev (in) {
21 return rev_r(in, L.nil); } -- use rev_r with empty acc

23 L.t rev_r (in, r) { -- r is the reversed accumulator
24 if(in == L.nil) return r; -- basecase: return rev acc
25 else { L.t c = L.mcp(in); -- memo copy of first cons
26 c->tl = r; -- c is new prefix of rev acc
27 memo; -- memo point guards recursion
28 rev_r(in->tl, c); } -- reverse the tail
29

30 #module_end

221

Figure A.4: The modules List_pred1 and List_pred2 .

1 #module_begin List_pred1 -- unary predicate
2 #imports
3 module L = [LIST]
4 val pred : L.hd_t* -> bool_t
5 #body
6 val filter : L.t, L.t* -> void -- one in, one out
7 val split : L.t, L.t*, L.t* -> void -- one in, two out
8

9 void filter (in, d) {
10 if (in == L.nil) *d = L.nil; -- basecase: empty.
11 else { if(pred(& in->hd)) -- conditioned on predicate,
12 d = L.tlx(d, L.mcp(in)); -- ..tail-extend with memo copy
13 memo; filter(in->tl, d); } -- memo-guarded recursion on tail

15 void split (in, d1, d2) {
16 if (in == L.nil) *d = L.nil; -- basecase: empty.
17 else { L.t c = L.mcp(in); -- memo copy cons,
18 memo; -- ..memo point, guards recursion
19 if(pred(& in->hd)) -- which output to extend?
20 split(in->tl, L.tlx(d1, L.mcp(in)), d2); -- extend first
21 else split(in->tl, d1, L.tlx(d2, L.mcp(in))); }} -- extend second
22

23 #module_end

25 #module_begin List_pred2 -- binary predicate
26 #imports
27 module L = [LIST]
28 val pred : L.hd_t*, L.hd_t* -> bool_t -- compare heads
29 #body
30 val merge : L.t, L.t, L.t* -> void -- two in, one out
31

32 void merge (in1, in2, d) {
33 if (in1 == L.nil) *d = in2; -- basecase one: in1 empty
34 else if (in2 == L.nil) *d = in1; -- basecase two: in2 empty
35 else { memo; -- memo point, guards recursion
36 if(pred(& in1->hd, & in2->hd)) -- which input to take?
37 merge(in1->tl, in2, L.tlx(d, L.mcp(in1))); -- take first
38 else merge(in1, in2->tl, L.tlx(d, L.mcp(in2))); -- take second
39

40 #module_end

Figure A.5: The coin module.

1 #module_begin COIN -- deterministic random choices
2 #exports
3 type key_t = uintptr_t -- keys index determ. coin tosses
4 type coin_t -- coins have random seeds
5 val init : coin_t* -> void -- initialize a new random coin
6 val det_toss : key_t, coin_t* -> bool_t -- determ. toss, on coin + key
7 #module_end

222

Figure A.6: The List_reduce module.

1 #module_begin List_reduce
2 #imports
3 module L = [LIST] -- list elements have,
4 val binop : L.hd_t, L.hd_t -> L.hd_t -- ..associative binop
5 module C = [COIN] -- coin tosses choose re-associations
6 #body
7 module Lu = [List_util] with L

9 val reduce : L.t* -> L.hd_t
10

11 L.hd_t reduce (in) { -- assume: input is non-empty
12 if (cut(Lu.len_lte (*in, 1))) { -- is it one element?
13 assert(in != L.nil); -- ..breaks our assumption
14 return in->hd ; -- return single element.
15 } else { -- two or more elements:
16 L.t out ; -- out: result of reduce round
17 L.t* d = & out ; -- cursor for tlx’ing out
18 C.coin_t coin ; -- coin, to determine re-assoc
19 C.init(& coin); -- ..seed coin randomly
20 cut { -- begin reduction round:
21 while (in) { -- loop over input list
22 L.hd_t acc = in->hd ; -- seed accumlator
23 in = in->tl ; -- next input element
24 while (in && C.det_toss(in, coin)) { -- coin flips select breaks:
25 acc = binop(acc, in->hd); in = in->tl; } -- dont break: accumulate
26 L.t acc_cons = memo(in; L.cons(acc)); -- break: keys = { in, acc }
27 d = L.tlx(d, acc_cons); -- extend out with acc_cons
28 memo; -- keys = { in, d }
29 }}
30 return reduce(& out); -- this round is finished, recur..
31 }}
32

33 #module_end

223

Figure A.7: The List_msort module.

1 #module_begin List_msort
2 #imports
3 module L = [LIST]
4 module C = [COIN]
5 val lte : L.hd_t*, L.hd_t* -> bool_t
6 #body
7 module Lu = [List_util] with L -- use List_util.len_lte
8 module P1 = [List_pred1] with L -- divide step: List_pred1.split
9 and (add-arg pred C.coin_t*) -- add coin arg to pred & its uses

10 := C.det_toss -- use C.det_toss as splitting pred
11 module P2 = [List_pred2] -- combine step: List_pred2.merge
12 with pred := lte -- use lte pred as merging pred

14 val msort : L.t*, L.t* -> void -- merge sort
15

16 void msort (in, d) {
17 if(cut(L.len_lte(*in, 1))) { -- basecase test: len <= 1
18 L.tlx(d, in); -- basecase: list is sorted
19 } else { -- recursive, divide-and-conquer:
20 L.t m1, m2; -- reserve space to hold ptrs
21 P1.split (in, & m1, & m2); -- divide: input into m1 and m2
22 L.t s1; msort(& m1, & s1); -- reserve s1; sort m1 into s1
23 L.t s2; msort(& m2, & s2); -- reserve s2; sort m2 into s2
24 P2.merge (s1, s2, d); -- combine: merge sorted lists
25 }
26 }
27

28 #module_end

224

Figure A.8: The List_qsort module.

1 #module_begin List_qsort
2 #imports
3 module L = [LIST]
4 val lte : L.hd_t*, L.hd_t* -> bool_t
5 #body
6 module P1 = [List_pred1] with L -- divide step: List_pred1.split
7 and (add-arg pred L.hd_t*) -- add pivot arg to pred & its uses
8 := lte -- use lte to as pivoting pred

10 val qsort : L.t, L.t* -- quick-sort
11 val qsort_r : L.t, L.t*, L.t -- recursive version
12

13 void qsort (in, d) {
14 qsort_r (in, d, L.nil) ; } -- accumulator is empty

16 void qsort_r (in, d, rest) { -- rest is a sorted accumulator
17 if(in == L.nil) L.tlx(d, rest); -- basecase: acc is sorted.
18 else {
19 L.hd_t p = in->hd ; -- the first element, p, is the pivot
20 memotbl_t* mt ; -- ..associate allocation with p, below
21 L.t pcons ; -- ..
22 L.t* l ; -- ..
23 L.t* g ; -- ..
24 memo { -- keys = { p }, allocate:
25 mt = Memotbl.mk(); -- a memo table
26 pcons = L.consh(p); -- cons cell, holding p
27 l = alloc(L.t); -- list of those <= p
28 g = alloc(L.t); -- list of those > p
29 }
30 memo (mt) { -- memo table associated with p
31 P1.split(in->tl, l, g, & pcons->hd); -- pivot tail into l and g
32 }
33 memo { qsort(*l, d, pcons); } -- recur on l, in (d, pcons]
34 memo { qsort(*g, & pcons->tl, rest); } -- recur on g, in (pcons, rest]
35 }
36 }
37

38 #module_end

225

APPENDIX B
RUN-TIME SYSTEM LISTINGS

Figure B.1: The Cell module: for building modifiable references†.

1 #module_begin Cell
2 #imports
3 module V = [MODREF_VALUE] -- the cell’s value
4 module Rds = [NODE_SET, NODE_ITER_NEXT] -- record of a cell’s reads
5 #body
6 type cell_t = { val : V.t ; -- current value of the cell
7 rds : Rds.t ; } -- readers; some may be inconsistent

9 type rd_t = { trnd : trnd_t* ; -- a rd_t is a trace action (an act_t)
10 rdnd : Rds.nd_t ; } -- node from the Rds node set (unboxed)

12 val modify : cell_t*, V.t -> void -- modify the value; update readers
13 val peek : cell_t* -> V.t -- inspect value, but not as a reader
14 val put_rd : cell_t*, rd_t* -> V.t -- inspect value, as a reader
15 val rem_rd : rd_t* -> void -- remove reader membership
16

17 void rdnd_req_update (rdnd) {
18 rd_t* rd = rd_of_rdnd(rdnd); -- (pointer arith)
19 Trnd.req_update(rd->trnd); -- requests that the trnd be udpated
20 }
21

22 module Rds_req_update = [Node.Visit] with Ns := Rds
23 and on_visit := rdnd_req_update
24

25 void modify (cell, val) {
26 if(V.eq(cell->val, val) == FALSE){ -- has value changed?
27 modref->val = val; -- save new value
28 Rds_req_update.all(& cell->rds); -- update all reads
29 }
30 }

32 V.t peek(cell){ return cell->val; }

34 V.t put_rd(cell, rd){
35 Rds.nd_t* rdnd = & rd->rdnd; -- Rds node of the read action
36 if(Rds.is_inserted(rdnd)) -- is it associated with some cell?
37 Rds.remove(rdnd); -- if so, remove it
38 Rds.insert(& cell->rds, rdnd); -- insert it into cell
39 return peek(cell); -- do the read
40 }

42 void rem_rd(rd){ Rds.remove(& rd->rdnd); }
43

44 #module_end

† Section B and Section B give single-write (“one-shot”) and multiple-write modifiable references,
respectively (See the MODREF signature, Figure B.2). Each implementation uses a cell to represent a
write trace action: a modifiable value, with a set of readers.

226

Figure B.2: The MODREF signature: An interface to modifiable references.

1 #module_begin MODREF_VALUE
2 type t -- stored value type
3 val eq : t, t -> bool_t -- value type equality relation
4 #module_end

6 #module_begin MODREF
7 #imports
8 module V = [MODREF_VALUE]
9 #exports

10 type mrf_t -- modref type; replaces qualified occurrences of V.t
11 thc read : mrf_t* -> V.t -- reading
12 thc write : mrf_t*, V.t -> void -- writing
13 #module_end

227

Figure B.3: The Oneshot_modref module: Single-write modifiable references

1 #module_begin Oneshot_modref
2 #exports
3 module_open [MODREF] -- we implement this signature
4 #imports
5 module C = [Cell] -- modifiable cells that record readers
6 #body
7 type mrf_t = C.cell_t -- oneshot modrefs are cells
8 type rd_t = C.rd_t -- oneshot reads are cell reads
9 ...

1 #module_begin Read
2 #body
3 type clos_t = rd_t

5 val foreign : mrf_t* -> V.t
6 val invoke : trnd_t*, rd_t*, mrf_t* -> V.t
7 val consis : trnd_t*, rd_t* -> bool_t
8 val revoke : trnd_t*, rd_t* -> void
9 val revinv : trnd_t*, rd_t*, mrf_t* -> vt

10

11 V.t foreign (m) { return C.peek(m); }
12 V.t invoke (trnd, rd, m) { rd->trnd = trnd; return C.put_rd(rd, m); }
13 bool_t consis (_, _) { return FALSE; }
14 void revoke (_, rd) { C.rem_rd(rd); }
15 V.t revinv (_, rd, m) { return C.put_rd(rd, m); }
16

17 #module_end

1 #module_begin Write
2 #body
3 type clos_t = empty_t -- sizeof(empty_t) is zero

5 val foreign : mrf_t*, V.t -> void
6 val invoke : trnd_t*, empty_t*, mrf_t*, V.t -> void
7 val consis : trnd_t*, empty_t* -> bool_t
8 val revinv : trnd_t*, empty_t*, mrf_t*, V.t -> void
9 val revoke : trnd_t*, empty_t* -> void

10

11 V.t foreign (m, v) { C.modify(m, v); }
12 V.t invoke (_, _, m, v) { C.modify(m, v); }
13 bool_t consis (_, _) { return TRUE; }
14 void revoke (_, _) { /*nothing to do*/ }
15 V.t revinv (_, _, m, v) { C.modify(m, v); }
16

17 #module_end

a Figure B.2 contains the definition of the MODREF signature
b Figure B.1 contains the definition of the Cell module

228

Figure B.4: The Multwr_modref module: Declarations.

1 #module_begin Multwr_modref
2 #exports
3 module_open [MULTWR_MODREF]
4 #imports
5 module Wrs = [NODE_SET, NODE_ORD, NODE_ITER_PREV] -- write actions
6 with key_t := act_t*
7 and key_compare := act_compare

9 module Rds = [NODE_SET, NODE_ORD, NODE_ITER_NEXT] -- read actions
10 with key_t := act_t*
11 and key_compare := act_compare

13 module C = [Cell] -- write actions contain cells
14 with V, Rds -- cells have a value and some read actions
15 #body
16 type modref_t = { wrs : Wrs.t ; -- sequence of zero or more write actions
17 fst : wr_t ; } -- invariant: if inserted, then is first

19 type wr_t = { trnd : trnd_t* ; -- write actions are trace actions
20 mrf : modref_t* ; -- the modref written
21 wrnd : Wrs.nd_t ; -- a node in the write action sequence
22 cell : C.cell_t ; } -- a cell with write value and readers

24 type rd_t = { cell_rd : C.rd_t ; -- C.rd_t is trace action
25 wr : wr_t* ; -- the corresponding write
26 val : V.t ; } -- for consistency check with wr->cell

229

Figure B.5: The Multwr_modref.Read module: Read trace hooks.

1 #module_begin Read
2 #body
3 type clos_t = rd_t
4 val foreign : modref_t* -> V.t
5 val invoke : trnd_t*, rd_t*, modref_t* -> V.t
6 val consis : trnd_t*, rd_t* -> bool_t
7 val revoke : trnd_t*, rd_t* -> void
8 val revinv : trnd_t*, rd_t*, modref_t* -> vt
9

10 V.t foreign (m) { C.peek(mrf_lst_wr(m)->cell); }

12 V.t invoke (trnd, rd, m) {
13 rd->trnd = trnd; -- store trnd
14 Wrs.nd_t* wrnd = Wrs.key_search(& m->wrs, (act_t*) rd); -- find write
15 wr_t* wr = wr_of_wrnd(wrnd); -- pointer arith
16 rd->val = C.put_rd(& wr->cell, & rd->cell_rd); -- inspect cell
17 return rd->val; }

19 bool_t consis (_, rd) {
20 return V.eq(C.peek(rd->wr->cell.val), rd->val); } -- check against cell

22 void revoke (_, rd) { C.rem_rd(& cell->rd); } -- end membership with cell

24 V.t revinv (trnd, rd, m) { -- reinsert (read modref or cell may be different)
25 revoke(trnd, rd);
26 return invoke(trnd, rd, m); }
27

28 #module_end

230

Figure B.6: The Multwr_modref.Write module: Write trace hooks.

1 #module_begin Write
2 type clos_t = wr_t
3 val foreign : modref_t*, V.t -> void
4 val invoke : trnd_t*, wr_t*, modref_t*, V.t -> void
5 val consis : trnd_t*, wr_t* -> bool_t
6 val revoke : trnd_t*, wr_t* -> void
7 val revinv : trnd_t*, wr_t*, modref_t*, V.t -> void
8

9 V.t foreign (m, v) {
10 if(! Wrs.is_inserted(& m->fst)) {
11 trnd_t* root = Self_adj_machine.get_root();
12 invoke(root, & m->fst, m, v);
13 } else
14 C.modify(& m->fst.cell, v); }

16 V.t invoke (trnd, wr, m, v) {
17 wr->trnd = trnd ;
18 Wrs.insert(& m->wrs, & wr->wrnd); -- insert the write node
19 wrnd_t* prev_wrnd = Wrs.prev(& m->wrs, & wr->wrnd);
20 -- is there is a previous write?
21 if(prev_wrnd != NULL) {
22 -- if so, look for reads that occur after previous write
23 Rds.t* rds = &(wr_of_wrnd(prev_wrnd)->rds);
24 Rds.nd_t* rdnd = Rds.key_search(rds, wr);
25 if(rdnd && act_compare(wr, rd_of_rdnd(rdnd)) == LESS) {
26 -- for all reads after this write, move the reads to this write
27 Rds.iter_t i;
28 Rds.iter_at_nd(rds, rdnd, & i);
29 Rds_put.rest(wr, & i);
30 }}
31 return wr->val ;
32 }

34 bool_t consis (_, _) { return TRUE; }

36 void revoke (trnd, wr) {
37 wrnd_t* prev_wrnd = Wrs.prev(& wr->mrf->wrs, & wr->wrnd);
38 Rds_put.all(& wr->rds, wr_of_wrnd(prev_wrnd)); }

40 void revinv (trnd, wr, m, v) {
41 if(wr->mrf != m) { -- different modref ?
42 revoke(trnd, wr); -- revoke write on original modref
43 invoke(trnd, wr, m, v); -- invoke on modref m
44 } else
45 C.modify(wr->cell, v);} -- modify the write action cell
46

47 #module_end

231

APPENDIX C
ABSTRACT MACHINE PROOFS

The proofs presented in this chapter were the result of a collaboration with Georg Neis
(Hammer et al., 2011). Georg’s insights and hard work were instrumental in the develop-
ment of these formal results.

C.1 Proofs for Consistency

Definition C.1.1 (SA). We define SA(σ, ρ, e) to mean the following:
If σ, ε, ρ, e r

−→∗ , , ρ ′,update e ′,
then there exists ν such that w = ν whenever , ε, ρ ′, e ′ r

−→∗ , ε, ε,w.

Definition C.1.2 (CSA). We define CSA(σ, ρ, e) to mean the following:
If σ, ε, ρ, e r

−→∗ σ ′, κ, ρ ′, e ′, then SA(σ ′, ρ ′, e ′).

Definition C.1.3. We write noreuse(〈Π, T〉) if and only if

1. T = ε

2. � /∈ Π

3. � /∈ Π

Definition C.1.4 (From-scratch consistent traces). A trace T is from-scratch consistent,
written T fsc, if and only if there exists a closed command 〈ρ, αr〉, store σ, and trace
context Π such that

1. CSA(σ, ρ, αr)

2. noreuse(〈Π, ε〉)

3. 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π ′, ε〉, σ ′, κ, ε, ν
4. 〈Π ′, ε〉; ε 	∗ 〈Π, ε〉; T

Lemma C.1.1 (From traced to untraced). If 〈Π, T〉, σ, κ, ρ, αr
t

−→n 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′
using only E.* and U.*, then we also have σ, κ, ρ, αr

r
−→∗ σ ′, κ ′, ρ ′, αr ′.

Proof. By inducton on n. When n = 0, the claim is obvious. For n > 0, we inspect the first
step taken. In each possible case, it is easy to verify that the claim follows by induction.

Definition C.1.5 (Okay traces).

ε ok

T1 ok T2 ok

(T1)·T2 ok

T fsc

T ok

232

Definition C.1.6 (Okay trace contexts).

ε ok

Π ok

Π·t ok

Π ok

Π·� ok

Π ok T fsc

Π·�T ok

Π ok T ok

Π·�T ok

Definition C.1.7 (Okay trace zippers).

Π ok T ok

〈Π, T〉 ok

Lemma C.1.2 (Rewinding is okay). If 〈Π, T〉; 	∗ 〈Π ′, T ′〉; and 〈Π, T〉 ok then 〈Π ′, T ′〉 ok

Proof. Trivial induction around the following case analysis of a rewind step.

• Case 〈Π1 ·t, T〉; 	 〈Π1, T〉;

– By assumption, Π1 ·t ok and T ok

– By inversion, Π1 ok

– Hence, 〈Π1, T〉 ok.

• Case 〈Π1 ·�T1 , ε〉; 	 〈Π1, T1〉;

– By assumption Π1 ·�T1 ok

– By inversion, Π1 ok and T1 ok

– Hence, 〈Π1, T1〉 ok.

• Case 〈Π1 ·�T2 , t·T1〉; 	 〈Π1, (t·T1)·T2〉;

– By assumption Π1 ·�T2 and t·T1 ok

– By inversion, Π1 ok and T2 ok

– Hence, (t·T1)·T2 ok

– And 〈Π1, (t·T1)·T2〉 ok.

Lemma C.1.3 (Purity). If 〈Π1, T1〉, σ1, κ1, ρ, αr
t

−→∗ 〈Π1, T1〉, σ1, κ1, ρ ′, αr ′ using E.0 only,

then for any Π2, T2, σ2, κ2 we have 〈Π2, T2〉, σ2, κ2, ρ, αr
t

−→∗ 〈Π2, T2〉, σ2, κ2, ρ ′, αr ′.
Proof. Trivial induction.

Lemma C.1.4 (Rewinding). If 〈Π ′, 〉; 	∗ 〈Π, 〉; , then

1. Π ∈ Prefixes(Π ′),

2. #�(Π ′) = #�(Π), and

233

3. #�(Π ′) = #�(Π).

Proof. By induction on the number n of rewinding steps. If n = 0, then Π = Π ′ and the
claim holds trivially. Suppose n = 1+ n ′. Case analysis on the first step:

• Case 〈Π ′, T ′1〉; T
′
2 	 〈Π

′′, T ′1〉; t·T
′
2 	

n ′ 〈Π, T1〉 ; T2 with Π ′ = Π ′′ ·t:

– By induction we get Π ∈ Prefixes(Π ′′)∧ #�(Π ′′) = #�(Π)∧ #�(Π ′′) = #�(Π).

– This implies the claims.

• Case 〈Π ′, T ′1〉; T
′
2 	 〈Π

′′, T〉; T ′2 	
n ′ 〈Π, T1〉 ; T2 with T ′1 = ε and Π ′ = Π ′′ ·�T :

– By induction we get Π ∈ Prefixes(Π ′′)∧ #�(Π ′′) = #�(Π)∧ #�(Π ′′) = #�(Π).

– This implies the claims.

• Case 〈Π ′, T ′1〉; T
′
2 	 〈Π

′′, (T ′1)·T〉; T
′
2 	

n ′ 〈Π, T1〉 ; T2 with T ′1 = t·T
′′
1 and Π ′ = Π ′′ ·�T :

– By induction we get Π ∈ Prefixes(Π ′′)∧ #�(Π ′′) = #�(Π)∧ #�(Π ′′) = #�(Π).

– This implies the claims.

Lemma C.1.5. If Π ∈ Prefixes(Π ′), then drop�(Π) ∈ Prefixes(drop�(Π ′)).

Lemma C.1.6. If 〈Π, T1〉; T 	∗ 〈Π ′, 〉; T ′, then 〈drop�(Π), T1〉; T 	∗ 〈drop�(Π ′), 〉; T ′.

Proof. By induction on the number n of rewinding steps. If n = 0, then Π = Π ′ and T = T ′,
so the claim holds obviously. Now suppose n > 0. We inspect the last step:

• Case 〈Π, T1〉; T 	∗ 〈Π ′ ·t, 〉; T2 	 〈Π ′, 〉 ; t·T2 with T ′ = t·T2:

– By induction, 〈drop�(Π), T1〉; T 	∗ 〈drop�(Π ′ ·t), 〉; T2 	 〈drop�(Π ′), 〉 ; t·T2.

• Case 〈Π, T1〉; T 	∗ 〈Π ′ ·� , 〉; T ′ 	 〈Π ′, 〉 ; T ′:

– By induction, 〈drop�(Π), T1〉; T 	∗ 〈drop�(Π ′ ·�), 〉; T ′ = 〈drop�(Π ′), 〉 ; T ′.

Lemma C.1.7 (Trace actions stick around (prefix version)). If

1. 〈Π1 ·T2 ·Π2, T1〉, , , ,
t

−→∗ 〈Π3, 〉, , , ,
2. drop�(Π1) ∈ Prefixes(drop�(Π3))

then drop�(Π1 ·T2) ∈ Prefixes(drop�(Π3)).

Proof. By induction on the length n of the reduction chain. If n = 0, then Π3 = Π1 ·T2 ·Π2
and thus the claim is obvious. Now consider n = 1+ n ′. We inspect the first step:

234

• Case E.0, U.1-2:

– Then 〈Π1 ·T2 ·Π2, T1〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

– The claim then follows by induction.

• Case E.1–5,7, E.P, P.E,1–5,7:

– Then 〈Π1 ·T2 ·Π2 ·t, T1〉, , , ,
t

−→n ′
〈Π3, 〉, , , , , for some t.

– The claim then follows by induction.

• Case E.6:

– Then 〈Π1 ·T2 ·Π2 ·�, T1〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

– The claim then follows by induction.

• Case P.6:

– Then 〈Π1 ·T2 ·Π2 ·�T , T1〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

– The claim then follows by induction.

• Case U.3:

– Then 〈Π1 ·T2 ·Π2 ·�T , T1〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

– The claim then follows by induction.

• Case E.8:

– Subcase 〈Π1 ·T2 ·Π2, T1〉 ; ε 	∗ 〈Π1 ·T2 ·Π ′2 ·�, T
′
1〉 ; T3:

∗ Then 〈Π1 ·T2 ·Π ′2 ·(T3), T
′
1〉, , , ,

t
−→n ′

〈Π3, 〉, , , , .
∗ The claim then follows by induction.

– Subcase 〈Π1 ·T2 ·Π2, T1〉 ; ε 	∗ 〈Π1, 〉 ; 	∗ 〈Π ′1 ·�, T
′
1〉 ; T3:

∗ Then 〈Π ′1 ·(T3), T
′
1〉, , , ,

t
−→n ′

〈Π3, 〉, , , , .
∗ By Lemma C.1.4 we have Π ′1 ·� ∈ Prefixes(Π1).
∗ Hence, using Lemma C.1.5,

drop�(Π ′1), drop�(Π ′1 ·�) ∈ Prefixes(drop�(Π1)) ⊆ Prefixes(drop�(Π3)).
∗ Hence drop�(Π ′1 ·(T3)) ∈ Prefixes(drop�(Π3)) by induction, contradicting

drop�(Π ′1 ·�) ∈ Prefixes(drop�(Π3)).

• Case P.8:

– Subcase 〈Π1 ·T2 ·Π2, T1〉 ; ε 	∗ 〈Π1 ·T2 ·Π ′2 ·�T , ε〉 ; T3 where T1 = ε:

235

∗ Then 〈Π1 ·T2 ·Π ′2 ·(T3), T〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

∗ The claim then follows by induction.

– Subcase 〈Π1 ·T2 ·Π2, T1〉 ; ε 	∗ 〈Π1, 〉 ; 	∗ 〈Π ′1 ·�T , ε〉 ; T3 where T1 = ε:

∗ Then 〈Π ′1 ·(T3), T〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

∗ By Lemma C.1.4 we have Π ′1 ·�T ∈ Prefixes(Π1).
∗ Hence, using Lemma C.1.5,

drop�(Π ′1), drop�(Π ′1 ·�T) ∈ Prefixes(drop�(Π1)) ⊆ Prefixes(drop�(Π3)).
∗ Hence drop�(Π ′1 ·(T3)) ∈ Prefixes(drop�(Π3)) by induction, contradicting

drop�(Π ′1 ·�T) ∈ Prefixes(drop�(Π3)).

• Case U.4:

– Subcase 〈Π1 ·T2 ·Π2, T1〉 = 〈Π1 ·T2 ·Π ′2 ·�T , ε〉:

∗ Then 〈Π1 ·T2 ·Π ′2, T〉, , , ,
t

−→n ′
〈Π3, 〉, , , , .

∗ The claim then follows by induction.

– Subcase 〈Π1 ·T2 ·Π2, T1〉 = 〈Π ′1 ·�T , ε〉 where T2 ·Π2 = ε:
∗ Then the claim is (2).

Lemma C.1.8 (Trace actions stick around (rewinding version)). If

• 〈Π·t, T〉, , , , t
−→∗ 〈Π ′, T ′〉, , , ,

• 〈drop�(Π ′), T1〉; ε 	∗ 〈drop�(Π), T2〉; T3

then 〈drop�(Π ′), T1〉; ε 	∗ 〈drop�(Π·t), T2〉; T ′3 	 〈drop�(Π), T2〉 ; T3.

Proof. Note that the rewinding takes at least one step, otherwise Lemmas C.1.4 and C.1.7
would yield Π·t ∈ Prefixes(Π), a contradiction. We inspect the last step:

• Case 〈drop�(Π ′), T1〉; ε 	∗ 〈drop�(Π)·t ′, T2〉; T ′3 	 〈drop�(Π), T2〉 ; T3 with T3 = t ′ ·T ′3:

– Lemmas C.1.4 and C.1.7 yield drop�(Π·t) ∈ Prefixes(drop�(Π ′)).

– Lemma C.1.4 also yields drop�(Π·t ′) ∈ Prefixes(drop�(Π ′)).

– Hence t = t ′ and we are done.

• Case 〈drop�(Π ′), T1〉; ε 	∗ 〈drop�(Π)·�T̂ , T
′
2〉; T3 	 〈drop�(Π), T2〉 ; T3:

– Lemma C.1.4 yields drop�(Π)·�T̂ ∈ Prefixes(drop�(Π ′)), which is a contradiction.

236

Lemma C.1.9. If 〈Π, T〉, σ, κ, ρ, αr
t

−→∗ 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′ and noreuse(〈Π, T〉), then
noreuse(〈Π ′, T ′〉).

Proof. Easy induction on the length of the reduction.

Lemma C.1.10. If σ, κ, ρ, αr
r

−→∗ σ ′, κ ′, ρ ′, αr ′, then σ, κ0@κ, ρ, αr
r

−→∗ σ ′, κ0@κ ′, ρ ′, αr ′
for any κ0.

Proof. Easy induction on the length of the reduction.

Lemma C.1.11 (CSA preservation (untraced)). If σ, ε, ρ, e r
−→∗ σ ′, κ ′, ρ ′, e ′

and CSA(σ, ρ, e), then CSA(σ ′, ρ ′, e ′).

Proof.

• Suppose σ ′, ε, ρ ′, e ′ r
−→∗ σ ′′, κ ′′, ρ ′′, e ′′.

• We must show SA(σ ′′, ρ ′′, e ′′).

• By Lemma C.1.10 we get σ ′, κ ′, ρ ′, e ′ r
−→∗ σ ′′, κ ′ ·κ ′′, ρ ′′, e ′′.

• Hence σ, ε, ρ, e r
−→∗ σ ′′, κ ′ ·κ ′′, ρ ′′, e ′′.

• The goal then follows from CSA(σ, ρ, e).

Lemma C.1.12. Suppose the following:

• drop�(Π) ∈ Prefixes(drop�(Π ′)),

• drop�(Π·�) /∈ Prefixes(drop�(Π ′)),

• |κ̃| = #�(Π̃).

1. If 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ρ, αr
t

−→n 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′, then:

• 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ρ, αr
t

−→n1 〈Π·�·Π̃ ′, T ′′0 〉, σ ′′, κ·bρf, fc, ε,ω
• 〈Π·�·Π̃ ′, T ′′0 〉; ε 	

∗ 〈Π·�, T ′′′0 〉; T̃
• ρf(f) = fun f(x).ef

• 〈Π·�·Π̃ ′, T ′′0 〉, σ
′′, κ·bρf, fc, ε,ω

t
−→ 〈Π·(T̃), T ′′′0 〉, σ ′′, κ, ρf[x 7→ ω], ef

• 〈Π·(T̃), T ′′′0 〉, σ
′′, κ, ρf[x 7→ ω], ef

t
−→n2 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′

• n = n1 + 1+ n2

2. If 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ε,prop t
−→n 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′, then:
237

• 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ε,prop t
−→n1 〈Π·�·Π̃ ′, T ′′0 〉, σ ′′, κ·bρf, fc, ε,ω

• 〈Π·�·Π̃ ′, T ′′0 〉; ε 	
∗ 〈Π·�, T ′′′0 〉; T̃

• ρf(f) = fun f(x).ef

• 〈Π·�·Π̃ ′, T ′′0 〉, σ
′′, κ·bρf, fc, ε,ω

t
−→ 〈Π·(T̃), T ′′′0 〉, σ ′′, κ, ρf[x 7→ ω], ef

• 〈Π·(T̃), T ′′′0 〉, σ
′′, κ, ρf[x 7→ ω], ef

t
−→n2 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′

• n = n1 + 1+ n2

Proof. By mutual induction on n. If n = 0, then we obtain a contradiction to drop�(Π·�) /∈
Prefixes(drop�(Π ′)). So consider n > 0. In each part we inspect the first step of the
reduction.

1. • Case E.0–7: Straightforward, using the inductive hypothesis.

• Case E.8:

– Subcase #�(Π̃) = 0:
∗ Then κ·bρf, fc·κ̃, ρ, αr = κ·bρf, fc, ε,ω

and 〈Π·�·Π̃, T0〉; ε 	∗ 〈Π·�, T2〉; T1.
∗ Hence 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc, ε,ω

t
−→ 〈Π·(T1), T2〉, σ, κ, ρf[x 7→ ω], ef

with
〈Π·(T1), T2〉, σ, κ, ρf[x 7→ ω], ef

t
−→n−1 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′.

∗ Thus the claim holds for n1 = 0, n2 = n− 1.

– Subcase #�(Π̃) > 0:
∗ Then κ·bρf, fc· κ̃, ρ, αr = κ·bρf, fc· κ̃ ′ ·bρ̂, f̂c, ε,ω and 〈Π·�·Π̃, T0〉; ε 	∗
〈Π·�·Π̃ ′ ·�, T ′′0 〉; T̂ .

∗ So 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ε,ω
t

−→
〈Π·�·Π̃ ′ ·(T̂), T ′′0 〉, σ, κ·bρf, fc·κ̃

′, ρ̂, ê.

∗ And 〈Π·�·Π̃ ′ ·(T̂), T ′′0 〉, σ, κ·bρf, fc·κ̃
′, ρ̂, ê t

−→n−1
〈Π ′, T ′0〉, σ

′, κ·κ̂, ρ ′, αr ′.
∗ Hence the claim holds by induction.

• Case E.P: By induction (part 2).

• Case P.E,1–7: Not possible.

• Case P.8:

– Then ρ, αr = ε,ω and 〈Π·�·Π̃, ε〉; ε 	∗ 〈Π·�·Π̃ ′ ·�T2 , ε〉; T1.
– So 〈Π·�·Π̃, T0〉, σ, κ·bρf, fc·κ̃, ε,ω

t
−→

〈Π·�·Π̃·(T1), T2〉, σ, κ·bρf, fc·κ̃, ε,prop.

– And 〈Π·�·Π̃·(T1), T2〉, σ, κ·bρf, fc·κ̃, ε,prop t
−→n−1

〈Π ′, T ′0〉, σ
′, κ·κ̂, ρ ′, αr ′.

238

– Hence the claim holds by induction (part 2).

• Case U.1–4: Straightforward by induction.

2. • Case E.0–8,P: Not possible.

• Case P.E: By induction (part 1).

• Case P.1–7: Straightforward by induction.

• Case U.1–4: Not possible.

• Case P.8: Not possible.

Lemma C.1.13. Suppose the following:

• drop�(Π) ∈ Prefixes(drop�(Π ′))

• drop�(Π·�T ′) /∈ Prefixes(drop�(Π ′))

• |κ̃| = #�(Π̃)

1. If 〈Π·�T ′ ·Π̃, T0〉, σ, κ·κ̃, ρ, αr
t

−→n 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′, then:

• 〈Π·�T ′ ·Π̃, T0〉, σ, κ, ρ, αr
t

−→n1 〈Π·�T ′ ·Π̃ ′, ε〉, σ ′′, κ, ε,ω

• 〈Π·�T ′ ·Π̃ ′, ε〉; ε 	∗ 〈Π·�T ′ , ε〉; T̃

• 〈Π·�T ′ ·Π̃ ′, ε〉, σ ′′, κ, ε,ω t
−→ 〈Π·(T̃), T ′〉, σ ′′, κ, ε,prop

• 〈Π·(T̃), T ′〉, σ ′′, κ, ε,prop t
−→n2 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′

• n = n1 + 1+ n2

2. If 〈Π·�T ′ ·Π̃, T0〉, σ, κ·κ̃, ε,prop t
−→n 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′, then:

• 〈Π·�T ′ ·Π̃, T0〉, σ, κ·κ̃, ε,prop t
−→n1 〈Π·�T ′ ·Π̃ ′, ε〉, σ ′′, κ, ε,ω

• 〈Π·�T ′ ·Π̃ ′, ε〉; ε 	∗ 〈Π·�T ′ , ε〉; T̃

• 〈Π·�T ′ ·Π̃ ′, ε〉, σ ′′, κ, ε,ω t
−→ 〈Π·(T̃), T ′〉, σ ′′, κ, ε,prop

• 〈Π·(T̃), T ′〉, σ ′′, κ, ε,prop t
−→n2 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′

• n = n1 + 1+ n2

Proof. By mutual induction on n. If n = 0, then we obtain a contradiction to the following:

drop�(Π·�T ′) /∈ Prefixes(drop�(Π
′))

So consider n > 0. In each part we inspect the first step of the reduction.

239

1. • Case E.0–7: Straightforward, using the inductive hypothesis.

• Case E.8:

– Then κ·κ̃, ρ, αr = κ·κ̃ ′ ·bρ̂, f̂c, ε,ω
and 〈Π·�T ′ ·Π̃, T0〉; ε 	∗ 〈Π·�T ′ ·Π̃ ′ ·�, T ′′0 〉; T̂ .

– So 〈Π·�T ′ ·Π̃, T0〉, σ, κ·κ̃, ε,ω
t

−→ 〈Π·�T ′ ·Π̃ ′ ·(T̂), T ′′0 〉, σ, κ·κ̃
′, ρ̂, f̂.

– And 〈Π·�T ′ ·Π̃ ′ ·(T̂), T ′′0 〉, σ, κ·κ̃
′, ρ̂, f̂ t

−→n−1 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′.
– Hence the claim holds by induction.

• Case E.P: By part (2).

• Case P.E,1–7: Not possible.

• Case P.8:

– Subcase #�(Π̃) = 0:
∗ Then 〈Π·�T ′ ·Π̃, ε〉; ε 	∗ 〈Π·�T ′ , ε〉; T1 and #�(Π̃) = 0 and thus κ̃ = ε.

∗ So 〈Π·�T ′ ·Π̃, T0〉, σ, κ, ρ, αr
t

−→ 〈Π·(T1), T2〉, σ, κ, ε,prop.

∗ And 〈Π·(T1), T2〉, σ, κ, ε,prop t
−→n−1 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′.

∗ Thus the claim holds for n1 = 0, n2 = n− 1.

– Subcase #�(Π̃) > 0:
∗ Then 〈Π·�T ′ ·Π̃, ε〉; ε 	∗ 〈Π·�T ′ ·Π̃ ′ ·�T2 , ε〉; T1 with #�(Π̃ ′) = #�(Π̃).

∗ So 〈Π·�T ′ ·Π̃, T0〉, σ, κ·κ̃, ρ, αr
t

−→ 〈Π·�T ′ ·Π̃ ′ ·(T1), T2〉, σ, κ·κ̃, ε,prop.

∗ And 〈Π·�T ′ ·Π̃ ′ ·(T1), T2〉, σ, κ·κ̃, ε,prop t
−→n−1 〈Π ′, T ′0〉, σ ′, κ·κ̂, ρ ′, αr ′.

∗ Hence the claim holds by induction (part 2).

• Case U.1–4: Straightforward, using the inductive hypothesis.

2. • Case E.0–8,P: Not possible.

• Case P.E: By part (1).

• Case P.1–7: Straightforward, using the inductive hypothesis.

• Case P.8: Not possible.

• Case U.1–4: Not possible.

Lemma C.1.14. Suppose drop�(Π·�) ∈ Prefixes(drop�(Π ′)) and #�(Π̃) = |κ̃|.

1. If 〈Π·�·Π̃, T〉, σ, κ·κ̃, ρ, αr t
−→n 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′, then κ ∈ Prefixes(κ ′).

2. If 〈Π·�·Π̃, T〉, σ, κ·κ̃, ε,prop t
−→n 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′, then κ ∈ Prefixes(κ ′).

240

Proof. By mutual induction on n. If n = 0, then we obtain a contradiction to drop�(Π·�) /∈
Prefixes(drop�(Π ′)). So consider n > 0. In each part we inspect the first step of the
reduction.

1. • Case E.0–7: Straightforward, using the inductive hypothesis.

• Case E.8:

– Subcase #�(Π̃) = 0:

∗ Then 〈Π·(T1), T2〉, σ, κ1, ρf[x 7→ ω], ef
t

−→n−1 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′.
∗ Lemma C.1.7 yields drop�(Π·(T1)) ∈ Prefixes(drop�(Π ′)), which contra-

dicts the first assumption.
– Subcase #�(Π̃) > 0:

∗ Then 〈Π·�·Π̃ ′ ·(T̂), T〉, σ, κ·κ̃ ′, ρ̂, ê t
−→n−1 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′ with

|κ̃ ′| = |κ̃|− 1 = #�(Π̃) − 1 = #�(Π̃ ′) = #�(Π̃ ′ ·(T̂)).
∗ Hence the claim holds by induction.

• Case E.P: By induction (part 2).

• Case P.E,1–7: Not possible.

• Case P.8:

– Then 〈Π·�·Π̃ ′ ·(T̂), T〉, σ, κ·κ̃, ε,prop t
−→n−1 〈Π ′, T ′〉, σ ′, κ ′, ρ ′, αr ′

with |κ̃| = #�(Π̃) = #�(Π̃ ′) = #�(Π̃ ′ ·(T̂)).
– Hence the claim holds by induction (part 2).

• Case U.1–4: Straightforward by induction.

2. • Case E.0–8,P: Not possible.

• Case P.E: By induction (part 1).

• Case P.1–7: Straightforward by induction.

• Case U.1–4: Not possible.

• Case P.8: Not possible.

Lemma C.1.15. Suppose drop�(Π) ∈ Prefixes(drop�(Π ′)).

1. If 〈Π, T〉, σ, κ1, ρ, αr
t

−→n 〈Π ′, T ′〉, σ ′, κ1 ·κ, ρ ′, αr ′,
then 〈Π, T〉, σ, κ2, ρ, αr

t
−→n 〈Π ′, T ′〉, σ ′, κ2 ·κ, ρ ′, αr ′ for any κ2.

2. If 〈Π, T〉, σ, κ1, ε,prop t
−→n 〈Π ′, T ′〉, σ ′, κ1 ·κ, ρ ′, αr ′, then 〈Π, T〉, σ, κ2, ε,prop t

−→n
〈Π ′, T ′〉, σ ′, κ2 ·κ, ρ ′, αr ′ for any κ2.

Proof. Mutually, by induction on n. If n = 0, both parts hold trivially. Now suppose n > 0.
We inspect the first step of each reduction.

241

1. • Case E.0–5,7: By Lemma C.1.7 (except E.0), induction, and application of the
corresponding rule.

• Case E.6:

– Subcase drop�(Π·�) ∈ Prefixes(drop�(Π ′)):

∗ We know αr = push f do e and 〈Π·�, T〉, σ, κ1 ·bρ, fc, ρ, e
t

−→n−1
〈Π ′, T ′〉, σ ′, κ1 ·κ, ρ ′, αr ′.
∗ By Lemma C.1.14 we know κ1 ·bρ, fc ∈ Prefixes(κ1 ·κ).
∗ Hence κ1 ·κ = κ ′1 ·κ

′ for κ ′1 = κ1 ·bρ, fc and some κ ′.
∗ The claim then follows by induction and application of rule E.6.

– Subcase drop�(Π·�) /∈ Prefixes(drop�(Π ′)):
By Lemma C.1.12, Lemma C.1.6, Lemma C.1.4, Lemma C.1.7, induction
(twice), and rule E.6.

• Case E.8: Lemmas C.1.4, C.1.6 and C.1.7 yield both the following:

drop�(Π
′′ ·�) ∈ Prefixes(drop�(Π

′))

drop�(Π
′′ ·()) ∈ Prefixes(drop�(Π

′))

This is a contradiction.

• Case E.P: By Lemma C.1.7, induction (part 2), and application of E.P.

• Case P.8: Lemmas C.1.4, C.1.6 and C.1.7 yield both

drop�(Π
′′ ·�) ∈ Prefixes(drop�(Π

′))

and drop�(Π ′′ ·()) ∈ Prefixes(drop�(Π ′)), which is a contradiction.

• Case U.1–4: By induction and application of the corresponding rule.

• Case P.E,1–7: Not possible.

2. • Case E.0–8,P: Not possible.

• Case P.1–5: By Lemma C.1.7, induction, and application of the corresponding
rule.

• Case P.6:

– Subcase drop�(Π·�T̂) ∈ Prefixes(drop�(Π ′)): By induction and application
of rule P.6.

– Subcase drop�(Π·�T̂) /∈ Prefixes(drop�(Π ′)):
By Lemma C.1.13, Lemma C.1.6, Lemma C.1.4, Lemma C.1.7, induction
(twice), and rule P.6.

• Case P.7,E: By Lemma C.1.7, induction (part 1), and application of the corre-
sponding rule.

242

• Case P.8: Not possible.

• Case U.1–4: Not possible.

Lemma C.1.16 (CSA preservation (traced)). If

1. 〈Π, ε〉, σ, κ, ρ, e t
−→∗ 〈Π ′, 〉, σ ′, κ·κ ′, ρ ′, e ′

2. drop�(Π) ∈ Prefixes(drop�(Π ′))

3. noreuse(〈Π, ε〉)

4. CSA(σ, ρ, e)

then CSA(σ ′, ρ ′, e ′).

Proof.

• By Lemma C.1.15 we get 〈Π, ε〉, σ, ε, ρ, e t
−→∗ 〈Π ′, 〉, σ ′, κ ′, ρ ′, e ′.

• By Lemma C.1.9 that reduction does not use rules other than E.* and U.*.

• Hence by Lemma C.1.1 we get σ, ε, ρ, e r
−→∗ σ ′, κ ′, ρ ′, e ′.

• The claim then follows by Lemma C.1.11.

Lemma C.1.17 (Decomposition). Suppose T fsc, from initial configuration 〈Π, ε〉, σ, κ, ρ, αr
and producing ν.

1. If T = A`,m ·T ′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′, let x = alloc(y) in e using E.0 only

(b) T ′ fsc from 〈Π·A`,m, ε〉, σ ′, κ, ρ ′[x 7→ `], e, producing ν

(c) σ, ρ ′, alloc(y) s
−→ σ ′, `

(d) ρ ′(y) = m

2. If T = Rν
`[m] ·T

′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′, let x = read(y[z]) in e using E.0 only

(b) T ′ fsc from 〈Π·Rν
`[m], ε〉, σ, κ, ρ

′[x 7→ ν], e, producing ν

(c) σ, ρ ′, read(y[z]) s
−→ σ, ν

(d) ρ ′(y) = `

243

(e) ρ ′(z) = m

3. If T = Wν
`[m] ·T

′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′, let = write(x[y],z) in e using E.0 only

(b) T ′ fsc from 〈Π·Wν
`[m], ε〉, σ

′, κ, ρ ′, e, producing ν

(c) σ, ρ ′,write(x[y],z) s
−→ σ ′, 0

(d) ρ ′(x) = `

(e) ρ ′(y) = m

(f) ρ ′(z) = ν

4. If T = Mρ ′,e ·T ′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′,memo e using E.0 only

(b) T ′ fsc from 〈Π·Uρ ′,e, ε〉, σ, κ, ρ ′, e, producing ν

5. If T = Uρ ′,e ·T ′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′,update e using E.0 only

(b) T ′ fsc from 〈Π·Uρ ′,e, ε〉, σ, κ, ρ ′, e, producing ν

6. If T = (T1)·T2, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′,push f do e using E.0 only

(b) T1 fsc from 〈Π·�, ε〉, σ, κ·bρ ′, fc, ρ ′, e, producing ω

(c) T2 fsc from 〈Π·(T1), ε〉, , κ, ρ ′[x 7→ ω], e ′, producing ν

(d) ρ ′(f) = fun f(x).e ′

7. If T = ω·T ′, then:

(a) 〈Π, ε〉, σ, κ, ρ, αr
t

−→∗ 〈Π, ε〉, σ, κ, ρ ′,pop x using only E.0

(b) ρ ′(x) = ω

(c) T ′ = ε

(d) ω = ν

Proof. From the assumption we know that:

(i) CSA(σ, ρ, αr)

(ii) noreuse(〈Π, ε〉)

(iii) 〈Π, ε〉, σ, κ, ρ, αr
t

−→n 〈Π ′, ε〉, σ ′, κ, ε, ν
244

(iv) 〈Π ′, ε〉; ε 	∗ 〈Π, ε〉; T

The proof is by induction on n. We are only interested in cases where T is nonempty and
thus n > 0. In each part we inspect the first step of the reduction in (iii).

1. T = A`,m ·T ′

• Case E.0: By Lemma C.1.16 and induction.

• Case E.1:

– Then:
(a) αr = let x = alloc(y) in e

(b) 〈Π·A` ′,m ′ , ε〉, σ ′′, κ, ρ[x 7→ ` ′], e t
−→n−1 〈Π ′, ε〉, σ ′, κ, ε, ν

(c) σ, ρ, alloc(y) s
−→ σ ′′, ` ′

(d) ρ(y) = m ′

– By (iv), Lemma C.1.6 and Lemma C.1.8 we get

〈drop�(Π
′), ε〉; ε 	∗ 〈drop�(Π·A` ′,m ′), ε〉; T ′ 	 〈drop�(Π), ε〉 ; T

with T = A` ′,m ′ ·T ′, hence ` ′ = ` and m ′ = m.
– By Lemma C.1.9 we know drop�(Π ′) = Π ′ and drop�(Π·A`,m) = Π·A`,m.
– Finally, Lemma C.1.16 yields CSA(σ ′′, ρ[x 7→ `], e) and therefore T ′ fsc from
〈Π·A` ′,m ′ , ε〉, σ ′′, κ, ρ[x 7→ ` ′], e, producing ν.

• Case E.2–8:

– Then 〈Π·t, ε〉, σ ′′, κ, ρ ′′, αr ′′
t

−→∗ 〈Π ′, ε〉, σ ′, κ, ε, ν with t 6= A`,m (using
Lemma C.1.12 in case E.6).

– By (iv), Lemma C.1.6 and Lemma C.1.8
we get 〈drop�(Π ′), ε〉; ε 	∗ 〈drop�(Π·t), ε〉; T ′ 	 〈drop�(Π), ε〉 ; T with T =
t·T ′.

– This is a contradiction.

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

2. T = Rν
`[m] ·T

′

• Case E.0: By Lemma C.1.16 and induction.

• Case E.2: base case

• Case E.1,3–8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

3. T = Wν
`[m] ·T

′

• Case E.0: By Lemma C.1.16 and induction.

245

• Case E.3: base case

• Case E.1,2,4–8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

4. T = Mρ ′,e ·T ′

• Case E.0: By Lemma C.1.16 and induction.

• Case E.4: base case

• Case E.1–3,5–8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

5. T = Uρ ′,e ·T ′

• Case E.0: By Lemma C.1.16 and induction.

• Case E.5: base case

• Case E.1–4,6–8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

6. T = (T1)·T2

• Case E.0: By Lemma C.1.16 and induction.

• Case E.6:

– Then αr = push f do e and 〈Π·�, ε〉, σ, κ·bρ, fc, ρ, e
t

−→n−1 〈Π ′, ε〉, σ ′, κ, ε, ν.
– By (iv), Lemma C.1.6, Lemma C.1.12 and Lemma C.1.9 we get:

∗ 〈Π·�, ε〉, σ, κ·bρ, fc, ρ, e t
−→n1 〈Π ′′, ε〉, σ ′′, κ·bρ, fc, ε,ω

∗ 〈Π ′′, ε〉; ε 	∗ 〈Π·�, ε〉; T̃
∗ ρ(f) = fun f(x).ef
∗ 〈Π ′′, ε〉, σ ′′, κ·bρ, fc, ε,ω t

−→ 〈Π·(T̃), ε〉, σ ′′, κ, ρ[x 7→ ω], ef

∗ 〈Π·(T̃), ε〉, σ ′′, κ, ρ[x 7→ ω], ef
t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
∗ n− 1 = n1 + 1+ n2

– By (iv), Lemma C.1.6 and Lemma C.1.8 we get:

〈drop�(Π
′), ε〉; ε 	∗ 〈drop�(Π·(T̃)), ε〉; T ′ 	 〈drop�(Π), ε〉 ; T

with T = (T̃)·T ′ and thus T1 = T̃ and T2 = T ′.
– Hence by Lemma C.1.9 and Lemma C.1.16 we know:
∗ T1 fsc from 〈Π·�, ε〉, σ, κ·bρ, fc, ρ, e
∗ T2 fsc from 〈Π·(T̃), ε〉, σ ′′, κ, ρ[x 7→ ω], ef

246

• Case E.1–5,7,8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

7. T = ω·T ′

• Case E.0: By Lemma C.1.16 and induction.

• Case E.7:

– Then αr = pop x and 〈Π, ε〉, σ, κ, ρ,pop x t
−→ 〈Π·ω ′, ε〉, σ, κ, ε,ω ′ t

−→n−1
〈Π ′, ε〉, σ ′, κ, ε, ν, where ω ′ = ρ(x).

– We show that n− 1 = 0:
∗ For a contradiction, suppose that n− 1 > 0.
∗ Note that then the next reduction step must be either P.8 or E.8.
∗ In either case, using Lemmas C.1.4, C.1.5, and C.1.7, we would get a

contradiction to 〈Π ′, ε〉; ε 	∗ 〈Π, ε〉; T .
– Hence ω ′ = ν.
– Furthermore, Lemmas C.1.6 and C.1.8 yield T = ω ′ and thus ω = ν and
T ′ = ε.

• Case E.1–6,8: contradiction

• Case E.P,P.E,P.1–8,U.1–4: Impossible due to (ii).

Definition C.1.8 (Last element of a trace).

last(t·T) = last(T) T 6= ε
last(t·ε) = t

last(ε) undefined

Lemma C.1.18 (Evaluation values). If T fsc producing values ν then last(T) = ν.

Proof. By induction over the structure of T .

• Case T = ε:

– Not possible.

• Case T = ω·T ′: By Lemma C.1.17.

• Case T = t·T ′ with t not a value: By Lemma C.1.17 and induction.

Lemma C.1.19 (Propagation values). If

(a) 〈Π, T1〉, σ, κ, ε,prop t
−→n 〈Π ′, 〉, σ ′, κ, ε, ν

247

(b) 〈drop�(Π ′), 〉; ε 	∗ 〈drop�(Π), 〉;

(c) reduction (a) does not contain a use of P.E

Then last(T1) = ν

Proof. By induction on the number of reduction steps n. Note necessarily that n > 0. We
inspect the first reduction step of (a).

• Case E.0-E.8,U.1-U.4,P.8,E not possible, due to (c).

• Case P.1-P.5

– Then 〈Π, t·T̂1〉, σ, κ, ε,prop
t

−→ 〈Π·t, T̂1〉, σ ′, κ, ε,prop
t

−→n−1 〈Π ′, 〉, σ ′, κ, ε, ν with T1 = t·T̂1
– By Lemma C.1.8, we have that 〈drop�(Π ′), 〉; ε 	∗
〈drop�(Π·t), T̂1〉 	 〈drop�(Π), 〉;

– The claim follows by induction.

• Case P.6

– Then 〈Π, (T2)·T3〉, σ, κ, ε,prop
t

−→ 〈Π·�T3 , T2〉, σ, κ, ε,prop
t

−→n−1 〈Π ′, 〉, σ ′, κ, ε, ν with T1 = (T2)·T3
– From Lemma C.1.13 we have 〈Π·�T3 , T2〉, σ, κ, ε,prop

t
−→n1 〈Π·(T ′2), T3〉, σ̂, κ, ε,prop
t

−→n2 〈Π ′, 〉, σ ′, κ, ε, ν
– From Lemma C.1.8, we have that 〈drop�(Π ′), 〉; 	∗ 〈drop�(Π·(T ′2)), 〉 ; 	
〈drop�(Π), 〉 ;

– The claim follows by induction.

• Case P.7:

– Then 〈Π,ω·ε〉, σ, κ, ε,prop t
−→ 〈Π·ω, ε〉, σ, κ, ε,ω t

−→n−1 〈Π ′, ε〉, σ ′, κ, ε, ν
with T1 = ω·ε

– We show that n− 1 = 0:

∗ For a contradiction, suppose that n− 1 > 0.
∗ We inspect the next step in n − 1, which must be either P.8 or E.8. We

assume E.8; P.8 is analogous.

248

∗ Hence 〈Π·ω, ε〉, σ, κ, ε,ω
t

−→ 〈Π ′′ ·(T), T ′〉, σ, κ ′, ρf, ef
t

−→n−2 〈Π ′, 〉, σ ′, κ, ε, ν
where 〈drop�(Π·ω), ε〉; ε 	∗ 〈drop�(Π ′′ ·�), T ′〉; T .
∗ By Lemma C.1.4 we know Π ′′ ·� ∈ Prefixes(Π·ω), i.e., Π ′′ ·� ∈ Prefixes(Π).
∗ Hence drop�(Π ′′), drop�(Π ′′ ·�) ∈ Prefixes(drop�(Π)) ⊆ Prefixes(drop�(Π ′))

using Lemma C.1.4, (d), and Lemma C.1.5.
∗ Using Lemma C.1.7 we get drop�(Π ′′ ·(T)) ∈ Prefixes(drop�(Π ′)), contra-

dicting drop�(Π ′′ ·�) ∈ Prefixes(drop�(Π ′)).

– Hence, since n = 1 we have that

∗ Π·ν = Π ′

∗ ω = ν

– Moreover, last(T1) = last(ν·ε) = ν

Lemma C.1.20 (Case analysis: waking up before push action). If

(a) 〈Π, T〉, σ, κ, ε,prop t
−→n 〈Π ′, ε〉, σ ′, κ, ε, ν

(b) 〈drop�(Π ′), 〉; 	∗ 〈drop�(Π), 〉;

(c) Π ok

(d) T fsc

(e) T = T1 ·(T2)·T3

(f) T1 contains no parenthesis (i.e., () 6∈ T1)

Then either:

1. • 〈Π, T〉, σ, κ, ε,prop
t

−→n1 〈Π ′′,Uρ,e ·T ′1 ·(T2)·T3〉, σ ′′, κ, ε,prop
t

−→ 〈Π ′′ ·Uρ,e, T ′1 ·(T2)·T3〉, σ ′′, κ, ρ, e
t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
• 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′ ·Uρ,e), 〉 ; 	∗ 〈drop�(Π), 〉 ;
• Π ′′ ok
• Uρ,e ·T ′1 ·(T2)·T3 fsc
• last(T ′1 ·(T2)·T3) = last(T)

• n = n1 + 1+ n2

249

2. • 〈Π, T〉, σ, κ, ε,prop t
−→n1 〈Π ′′, T3〉, σ ′′, κ, ε,prop t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
• 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′), 〉 ; 	∗ 〈drop�(Π), 〉 ;
• Π ′′ ok
• T3 fsc
• last(T3) = last(T)

• n = n1 + n2, n1 > 0

Proof. By induction on the number of reduction steps n. Note necessarily that n > 0. We
inspect the first step taken.

• Cases E.0-E.8, E.P, U.1-U.4: not possible.

• Case P.1-P.5:

– Then T = t · T ′ and 〈Π, t·T ′〉, σ, κ, ε,prop t
−→ 〈Π·t, T ′〉, σ̂, κ, ε,prop t

−→n−1
〈Π ′, ε〉, σ ′, κ, ε, ν

– Hence, 〈drop�(Π ′), 〉; 	∗ 〈drop�(Π·t), 〉; 	 〈drop�(Π), 〉; by Lemma C.1.8

– From Π ok, we have Π·t ok

– Note that T ′ = T ′1 ·(T2)·T3 where T1 = t·T ′1
– Hence, from (f) we have that T ′1 contains no paranthesis

– From T fsc we have T ′ fsc using Lemma C.1.17

– The claim then follows by induction.

• Case P.E: We show claim (1) as follows:

– Then T = Uρ,e ·T ′1 ·(T2)T3 and
〈Π,Uρ,e ·T ′〉, σ, κ, ε,prop
t

−→ 〈Π·Uρ,e, T ′〉, σ, κ, ε,prop
t

−→n−1 〈Π ′, ε〉, σ ′, κ, ε, ν
– Hence, 〈drop�(Π ′), 〉;
	∗ 〈drop�(Π·Uρ,e), 〉;
	 〈drop�(Π), 〉; by Lemma C.1.8

– With n1 = 0, claim (1) follows immediately by assumptions (c), (d) and (e).

• Case P.6: We show claim (2) as follows:

– Then T = (T2)·T3, T1 = ε, and 〈Π, (T2)·T3〉, σ, κ, ε,prop
t

−→ 〈Π·�T3 , T2〉, σ, κ, ε,prop
t

−→n−1 〈Π ′, ε〉, σ ′, κ, ε, ν
250

– From Lemma C.1.13 we have:

(i) 〈Π, (T2)·T3〉, σ, κ, ε,prop
t

−→ 〈Π·�T3 , T2〉, σ, κ, ε,prop
t

−→m1 〈Π·(T ′2), T3〉, σ ′′, κ, ε,prop
t

−→m2 〈Π ′, ε〉, σ ′, κ, ε, ν
(ii) n = 1+m1 +m2

– Hence 〈drop�(Π ′), ε〉 ; 	∗ 〈drop�(Π·(T ′2)), 〉 ; 	 〈drop�(Π), 〉 ; using (b) and
Lemma C.1.8

– From Π ok we have Π·(T ′2) ok

– From Lemma C.1.17 and (d), we have T3 fsc

– Finally, by definition last(T3) = last((T2)·T3) = last(T).

– This completes the case, showing claim (2) with n1 = 1+m1 and n2 = m2.

• Case P.7: not possible; it contradicts assumption (e).

• Case P.8: not possible; it contradicts assumption (a).

Lemma C.1.21 (Case analysis: final (non-nested) awakening). If

(a) 〈Π, T〉, σ, κ, ε,prop t
−→n 〈Π ′, ε〉, σ ′, κ, ε, ν

(b) 〈drop�(Π ′), 〉; 	∗ 〈drop�(Π), 〉;

(c) Π ok

(d) T fsc

Then either:

1. • 〈Π, T〉, σ, κ, ε,prop
t

−→n1 〈Π ′′,Uρ,e ·T ′〉, σ ′′, κ, ε,prop
t

−→ 〈Π ′′ ·Uρ,e, T ′〉, σ ′′, κ, ρ, e
t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
• 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′ ·Uρ,e), 〉 ; 	∗ 〈drop�(Π), 〉 ;
• Π ′′ ok
• Uρ,e ·T ′ fsc
• last(T) = last(T ′)

• n = n1 + 1+ n2

251

2. • 〈Π, T〉, σ, κ, ε,prop t
−→n1 〈Π ′′, T ′〉, σ ′′, κ, ε,prop t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
• 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′), 〉 ; 	∗ 〈drop�(Π), 〉 ;
• Π ′′ ok
• T ′ fsc
• last(T) = last(T ′)

• n = n1 + n2

• Reduction n2 contains no use of P.E

Proof. Case analysis on the shape of trace T :

• Case: ∃T1, T2, T3 such that T = T1 ·(T2)·T3 and T1 contains no parenthesis.

– Applying lemma C.1.20, we get subcases (i) and (ii):

(i) ∗ 〈Π, T〉, σ, κ, ε,prop
t

−→n1 〈Π ′′,Uρ,e ·T ′1 ·(T2)·T3〉, σ ′′, κ, ε,prop
t

−→ 〈Π ′′ ·Uρ,e, T ′1 ·(T2)·T3〉, σ ′′, κ, ρ, e
t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
∗ 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′ ·Uρ,e), 〉 ; 	∗ 〈drop�(Π), 〉 ;
∗ Π ′′ ok

∗ Uρ,e ·T ′1 ·(T2)·T3 fsc

∗ last(T ′1 ·(T2)·T3) = last(T)

∗ n = n1 + 1+ n2

– This immediately shows claim (1).

(ii) ∗ 〈Π, T〉, σ, κ, ε,prop t
−→n1 〈Π ′′, T3〉, σ ′′, κ, ε,prop t

−→n2 〈Π ′, ε〉, σ ′, κ, ε, ν
∗ 〈drop�(Π ′), 〉 ; 	∗ 〈drop�(Π ′′), 〉 ; 	∗ 〈drop�(Π), 〉 ;
∗ Π ′′ ok

∗ T3 fsc

∗ last(T3) = last(T)

∗ n = n1 + n2, n1 > 0

– Since we have that n2 < n, we continue by induction on reduction n2, which
shows the claim.

• Case: Otherwise: Note necessarily that T = t1 ·. . .·tm such that ∀i. ti 6= ()

– Subcase: reduction (a) contains a use of P.E:

∗ Hence, ∃ti = Uρ,e such that T = t1 ·. . .·ti ·. . .·tm and Π ′′ = Π·t1 ·. . .·ti−1
∗ Then, since Π ok we have Π ′′ ok

252

∗ Moreover,
last(T) = last(t1 ·. . .·ti ·. . .·tm)

= last(t2 ·. . .·ti ·. . .·tm)

= last(ti ·. . .·tm)

= last(ti+1 ·. . .·tm)

∗ Since T ′ = ti+1 ·. . .·tm, we have that last(T) = last(T ′)
∗ We get the rest of claim (1) from repeated use of Lemmas C.1.8 and C.1.17.

(the number of required uses is i− 1).

– Subcase: reduction (a) contains no use of P.E:

∗ Then we have claim (2) immediately, with n1 = 0.

Theorem C.1.22 (Consistency).

1. If

(a) 〈Π2, T ′1〉, σ2, κ2, ε,prop t
−→n 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2

(b) Π2 ok

(c) T ′1 fsc, from initial configuration 〈Π1, ε〉, σ1, κ1, ρ1, αr1
(d) 〈drop�(Π ′2), 〉; ε 	

∗ 〈drop�(Π2), 〉; T ′2
then for any Π3 there is Π ′3 such that

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3, ε〉; T ′2
2. If

(a) 〈Π2, T ′1〉, σ2, κ2, ρ2, αr2
t

−→n 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
(b) 〈Π2, T ′1〉 ok
(c) 〈drop�(Π ′2), 〉; ε 	

∗ 〈drop�(Π2), 〉; T ′2
then for any Π3 there is Π ′3 such that

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3, ε〉, σ2|gc, κ3, ρ2, αr2
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3, ε〉; T ′2
Proof. By simultaneous induction on n.

253

1. Note that necessarily n > 0. We inspect the first reduction step of (a).

• Case P.1:

– Then T ′1 = A`,m ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·A`,m, T̂1〉, σ̂2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2,
where σ2, ε, alloc(m)

s
−→ σ̂2, `.

– Hence

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·A`,m), 〉; T̂2 	 〈drop�(Π2), 〉 ;A`,m ·T̂2

with T ′2 = A`,m ·T̂2 by Lemma C.1.8 and (d).
– By Lemma C.1.17 and (c) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ ′1, let x = alloc(y) in e us-
ing E.0 only
∗ T̂1 fsc from 〈Π1 ·A`,m, ε〉, σ ′1, κ1, ρ

′
1[x 7→ `], e

∗ σ1, ρ ′1, alloc(y) s
−→ σ ′1, `

∗ ρ ′1(y) = m
– From (b) we get Π2 ·A`,m ok.
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·A`,m, ε〉, σ̂2|gc, κ3, ρ ′1[x 7→ `], e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·A`,m, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– From σ2, ε, alloc(m)

s
−→ σ̂2, ` and the knowledge about ρ ′1 follows

σ2|gc, ρ
′
1, alloc(y) s

−→ σ̂2|gc, `

.
– Hence, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·A`,m, ε〉, σ̂2|gc, κ3, ρ ′1[x 7→ `], e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
• Case P.2:

– Then T ′1 = Rν
`[m] ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop

t
−→ 〈Π2 ·Rν`[m], T̂1〉, σ2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2,
where σ2, ε, read(`[m])

s
−→ σ2, ν.

254

– Hence

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Rν`[m]), 〉; T̂2 	 〈drop�(Π2), 〉 ;Rν`[m] ·T̂2

with T ′2 = Rν
`[m] ·T̂2 by Lemma C.1.8 and (d).

– By Lemma C.1.17 and (c) we get:
∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1

t
−→∗ 〈Π1, ε〉, σ1, κ1, ρ ′1, let x = read(y[z]) in e using E.0 only

∗ T̂1 fsc from 〈Π1 ·Rν`[m], ε〉, σ1, κ1, ρ
′
1[x 7→ ν], e

∗ σ1, ρ ′1, read(y[z]) s
−→ σ1, ν

∗ ρ ′1(y) = `
∗ ρ ′1(z) = m

– From (b) we get Π2 ·Rν`[m] ok.

– By induction then:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3 ·Rν`[m], ε〉, σ2|gc, κ3, ρ
′
1[x 7→ ν], e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2

(iii) 〈Π ′3, ε〉; ε 	
∗ 〈Π3 ·Rν`[m], ε〉; T̂2 	 〈Π3, ε〉 ; T

′
2

– From σ2, ε, read(`[m])
s

−→ σ2, ν and the knowledge about ρ ′1 follows

σ2|gc, ρ
′
1, read(y[z]) s

−→ σ2|gc, ν

– Hence, by Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1
t

−→∗
〈Π3 ·Rν`[m], ε〉, σ2|gc, κ3, ρ

′
1[x 7→ ν], e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2

• Case P.3:

– Then T ′1 = Wν
`[m] ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop

t
−→ 〈Π2 ·Wν

`[m], T̂1〉, σ̂2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2, where σ2, ε,write(`[m],ν)
s

−→ σ̂2, 0.
– Hence

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Wν
`[m]), 〉; T̂2 	 〈drop�(Π2), 〉 ;Wν

`[m] ·T̂2

with T ′2 = Wν
`[m] ·T̂2 by Lemma C.1.8 and (d).

– By Lemma C.1.17 and (c) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ ′1, let = write(x[y],z) in e
using E.0 only
∗ T̂1 fsc from 〈Π1 ·Wν

`[m], ε〉, σ
′
1, κ1, ρ

′
1, e

255

∗ σ1, ρ ′1,write(x[y],z) s
−→ σ ′1, 0

∗ ρ ′1(x) = `
∗ ρ ′1(y) = m
∗ ρ ′1(z) = ν

– From (b) we get Π2 ·Wν
`[m] ok.

– By induction then:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3 ·Wν
`[m], ε〉, σ2|gc, κ3, ρ

′
1, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2.

(iii) 〈Π ′3, ε〉; ε 	
∗ 〈Π3 ·Wν

`[m], ε〉; T̂2 	 〈Π3, ε〉 ; T
′
2

– From σ2, ε,write(ν[`],m)
s

−→ σ ′2, 0 and the knowledge about ρ ′1 follows

σ2|gc, ρ
′
1,write(x[y],z) s

−→ σ ′2|gc, 0.
– Hence, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·Wν

`[m], ε〉, σ2|gc, κ3, ρ
′
1, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2

• Case P.4:

– Then T ′1 = Mρ,e ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·Mρ,e, T̂1〉, σ2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2.
– Hence 〈drop�(Π ′2), 〉; ε 	

∗ 〈drop�(Π2 ·Mρ,e), 〉; T̂2 	 〈drop�(Π2), 〉 ;Mρ,e ·T̂2
with T ′2 = Mρ,e ·T̂2 by Lemma C.1.8 and (d).

– By Lemma C.1.17 and (c) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ,memo e using E.0 only
∗ T̂1 fsc from 〈Π1 ·Mρ,e, ε〉, σ1, κ1, ρ, e

– From (b) we get Π2 ·Mρ,e ok.
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Mρ,e, ε〉, σ2|gc, κ3, ρ, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Mρ,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·Mρ,e, ε〉, σ2|gc, κ3, ρ, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
• Case P.5:

– Then T ′1 = Uρ,e ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·Uρ,e, T̂1〉, σ2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2.
256

– Hence 〈drop�(Π ′2), 〉; ε 	
∗ 〈drop�(Π2 ·Uρ,e), 〉; T̂2 	 〈drop�(Π2), 〉 ;Uρ,e ·T̂2

with T ′2 = Uρ,e ·T̂2 by Lemma C.1.8 and (d).
– By Lemma C.1.17 and (c) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ,update e using E.0 only

∗ T̂1 fsc from 〈Π1 ·Uρ,e, ε〉, σ1, κ1, ρ, e
– From (b) we get Π2 ·Uρ,e ok.
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Uρ,e, ε〉, σ2|gc, κ3, ρ, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Uρ,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·Uρ,e, ε〉, σ2|gc, κ3, ρ, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ2, ε, ν2
• Case P.6:

– Then T ′1 = (T̃1)·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·�T̂1 , T̃1〉, σ2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2.
– By Lemmas C.1.4 and C.1.13 we get:

∗ 〈Π2 ·�T̂1 , T̃1〉, σ2, κ2, ε,prop t
−→n1 〈Π̂2, ε〉, σ̂2, κ2, ε, ν

∗ 〈Π̂2, ε〉; ε 	∗ 〈Π2 ·�T̂1 , ε〉; T
∗ 〈Π̂2, ε〉, σ̂2, κ2, ε, ν

t
−→ 〈Π2 ·(T), T̂1〉, σ̂2, κ2, ε,prop

∗ 〈Π2 ·(T), T̂1〉, σ̂2, κ2, ε,prop t
−→n2 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2

∗ n− 1 = n1 + 1+ n2
– By Lemma C.1.17 and (c) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ,push f do e using E.0 only

∗ T̃1 fsc from 〈Π1 ·�, ε〉, σ1, κ1 ·bρ, fc, ρ, e, producing value ω

∗ T̂1 fsc from 〈Π1 ·(T̃1), ε〉, σ ′1, κ1, ρ
′, e ′

∗ ρ(f) = fun f(x).e ′

∗ ρ ′ = ρ[x 7→ ω]

– Since Π2 ok and T̂1 fsc, we know Π2 ·�T̂1 ok.

– Furthermore, 〈Π̂2, ε〉; ε 	∗ 〈Π2 ·�T̂1 , ε〉; Timplies 〈drop�(Π̂2), ε〉; ε 	∗ 〈drop�(Π2 ·�T̂1), ε〉; T by Lemma C.1.6.
– Induction with n1 then yields:
∗ 〈Π̂2, ε〉 ok

∗ 〈Π3 ·�, ε〉, σ2|gc, κ3 ·bρ, fc, ρ, e
t

−→∗ 〈Π̂3, ε〉, σ̂2|gc, κ3 ·bρ, fc, ε, ν
257

∗ 〈Π̂3, ε〉; ε 	∗ 〈Π3 ·�, ε〉; T
– Since Π2 ok we get Π2 ·(T) ok.

– We get 〈drop�(Π ′2), 〉; ε 	
∗ 〈drop�(Π2 ·(T)), 〉; T̂2 	 〈drop�(Π2), 〉 ; (T)·T̂2

with T ′2 = (T)·T̂2 by Lemma C.1.8 and (d).
– Induction with n2 then yields:
∗ 〈Π ′2, T

′′
1 〉 ok

∗ 〈Π3 ·(T), ε〉, σ̂2|gc, κ3, ρ ′, e ′
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
∗ 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·(T), ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·�, ε〉, σ2|gc, κ3 ·bρ, fc, ρ, e

– 〈Π3 ·�, ε〉, σ2|gc, κ3 ·bρ, fc, ρ, e
t

−→∗ 〈Π̂3, ε〉, σ̂2|gc, κ3 ·bρ, fc, ε, ν
– 〈Π̂3, ε〉, σ̂2|gc, κ3 ·bρ, fc, ε, ν

t
−→ 〈Π3 ·(T), ε〉, σ̂2|gc, κ3, ρ ′′, e ′, where ρ ′′ = ρ[x 7→ ν]

– It remains to show that ω = ν and thus ρ ′ = ρ ′′.
– Recall that we have:

∗ 〈Π2 ·�T̂1 , T̃1〉, σ2, κ2, ε,prop t
−→n1 〈Π̂2, ε〉, σ̂2, κ2, ε, ν

∗ 〈Π̂2, ε〉; ε 	∗ 〈Π2 ·�T̂1 , ε〉; T
∗ Π2 ·�T̂1 ok

∗ T̃1 fsc

– By Lemmas C.1.6 and C.1.21, we get two subcases:
(a) First subcase (of two)
∗ In this subcase, we have that:

· 〈Π2 ·�T̂1 , T̃1〉, σ2, κ2, ε,prop t
−→m1 〈Π ′′,Uρ̂,ê ·T ′〉, σ̂ ′2, κ2, ε,prop

· 〈Π ′′,Uρ̂,ê ·T ′〉, σ̂ ′2, κ2, ε,prop t
−→ 〈Π ′′ ·Uρ̂,ê, T ′〉, σ̂ ′2, κ2, ρ̂, ê

· 〈Π ′′ ·Uρ̂,ê, T ′〉, σ̂ ′2, κ2, ρ̂, ê
t

−→m2 〈Π̂2, ε〉, σ̂2, κ2, ε, ν
· 〈drop�(Π̂2), 〉 ; 	∗ 〈drop�(Π ′′ ·Uρ,e), 〉 ; 	∗ 〈drop�(Π2 ·�T̂1), 〉 ;
· Π ′′ ok

· Uρ̂,ê ·T ′ fsc

· last(T̃1) = last(T ′)
· n1 = m1 + 1+m2

∗ By Lemma C.1.17 we get 〈Π ′′ ·Uρ̂,ê, T ′〉 ok.
∗ From induction on reduction m2 using part (2), we get:

· 〈ε, ε〉, σ̂ ′2|gc, κ2, ρ̂, ê
t

−→∗ 〈Π4, ε〉, σ̂2|gc, κ2, ε, ν
· 〈Π4, ε〉; ε 	∗ 〈ε, ε〉;

258

∗ From Lemma C.1.15, we have that 〈ε, ε〉, σ̂ ′2|gc, ε, ρ̂, ê
t

−→∗ 〈Π4, ε〉, σ̂2|gc, ε, ε, ν
∗ From Lemma C.1.9 and Lemma C.1.1 we have that: σ̂ ′2|gc, ε, ρ̂, ê

r
−→∗

σ̂2|gc, ε, ε, ν

∗ Next, since Uρ̂,ê·T ′ fsc, with the help of Lemma C.1.17 there exists Π5,
σ5, κ5, ρ5, e5, Π ′5, σ

′
5 and ω ′ such that

· CSA(σ5, ρ5, e5)

· noreuse(〈Π5, ε〉)

· 〈Π5, ε〉, σ5, κ5, ρ5, e5
t

−→∗ 〈Π5, ε〉, σ5, κ5, ρ̂,update ê using E.0 only
· T ′ fsc from 〈Π5 ·Uρ̂,ê, ε〉, σ5, κ5, ρ̂, ê producing ω ′

· 〈Π5 ·Uρ̂,ê, ε〉, σ5, κ5, ρ̂, ê
t

−→∗ 〈Π ′5, ε〉, σ ′5, κ5, ε,ω ′
· 〈Π ′5, ε〉; ε 	

∗ 〈Π5 ·Uρ̂,ê, ε〉 ; T ′

∗ From T ′ fsc, T̃1 fsc and last(T ′) = last(T̃1) we have ω ′ = last(T ′) =

last(T̃1) = ω by Lemma C.1.18.
∗ By Lemma C.1.16 we get

CSA(σ5, ρ̂,update ê)

and thus
SA(σ5, ρ̂,update ê)

∗ From Lemmas C.1.4, C.1.5, C.1.9, C.1.15, and C.1.1 we have

σ5, ε, ρ̂, ê
r

−→∗ σ ′5, ε, ε,ω
∗ Since also σ̂ ′2|gc, ε, ρ̂, ê

r
−→∗ σ̂2|gc, ε, ε, ν we have that ν = ω by defi-

nition of SA.
(b) Second (and last) subcase:
∗ In this subcase, we have that:

· 〈Π2 ·�T̂1 , T̃1〉, σ2, κ2, ε,prop t
−→m1 〈Π ′′, T ′〉, σ̂ ′2, κ2, ε,prop t

−→m2
〈Π̂2, ε〉, σ̂2, κ2, ε, ν
· 〈drop�(Π̂2), 〉 ; 	∗ 〈drop�(Π ′′) , ;〉 	∗ 〈drop�(Π2 ·�T̂1), 〉 ;
· last(T̃1) = last(T ′)
· Reduction m2 contains no use of P.E

∗ Applying Lemma C.1.19 to the reduction m2 we have that last(T ′) =
ν.
∗ Putting this together, we have that last(T̃1) = last(T ′) = ν.

∗ Finally, by applying Lemma C.1.18 to “T̃1 fsc from . . . producing ω”,
we have that last(T̃1) = ω.

259

∗ Hence, ω = ν.

• Case P.7:

– Then T ′1 = ν1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·ν1, ε〉, σ2, κ2, ε, ν1
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2.
– We show that n− 1 = 0:
∗ Assume the contrary. The only reduction rules that apply to

〈Π2 ·ν1, ε〉, σ2, κ2, ε, ν1

are E.8 and P.8. We consider only the former case; the latter is analo-
gous.
∗ Hence 〈Π2 ·ν1, ε〉, σ2, κ2, ε, ν1

t
−→ 〈Π ′′2 ·(T), T ′〉, σ2, κ ′2, ρf, ef
t

−→n−2 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2 where

〈Π2 ·ν1, ε〉; ε 	∗ 〈Π ′′2 ·�, T
′〉; T

∗ By Lemma C.1.4 we know Π ′′2 ·� ∈ Prefixes(Π2 ·ν1),
i.e., Π ′′2 ·� ∈ Prefixes(Π2).
∗ Hence

drop�(Π
′′
2), drop�(Π

′′
2 ·�) ∈ Prefixes(drop�(Π2)) ⊆ Prefixes(drop�(Π

′
2))

using Lemma C.1.4, (d), and Lemma C.1.5.
∗ Using Lemma C.1.7 we get drop�(Π ′′2 ·(T)) ∈ Prefixes(drop�(Π ′2)), con-

tradicting drop�(Π ′′2 ·�) ∈ Prefixes(drop�(Π ′2)).
– Hence ν1 = ν2 and σ ′2 = σ2 and Π ′2 = Π2 ·ν2.
– By inversion on (d) we get T ′2 = ν2.
– 〈Π2 ·ν2, ε〉 ok follows from (b).
– By Lemma C.1.17 and (c) we get

〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ ′1,pop x

using only E.0, where ρ ′1(x) = ν1.
– Hence, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3, ε〉, σ2|gc, κ3, ρ ′1,pop x
t

−→ 〈Π3 ·ν2, ε〉, σ ′2|gc, κ3, ε, ν2.
– Finally, 〈Π3 ·ν2, ε〉; ε 	∗ 〈Π3, ε〉;ν2.

• Case P.E:

260

– Then T ′1 = Uρ,e ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ε,prop
t

−→ 〈Π2 ·Uρ,e, T̂1〉, σ2, κ2, ρ, e
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2.
– Hence 〈drop�(Π ′2), 〉; ε 	

∗ 〈drop�(Π2 ·Uρ,e), 〉; T̂2 	 〈drop�(Π2), 〉 ;Uρ,e ·T̂2
with T ′2 = Uρ,e ·T̂2 by Lemma C.1.8 and (d).

– By Lemma C.1.17 and (a) we get:

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ,update e using E.0 only
∗ T̂1 fsc from 〈Π1 ·Uρ,e, ε〉, σ1, κ1, ρ, e and thus T̂1 ok

– Π2 ·Uρ,e ok follows from Π2 ok.
– Induction and part (2) then yield:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Uρ,e, ε〉, σ2|gc, κ3, ρ, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Uρ,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, using Lemma C.1.3, 〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1

t
−→∗ 〈Π3 ·Uρ,e, ε〉, σ2|gc, κ3, ρ, e.

• Cases E.0–8, E.P, P.8, U.1–4: not possible

2. Case analysis on n. First, we handle the simple case when n = 0:

• Since n = 0, we have that:

– 〈Π2, T ′1〉 = 〈Π
′
2, T
′′
1 〉

– σ2 = σ ′2
– ρ2 = ε
– αr2 = ν2
– T ′2 = ε, by inversion on (c)

• 〈Π ′2, T
′′
1 〉 ok is given.

• Pick Π ′3 = Π3.

• Then reflexively we have that

〈Π3, ε〉, σ2|gc, κ3, ρ2, αr2
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
• Similarly, reflexively we have that 〈Π ′3, ε〉; ε 	

∗ 〈Π3, ε〉; T ′2.

For n > 0 we inspect the first reduction step of (a):

• Case E.0.

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2, e
u

t
−→ 〈Π2, T ′1〉, σ2, κ2, ρ ′2, αr ′2
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
261

– Induction yields:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3, ε〉, σ2|gc, κ3, ρ ′2, αr
′
2

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

(iii) 〈Π ′3, ε〉; ε 	
∗ 〈Π3, ε〉; T ′2

– Finally, using Lemma C.1.3 and (ii) we have that
〈Π3, ε〉, σ2|gc, κ3, ρ2, eu
t

−→∗ 〈Π3, ε〉, σ2|gc, κ3, ρ ′2, αr ′2
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
• Case E.1:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2, let x = alloc(y) in e
t

−→ 〈Π2 ·A`,m, T ′1〉, σ̂2, κ2, ρ ′2, e
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
Where:
∗ σ2, ρ2, alloc(y) s

−→ σ̂2, `

∗ ρ2(y) = m
∗ ρ ′2 = ρ2[x 7→ `]

– From Π2 ok we have that Π2 ·A`,m ok

– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·A`,m), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = A`,m ·T̂2
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·A`,m, ε〉, σ̂2|gc, κ3, ρ ′2, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·A`,m, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2, let x = alloc(y) in e

t
−→ 〈Π3 ·A`,m, ε〉, σ̂2|gc, κ3, ρ ′2, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
• Case E.2:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2, let x = read(y[z]) in e
t

−→ 〈Π2 ·Rν`[m], T
′
1〉, σ2, κ2, ρ

′
2, e

t
−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
Where:
∗ σ2, ρ2, read(y[z]) s

−→ σ2, ν

∗ ρ2(y) = `

262

∗ ρ2(z) = m
∗ ρ ′2 = ρ2[x 7→ ν]

– From Π2 ok we have that Π2 ·Rν`[m] ok

– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Rν`[m]), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = Rν
`[m] ·T̂2

– By induction then:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3 ·Rν`[m], ε〉, σ2|gc, κ3, ρ
′
2, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

(iii) 〈Π ′3, ε〉; ε 	
∗ 〈Π3 ·Rν`[m], ε〉; T̂2 	 〈Π3, ε〉 ; T

′
2

– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2, let x = read(y[z]) in e
t

−→ 〈Π3 ·Rν`[m], ε〉, σ2|gc, κ3, ρ
′
2, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

• Case E.3:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2, let = write(x[y],z) in e
t

−→ 〈Π2 ·Wν
`[m], T

′
1〉, σ̂2, κ2, ρ2, e

t
−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
Where:
∗ σ2, ρ2,write(x[y],z) s

−→ σ̂2, 0

∗ ρ2(x) = `
∗ ρ2(y) = m
∗ ρ2(z) = ν

– From Π2 ok we have that Π2 ·Wν
`[m] ok

– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Wν
`[m]), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = Wν
`[m] ·T̂2

– By induction then:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3 ·Wν
`[m], ε〉, σ̂2|gc, κ3, ρ2, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

(iii) 〈Π ′3, ε〉; ε 	
∗ 〈Π3 ·Wν

`[m], ε〉; T̂2 	 〈Π3, ε〉 ; T
′
2

– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2, let = write(x[y],z) in e
t

−→ 〈Π3 ·Wν
`[m], ε〉, σ̂2|gc, κ3, ρ2, e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

263

• Case E.4:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2,memo e t
−→ 〈Π2 ·Mρ2,e, T

′
1〉, σ2, κ2, ρ2, e

t
−→n−1

〈Π ′2, T
′′
1 〉, σ

′
2, κ2, ε, ν2

– From Π2 ok we have that Π2 ·Mρ2,e ok

– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Mρ2,e), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = Mρ2,e ·T̂2
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Mρ2,e, ε〉, σ2|gc, κ3, ρ2, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Mρ2,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2,memo e t

−→ 〈Π3 ·Mρ2,e, ε〉, σ2|gc, κ3, ρ2, e
t

−→∗
〈Π ′3, ε〉, σ

′
2|gc, κ3, ε, ν2

• Case E.5:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2,update e t
−→ 〈Π2 ·Uρ2,e, T

′
1〉, σ2, κ2, ρ2, e

t
−→n−1

〈Π ′2, T
′′
1 〉, σ

′
2, κ2, ε, ν2

– From Π2 ok we have that Π2 ·Uρ2,e ok

– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·Uρ2,e), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = Uρ2,e ·T̂2
– By induction then:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Uρ2,e, ε〉, σ2|gc, κ3, ρ2, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Uρ2,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2,update e t

−→ 〈Π3 ·Uρ2,e, ε〉, σ2|gc, κ3, ρ2, e t
−→∗

〈Π ′3, ε〉, σ
′
2|gc, κ3, ε, ν2

• Case E.6:

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2,push f do e
t

−→ 〈Π2 ·�, T ′1〉, σ2, κ2 ·bρ2, fc, ρ2, e
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
– Note that also 〈Π3, ε〉, σ2|gc, κ3, ρ2,push f do e

t
−→ 〈Π3 ·�, ε〉, σ2|gc, κ3 ·bρ2, fc, ρ2, e.

– By Lemma C.1.12 the n− 1 reduction above decomposes as follows:

264

∗ 〈Π2 ·�, T ′1〉, σ2, κ2 ·bρ2, fc, ρ2, e
t

−→n1 〈Π̂2, T̂ ′1〉, σ̂2, κ2 ·bρ2, fc, ε, ν
∗ 〈Π̂2, T̂ ′1〉; ε 	

∗ 〈Π2 ·�, T̃ ′1〉; T
∗ 〈Π̂2, T̂ ′1〉, σ̂2, κ2 ·bρ2, fc, ε, ν

t
−→ 〈Π2 ·(T), T̃ ′1〉, σ̂2, κ2, ρ̂2, ef

∗ 〈Π2 ·(T), T̃ ′1〉, σ̂2, κ2, ρ̂2, ef
t

−→n2 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
∗ n = n1 + 1+ n2

– From 〈Π2, T ′1〉 ok we get 〈Π2 ·�, T ′1〉 ok.
– From 〈Π̂2, T̂ ′1〉; ε 	

∗ 〈Π2 ·�, T̃ ′1〉; T follows

〈drop�(Π̂2), 〉; ε 	∗ 〈drop�(Π2 ·�), 〉; T

by Lemma C.1.6.
– Hence induction with n1 yields:
∗ 〈Π̂2, T̂ ′1〉 ok

∗ 〈Π3 ·�, ε〉, σ2|gc, κ3 ·bρ2, fc, ρ2, e
t

−→∗ 〈Π ′′3 , ε〉, σ̂2|gc, κ3 ·bρ2, fc, ε, ν
∗ 〈Π ′′3 , ε〉; ε 	

∗ 〈Π3 ·�, ε〉; T
– Note that 〈Π ′′3 , ε〉, σ̂2|gc, κ3 ·bρ2, fc, ε, ν

t
−→ 〈Π3 ·(T), ε〉, σ̂2|gc, κ3, ρ̂2, ef.

– 〈Π2 ·(T), T̃ ′1〉 ok follows from 〈Π̂2, T̂ ′1〉 ok by Lemma C.1.2.
– By Lemma C.1.8 and (c) we have

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2 ·(T)), 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = (T)·T̂2
– So induction with n2 yields:
∗ 〈Π̂ ′2, T

′′
1 〉 ok

∗ 〈Π3 ·(T), ε〉, σ̂2|gc, κ3, ρ̂2, ef
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
∗ 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·(T), ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, 〈Π3, ε〉, σ2|gc, κ3, ρ2,push f do e

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2 by putting the pieces together.

• Case E.7

– Then 〈Π2, T ′1〉, σ2, κ2, ρ2,pop x
t

−→ 〈Π2 ·ν, T ′1〉, σ2, κ2, ε, ν
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
Where: ρ2(xi)

|x|
1 = ν

– From Π2 ok we have that Π2 ·ν ok

– By Lemma C.1.8 and (c) we have 〈drop�(Π ′2), 〉; ε 	
∗ 〈drop�(Π2 ·ν), 〉; T̂2 	

〈drop�(Π2), 〉 ; T ′2 with T ′2 = ν·T̂2
– By induction then:

265

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·ν, ε〉, σ2|gc, κ3, ε, ν
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·ν, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2,pop x

t
−→ 〈Π3 ·ν, ε〉, σ2|gc, κ3, ε, ν
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
• Case E.8: We show that this case does not arise.

– Then
∗ 〈Π2, T ′1〉, σ2, κ̂2 ·bρ̂, fc, ε, ν

t
−→ 〈Π̂2 ·(T3), T̂ ′1〉, σ2, κ̂2, ,
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ̂2 ·bρ̂, fc, ε, ν2
∗ 〈drop�(Π2), T ′1〉; ε 	

∗ 〈drop�(Π̂2 ·�), T̂ ′1〉; T3
– By Lemmas C.1.7 and C.1.4 we get both

∗ drop�(Π̂2 ·�) ∈ Prefixes(drop�(Π ′2))

∗ drop�(Π̂2 ·(T3)) ∈ Prefixes(drop�(Π ′2)).
– This is a contradiction and thus rules out this case.

• Case P.8: We show that this case does not arise.

– Then
∗ 〈Π2, T ′1〉, σ2, κ2, ρ2, αr2

t
−→ 〈Π̂2 ·(T4), T3〉, σ2, κ2, ε,prop
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
∗ 〈drop�(Π2), ε〉; ε 	∗ 〈drop�(Π̂2 ·�T3), ε〉; T4

– By Lemmas C.1.7 and C.1.4 we get both

∗ drop�(Π̂2 ·�T3) ∈ Prefixes(drop�(Π ′2))

∗ drop�(Π̂2 ·(T4)) ∈ Prefixes(drop�(Π ′2)).
– This is a contradiction and thus rules out this case.

• Case E.P

– Then T ′1 = Mρ2,e ·T̂1 and 〈Π2, T ′1〉, σ2, κ2, ρ2,memo e
t

−→ 〈Π2 ·Mρ2,e, T̂1〉, σ2, κ2, ρ2, e
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
– Hence

〈drop�(Π
′
2), 〉; ε 	

∗ 〈drop�(Π2)·Mρ2,e, 〉; T̂2 	 〈drop�(Π2), 〉 ; T ′2

with T ′2 = Mρ,e ·T̂2 by Lemma C.1.8 and (c).

266

– From (b) we have that Mρ2,e·T̂1 ok, and by inversion we have that Mρ2,e·T̂1 fsc.
– Hence, by Lemma C.1.17 we know there exists some components Π1, σ1,
κ1, ρ1, αr1 such that

∗ 〈Π1, ε〉, σ1, κ1, ρ1, αr1
t

−→∗ 〈Π1, ε〉, σ1, κ1, ρ2,memo e using E.0 only

∗ T̂1 fsc from 〈Π1 ·Mρ2,e, ε〉, σ1, κ1, ρ2, e
– Π2 ·Mρ2,e ok follows from Π2 ok.
– Induction and part (1) then yield:

(i) 〈Π ′2, T
′′
1 〉 ok

(ii) 〈Π3 ·Mρ2,e, ε〉, σ2|gc, κ3, ρ2, e
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3 ·Mρ2,e, ε〉; T̂2 	 〈Π3, ε〉 ; T ′2
– Finally, using Lemma C.1.3,
〈Π3, ε〉, σ2|gc, κ3, ρ1, αr1
t

−→∗ 〈Π3 ·Mρ2,e, ε〉, σ2|gc, κ3, ρ2, e.
• Case U.1

– Then 〈Π2,A`,m ·T̂ ′1〉, σ2, κ2, ρ2, αr2
t

−→ 〈Π2, T̂ ′1〉, σ2[` 7→ �], κ2, ρ2, αr2
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
– By inversion on (b) we have that A`,m ·T̂ ′1 fsc

– By Lemma C.1.17, we have that T̂ ′1 fsc

– Hence, T̂ ′1 ok

– Induction yields:
(i) 〈Π ′2, T

′′
1 〉 ok

(ii) 〈Π3, ε〉, σ2[� 7→ `]|gc, κ3, ρ2, αr2
t

−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2
(iii) 〈Π ′3, ε〉; ε 	

∗ 〈Π3, ε〉; T ′2
– By definition, σ2[` 7→ �]|gc = σ2|gc
– Hence, 〈Π3, ε〉, σ2|gc, κ3, ρ2, αr2

t
−→∗ 〈Π ′3, ε〉, σ ′2|gc, κ3, ε, ν2

• Case U.2

– Then 〈Π2, t·T̂ ′1〉, σ2, κ2, ρ2, αr2
t

−→ 〈Π2, T̂ ′1〉, σ2, κ2, ρ2, αr2
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
– By inversion on (b), with the knowledge that t 6= (), we have that t·T̂ ′1 fsc

– By Lemma C.1.17, we have that T̂ ′1 fsc

– Hence, T̂ ′1 ok

267

– The claim then follows by induction.

• Case U.3

– Then 〈Π2, (T̂ ′1)·T̂
′
2〉, σ2, κ2, ρ2, αr2

t
−→ 〈Π2 ·�T̂ ′

2

, T̂ ′1〉, σ2, κ2, ρ2, αr2
t

−→n−1
〈Π ′2, T

′′
1 〉, σ

′
2, κ2, ε, ν2

– By inversion of (b) we show that T̂ ′1 ok and T̂ ′2 ok:

∗ Subcase: T̂ ′1 ok and T̂ ′2 ok.
· Immediate.

∗ Subcase: (T̂ ′1)·T̂
′
2 fsc.

· From Lemma C.1.17 we have T̂ ′1 fsc and T̂ ′2 fsc.
· The claim then follows immediately.

– Hence from (b), we have Π2 ·�T̂ ′
2

ok

– Note that drop�(Π2 ·�T̂ ′
2

) = drop�(Π2)

– Hence, from (c) we have 〈drop�(Π ′2), 〉; ε 	
∗ 〈drop�(Π2 ·�T̂ ′

2

), 〉; T ′2
– The claim then follows by induction.

• Case U.4

– Then 〈Π̂2 ·�T̂ , ε〉, σ2, κ2, ρ2, αr2
t

−→ 〈Π̂2, T̂〉, σ2, κ2, ρ2, αr2
t

−→n−1 〈Π ′2, T ′′1 〉, σ ′2, κ2, ε, ν2
– From (b) we have both Π̂2 ok and T̂ ok

– Note that drop�(Π̂2 ·�T̂) = drop�(Π̂2)

– Hence, from (c) we have 〈drop�(Π ′2), 〉; ε 	
∗ 〈drop�(Π̂2), 〉; T ′2

– The claim then follows by induction.

Definition C.1.9 (Big-step Sugar).

〈ε, T〉, σ, ε, ρ, αr
t

−→∗ 〈Π, ε〉, σ ′, ε, ε, ν
〈Π, ε〉; ε 	∗ 〈ε, ε〉; T ′

T, σ, ρ, αr ⇓ T ′, σ ′, ν BIGEVAL

〈ε, T〉, σ, ε, ε,prop t
−→∗ 〈Π, ε〉, σ ′, ε, ε, ν

〈Π, ε〉; ε 	∗ 〈ε, ε〉; T ′

T, σy T ′, σ ′, ν
BIGPROP

Corollary (Big-step Consistency). Suppose ε, σ1, ρ1, αr1 ⇓ T1, σ ′1, ν1 and CSA(σ1, ρ1, αr1).

1. If T1, σ2, ρ2, αr2 ⇓ T2, σ ′2, ν2 then ε, σ2|gc, ρ2, αr2 ⇓ T2, σ ′2|gc, ν2
268

2. If T1, σ2 y T2, σ
′
2, ν2 then ε, σ2|gc, ρ1, αr1 ⇓ T2, σ ′2|gc, ν2

Proof. Immediate corollary of Theorem C.1.22

C.2 Proofs for DPS Conversion

In this section, let Dxf denote the auxiliary function that is used in the DPS translation of a
push command (where n = Arity(f)):

Dxf = (fun f ′(y).update
let y1 = read(y[1]) in · · ·
let yn = read(y[n]) in
f (y1, . . . , yn, x))

Furthermore, we write FF(X) to denote the set of function names free in the syntactic
object X.

C.2.1 DPS Conversion Preserves Extensional Semantics

Definition C.2.1.

ε ∼ε7→ε ε
κ1 ∼

x 7→` κ2 [[ρf]] ⊆ ρ ′f ∧ ρ
′
f(xf) = `f ∧ ρ

′
f(f
′) = D

xf
f

κ1 ·bρf, fc ∼x@ xf 7→`@ `f κ2 ·bρ ′f, f ′c

Theorem C.2.1. If

• σ1, κ1, ρ1, e
r

−→∗ σ ′1, ε, ε, ν
• dom(σ2) = {`, `}

• `, ` /∈ dom(σ ′1)

• κ1 ∼x7→` κ2
• [[ρ1]] ⊆ ρ2

• ρ2(x) = `

then σ1] σ2, κ2, ρ2, [[e]]x
r

−→∗ σ ′1] σ ′2, ε, ε, ` ′ where ` ′ = head(`@ `) and σ ′2(`
′, i) = νi for

all i.

Proof. By induction on the length of the reduction chain.

• Case e = let fun f(z).e1 in e2 :

269

– Then σ1, κ1, ρ1, e
r

−→ σ1, κ1, ρ
′
1, e2

r
−→∗ σ ′1, ε, ε, ν,
where ρ ′1 = ρ1[f 7→ fun f(z).e1].

– We know σ1] σ2, κ2, ρ2, [[e]]x
r

−→ σ1] σ2, κ2, ρ ′2, [[e2]]x, where ρ ′2 = ρ2[f 7→
fun f(z@y).[[e1]]y].

– It is easy to see that [[ρ ′1]] ⊆ ρ
′
2 follows from [[ρ1]] ⊆ ρ2.

– The claim then follows by induction.

• Case e = if x then e1 else e2 :

– Suppose ρ1(x) = 0 (the other case is analogous).

– Then σ1, κ1, ρ1, e
r

−→ σ1, κ1, ρ1, e1
r

−→∗ σ ′1, ε, ε, ν.

– [[ρ1]] ⊆ ρ2 implies ρ2(x) = 0.

– Hence we know σ1] σ2, κ2, ρ2, [[e]]x
r

−→ σ1] σ2, κ2, ρ2, [[e1]]x.
– The claim then follows by induction.

• Case e = f (z) :

– Then σ1, κ1, ρ1, e
r

−→ σ1, κ1, ρ
′
1, ef

r
−→∗ σ ′1, ε, ε, ν,

where ρ ′1 = ρ1[yi 7→ ρ1(zi)]
length(z)
i=1

and ρ1(f) = fun f(y).ef.

– From [[ρ1]] ⊆ ρ2 we know ρ2(f) = fun f(y@ x).[[ef]]x.

– Hence σ1] σ2, κ2, ρ2, [[e]]x
r

−→ σ1] σ2, κ2, ρ ′2, [[ef]]x,

where ρ ′2 = ρ2[yi 7→ ρ2(zi)]
length(z)
i=1 .

– It is easy to see that [[ρ ′1]] ⊆ ρ
′
2 follows from [[ρ1]] ⊆ ρ2.

– The claim then follows by induction.

• Case e = let y = ι in e ′ :

– Then σ1, κ1, ρ1, e
r

−→ σ ′′1 , κ1, ρ
′
1, e
′ r
−→∗ σ ′1, ε, ε, ν, where ρ ′1 = ρ1[y 7→ ν ′] and

σ1, ρ1, ι
s

−→ σ ′′1 , ν
′.

– Since dom(σ2) = {`, `} and `, ` /∈ dom(σ ′1) ⊇ dom(σ ′′1) and [[ρ1]] ⊆ ρ2, we get

σ1] σ2, ρ2, ι
s

−→ σ ′′1] σ2, ν
′.

– Hence we know σ1] σ2, κ2, ρ2, [[e]]x
r

−→ σ ′′1] σ2, κ2, ρ
′
2, [[e

′]]x,
where ρ ′2 = ρ2[y 7→ ν ′].

– It is easy to see that [[ρ ′1]] ⊆ ρ
′
2 follows from [[ρ1]] ⊆ ρ2.

270

– The claim then follows by induction.

• Case e = push f do e ′ :

– Then σ1, κ1, ρ1, e
r

−→ σ1, κ
′
1, ρ1, e

′ r
−→∗ σ ′1, ε, ε, ν, where κ ′1 = κ1 ·bρ1, fc.

– We know σ2, κ2, ρ2, [[e]]x
r

−→∗ σ ′2, κ ′2, ρ ′2, [[e ′]]x ′, where

∗ σ ′2 = σ2[(`
′, i) 7→ ⊥]ni=1, so dom(σ ′2) = {`, `, ` ′}

∗ ` ′ /∈ dom(σ2) ∪ dom(σ ′1)
∗ κ ′2 = κ2 ·bρ

′
f, f
′c

∗ ρ ′f = ρ2[f
′ 7→ Dxf]

∗ ρ ′2 = ρ
′
f[x
′ 7→ ` ′]

– We show κ ′1 ∼
x@ x 7→`@ ` κ ′2:

∗ κ1 ∼x7→` κ2 is given.
∗ [[ρ1]] ⊆ ρ ′f follows from [[ρ1]] ⊆ ρ2.
∗ ρ ′f(x) = ` follows from ρ2(x) = `.
∗ ρ ′f(f

′) = Dxf is obvious.

– Also, [[ρ1]] ⊆ ρ ′2 follows from [[ρ1]] ⊆ ρ2
– Finally, ρ ′2(x

′) = ` ′.

– The claim then follows by induction (note that head(`@ `) = head(`@ `@ ` ′)).

• Case e = pop z and κ1 = ε:

– Then σ1, κ1, ρ1, e
r

−→ σ1, ε, ε, ν and σ ′1 = σ1 and νi = ρ1(zi) for all i.

– From κ1 ∼
x 7→` κ2 we get κ2 = ε and ` = ε.

– Thus we know σ1] σ2, κ2, ρ2, [[e]]x
r

−→∗ σ1] σ ′2, ε, ε, `,
where σ ′2 = σ2[(`, i) 7→ ρ2(zi)]

length(z)
i=1 .

– Note that σ ′2(`, i) = ρ2(zi) = ρ1(zi) = νi, for any i.

– Finally, note that ` = head(`) = head(`@ `).

• Case e = pop z and κ1 = κ ′1 ·bρf, fc:

– Then σ1, κ1, ρ1, e
r

−→∗ σ1, κ ′1, ρ ′1, ef r
−→∗ σ ′1, ε, ε, ν,

where ρ ′1 = ρf[yi 7→ ρ1(zi)]
length(z)
i=1

and ρf(f) = fun f(y).ef.

– From κ1 ∼
x 7→` κ2 we know

∗ κ2 = κ ′2 ·bρ
′
f, f
′c

271

∗ x = x ′@ xf and ` = ` ′@ `f
∗ [[ρf]] ⊆ ρ ′f ∧ ρ

′
f(xf) = `f

∗ ρ ′f(f
′) = D

xf
f

– Therefore σ1] σ2, κ2, ρ2, [[e]]x
r

−→∗ σ1] σ ′2, κ2, ε, `,
where σ ′2 = σ2[(`, i) 7→ ρ2(zi)]

length(z)
i=1 .

– And σ1] σ ′2, κ2, ε, `
r

−→∗ σ1] σ ′2, κ ′2, ρ ′2, f (y1, . . . , yn, xf), where ρ ′2 = ρ ′f[y 7→
`][yi 7→ ρ2(zi)]

length(z)
i=1 .

– And σ1] σ ′2, κ
′
2, ρ
′
2, f (y1, . . . , yn, xf)

r
−→∗ σ1] σ ′2, κ ′2, ρ ′2, [[ef]]xf.

– Note that [[ρ ′1]] ⊆ ρ
′
2 follows from [[ρf]] ⊆ ρ ′f and [[ρ1]] ⊆ ρ2.

– The claim then follows by induction.

Corollary. If σ1, ε, ρ, e
r

−→∗ σ ′1, ε, ε, ν,

then σ1, ε, [[ρ]], let x = alloc(n) in [[e]]x
r

−→∗ σ ′1] σ ′2, ε, ε, `
with σ ′2(`, i) = νi for all i.

C.2.2 DPS Conversion Produces CSA Programs

Definition C.2.2.

ρ ′ ∝ ρ ⇐⇒ [[ρ ′]] ⊆ ρ∧ ∀f ∈ dom(ρ). FF(ρ(f)) ⊆ dom(ρ ′)

Definition C.2.3.

ε♥
κ♥ ρ ′f(xf) = `f ∧ ρ

′
f(f
′) = D

xf
f ∧ ∃ρ1. ρ1 ∝ ρ ′f

κ·bρ ′f, f ′c♥

Lemma C.2.2. If

1. σ, κ, ρ, [[e]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′

2. ∃ρ1. ρ1 ∝ ρ∧ FF([[e]]x) ⊆ dom(ρ1)

3. κ♥

4. ρ(x) = `

then:

• e ′ = [[e ′′]]y

272

• ρ ′(y) = ` ′

• ∃ρ2. ρ2 ∝ ρ ′ ∧ FF([[e ′′]]y) ⊆ dom(ρ2)

Proof. By induction on the length of the reduction chain in (1).

• Case e = let fun f(z).e1 in e2 :

– Then σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ̂, [[e2]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′, where ρ̂ = ρ[f 7→
fun f(z@y).[[e1]]y].

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = if x then e1 else e2 :

– Suppose ρ(x) = 0 (the other case is analogous).

– Then σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ, [[e1]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′.

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = f (z) :

– From (2) we know ρ(f) = fun f(y@ x).[[ef]]x.

– Hence σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ̂, [[ef]]x
r

−→∗ σ ′, κ ′, ρ ′, e ′,
where ρ̂ = ρ[yi 7→ ρ(zi)]

length(z)
i=1 .

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = let z = ι in ê :

– Then σ, κ, ρ, [[e]]x
r

−→ σ̂, κ, ρ̂, [[ê]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′, where ρ̂ = ρ[z 7→ ν].

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = memo ê :

– Then σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ, [[ê]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′.

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = update ê :

273

– If the length of the reduction is 0, then e ′ = [[ê]]x and we are done.

– Otherwise we know σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ, [[ê]]x
r

−→∗ σ ′, κ ′, ρ ′,update e ′.

– Note that (2) has been preserved.

– The claim then follows by induction.

• Case e = push f do ê :

– Then σ, κ, ρ, [[e]]x
r

−→∗ σ, κ, ρ ′f,push f ′ do memo let z = alloc(n) in [[ê]]z,
where ρ ′f = ρ[f

′ 7→ Dxf].

– Now σ, κ, ρ ′f,push f ′ do memo let z = alloc(n) in [[ê]]z
r

−→∗ σ̃, κ̃, ρ̃, [[ê]]z,
where:

∗ κ̃ = κ·bρ ′f, f
′c

∗ ρ̃ = ρ ′f[z 7→ ` ′]

– Note that [[ρ1]] ⊆ ρ̃ ∧ FF([[ê]]z) ⊆ dom(ρ1) ∧ ∀f ∈ dom(ρ̃). FF(ρ̃(f)) ⊆ dom(ρ1)
follows from (2).

– Furthermore we know σ̃, κ̃, ρ̃, [[ê]]z
r

−→∗ σ ′, κ ′, ρ ′,update e ′.

– The claim thus follows by induction if we can show κ̃♥.

– And yes, we can!

• Case e = pop z and κ = ε: impossible due to (1)

• Case e = pop z and κ = κ̃·bρ ′f, f
′c:

– From κ♥ we know:

1. [[ρ2]] ⊆ ρ ′f ∧ ∀g ∈ dom(ρ ′f). FF(ρ ′f(g)) ⊆ dom(ρ2)

2. ρ ′f(f
′) = D

xf
f

3. κ̃♥
– Hence we know ρ ′f(f) = fun f(y@ xf).[[ef]]xf.

– So σ, κ, ρ, [[e]]x
r

−→∗ σ̃, κ̃, ρ̃, f (y1, . . . , yn, xf) r
−→∗ σ̃, κ̃, ρ̃, [[ef]]xf, where:

∗ ρ̃ = ρ ′f[y 7→ `][yi 7→ ρ(zi)]
length(z)
i=1

– Note that [[ρ2]] ⊆ ρ ′f ∧ ∀g ∈ dom(ρ ′f). FF(ρ ′f(g)) ⊆ dom(ρ2) implies [[ρ2]] ⊆
ρ̃∧ FF([[ef]]xf) ⊆ dom(ρ2)∧ ∀f ∈ dom(ρ̃). FF(ρ̃(f)) ⊆ dom(ρ2).

– Furthermore we know σ̃, κ̃, ρ̃, [[ef]]xf
r

−→∗ σ ′, κ ′, ρ ′,update e ′ and the claim thus
follows by induction.

274

Definition C.2.4.

ε .` `

κ .`f ` ′ ρ ′f(xf) = `f ∧ ρ
′
f(f
′) = D

xf
f ∧ ∃ρ1. ρ1 ∝ ρ ′f

κ·bρ ′f, f ′c .` ` ′

Lemma C.2.3. If

1. κ .` ` ′

2. ρ(x) = `

3. ∃ρ1. ρ1 ∝ ρ∧ FF([[e]]x) ⊆ dom(ρ1)

4. σ, κ, ρ, [[e]]x
r

−→∗ σ ′, ε, ε, ν
then ν = ` ′.

Proof. By induction on the length of the reduction chain.

• Case e = let fun f(z).e1 in e2 :

– Then σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ ′, [[e2]]x
r

−→∗ , ε, ε, ν,
where ρ ′ = ρ[f 7→ fun f(z@y).[[e1]]y].

– Note that (3) has been preserved.

– The claim then follows by induction.

• Case e = if x then e1 else e2 :

– Suppose ρ(x) = 0 (the other case is analogous).

– Then σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ, [[e1]]x
r

−→∗ σ ′, ε, ε, ν.

– The claim then follows by induction.

• Case e = f (z) :

– From (3) we know ρ(f) = fun f(y@ x ′).[[ef]]x ′.

– Hence σ, κ, ρ, [[e]]x
r

−→ σ, κ, ρ ′, [[ef]]x
r

−→∗ σ ′, ε, ε, ν,

where ρ ′ = ρ[yi 7→ ρ(zi)]
length(z)
i=1 .

– Note that (3) has been preserved.

– The claim then follows by induction.

• Case e = let y = ι in e ′ :

– Then σ, κ, ρ, [[e]]x
r

−→ σ ′, κ, ρ ′, [[e ′]]x
r

−→∗ σ ′, ε, ε, ν, where ρ ′ = ρ[y 7→ ν ′].

275

– Note that (3) has been preserved.

– The claim then follows by induction.

• Case e = push f do e ′ :

– Then σ, κ, ρ, [[e]]x
r

−→∗ σ ′′, κ ′, ρ ′, [[e ′]]xf r
−→∗ σ ′, ε, ε, ν, where

∗ κ ′ = κ·bρ ′f, f
′c

∗ ρ ′f = ρ[f
′ 7→ Dxf]

∗ ρ ′ = ρ ′f[xf 7→ `f]

– We show κ ′ .`f ` ′:

∗ ∃ρ1. [[ρ1]] ⊆ ρ ′f ∧ ∀g ∈ dom(ρ ′f). FF(ρ ′f(g)) ⊆ dom(ρ1) follows from (3).
∗ ρ ′f(f

′) = Dxf is obvious.
∗ ρ ′f(x) = ` follows from ρ(x) = `.

∗ κ .` ` ′ is given.

– Note that (3) has been preserved.

– The claim then follows by induction.

• Case e = pop z and κ = ε:

– Then σ, κ, ρ, [[e]]x
r

−→∗ σ ′, ε, ε, ` and thus ν = `.

– From κ .` ` ′ we know ` = ` ′.

• Case e = pop z and κ = κ ′ ·bρ ′f, f
′c:

– From κ .` ` ′ we know

1. ∃ρ1. [[ρ1]] ⊆ ρ ′f ∧ ∀g ∈ dom(ρ ′f). FF(ρ ′f(g)) ⊆ dom(ρ1)

2. ρ ′f(f
′) = D

xf
f

3. ρ ′f(xf) = `f
4. κ ′ .`f ` ′

– So σ, κ, ρ, [[e]]x
r

−→∗ σ ′′, κ, ε, ` r
−→∗ σ ′′, κ ′, ρ ′, f (y1, . . . , yn, xf), where ρ ′ =

ρ ′f[y 7→ `][yi 7→ ρ(zi)]
length(z)
i=1 .

– From (2) and (1) we know ρ ′(f) = fun f(y@ xf).[[ef]]xf.

– Thus σ ′′, κ ′, ρ ′, f (y1, . . . , yn, xf)
r

−→ σ ′′, κ ′, ρ ′, [[ef]]xf
r

−→∗ σ ′, ε, ε, ν.

– The claim then follows by induction.

Theorem C.2.4. CSA(σ, [[ρ]], let x = alloc(n) in [[e]]x)

276

Proof. Suppose σ, ε, [[ρ]], let x = alloc(n) in [[e]]x
r

−→m σ ′, κ, ρ ′, e ′.
We must show SA(σ ′, ρ ′, e ′).
We distinguish two cases:

• Case m = 0:

– So suppose σ ′, ε, [[ρ]], let x = alloc(n) in [[e]]x
r

−→∗ σ ′′, κ ′, ρ ′′,update e ′′.

– Hence σ ′[(`, i) 7→ ⊥]ni=1, ε, [[ρ]][x 7→ `], [[e]]x
r

−→∗ σ ′′, κ ′, ρ ′′,update e ′′.

– Since ε♥, Lemma C.2.2 yields:

∗ e ′′ = [[ê]]y

∗ ρ ′′(y) = ` ′

∗ [[ρ2]] ⊆ ρ ′′ ∧ FF([[ê]]y) ⊆ dom(ρ2)∧ ∀f ∈ dom(ρ ′′). FF(ρ ′′(f)) ⊆ dom(ρ2)

– Now suppose , ε, ρ ′′, [[ê]]y
r

−→∗ , ε, ε, ν.

– Since ε .`
′
` ′, Lemma C.2.3 yields ν = ` ′.

• Case m > 0:

– Then σ[(`, i) 7→ ⊥]ni=1, ε, [[ρ]][x 7→ `], [[e]]x
r

−→m−1
σ ′, κ, ρ ′, e ′.

– So suppose σ ′, ε, ρ ′, e ′ r
−→∗ σ ′′, κ ′, ρ ′′,update e ′′.

– By Lemma C.1.10, σ ′, κ, ρ ′, e ′ r
−→∗ σ ′′, κ@κ ′, ρ ′′,update e ′′.

– Hence σ[(`, i) 7→ ⊥]ni=1, ε, [[ρ]][x 7→ `], [[e]]x
r

−→∗ σ ′′, κ@κ ′, ρ ′′,update e ′′.

– The rest goes as in the first case.

C.3 Cost Semantics Proofs

Lemma C.3.1. If 〈Π, ε〉 ; ε 	∗ 〈Π ′ ·�, T2〉 ; T1 and � /∈ Π, then T2 = ε.

Theorem C.3.2. If

• σ, κ, ρ, e r
−→∗ , ε, ε, ν1, described by s1

• 〈Π, ε〉, σ, κ, ρ, e t
−→∗ , , ε, ε, ν2, described by s2

• �,� /∈ Π

then:

• γs s1 = γs s2

277

• γσ s1 = γσ s2

• γκ s1 = γκ s2

Proof. By induction on the length of s1. Note that s1 = 〈〉 is not possible, so s1 = su :: s3.
We analyze su and in each case observe that s2 must start with the step st that is associated
with the corresponding E rule. Note that:

• Rules E.P and P.E never apply because the reuse trace is empty.

• Rules P.1–7 never apply because prop is not an expression.

• Rule P.8 never applies because its premise would imply � ∈ Π.

• Rules U.1–3 never apply because the reuse trace is empty.

• Rule U.4 never applies because � /∈ Π.

In each case, we find that st has the same cost as su in the three models, i.e., γ su = γ st

for γ ∈ {γs, γσ, γκ}. Also, each step preserves the assumptions. In particular, in rule E.8,
T2 = ε implies T ′2 = ε by Lemma C.3.1.

Corollary. If

• σ, ε, ρ, e r
−→∗ , ε, ε, ν1, described by s1

• 〈ε, ε〉, σ, ε, ρ, e t
−→∗ , , ε, ε, ν2, described by s2

then:

• γs s1 0s = γs s2 0s

• γσ s1 0σ = γσ s2 0σ

• γκ s1 0κ = γκ s2 0κ

Theorem C.3.3. Suppose the following:

• σ1, ε, ρ, e
r

−→∗ σ ′1, ε, ε, ν, described by s1

• σ1, ε, [[ρ]], let x = alloc(n) in [[e]]x
r

−→∗ σ ′1] σ ′2, ε, ε, `, described by salloc :: s2

• 〈u, d, , 〉 = γκ s1 0κ

• 〈a1, r1, w1〉 = γσ s1 0σ

• 〈a2, r2, w2〉 = γσ s2 0σ

• N is the maximum arity of any pop taken in s1
278

Then:

1. γκ s1 0κ = γκ s2 0κ

2. a2 − a1 = u

3. r2 − r1 ≤ N ∗ d

4. w2 −w1 ≤ N ∗ (d+ 1)

5. γs s2 0s − γs s1 0s ≤ (2N+ 5) ∗ u+N

Proof. Informally, this is easy to see from the definition of DPS conversion as explained
below. The only interesting cases are pushs and pops. Note that since both computations
start and end with an empty stack, we know u = d.

1. Observe that the conversion preserves the number and order of pushs and pops and
that both computations end in an empty stack.

2. Observe that the translation of a push introduces a single additional alloc.

3. Observe that the translation of a push introduces a function containing at most N
additional reads. Each time the stack is popped, such a function is executed. This
happens d times.

4. Observe that the translation of a pop introduces at most N additional writes. We
know that d + 1 pops are executed (the last one when the stack is already empty,
thereby terminating the program).

5. Observe that: executing the translation of a push takes 3 additional steps (function
definition, memo, alloc) to reach its body; executing the translation of a pop (of
which d + 1 are executed) takes at most N steps before actually doing the pop; in
the d cases where the stack is popped, the function generated by the corresponding
push is executed, which takes at most 1 + N + 1 steps. In total, this adds up to
3 ∗ u+N ∗ (d+ 1) + (1+N+ 1) ∗ d = (2N+ 5) ∗ u+N additional steps.

Formally, this can be proven by a very tedious induction, similar to—but much more space
consuming than—the proof of Theorem C.2.1.

279

